-
1Academic Journal
المؤلفون: Elhosary, Heba, Zakhari, Michael H., Elgammal, Mohamed A., Kelany, Khaled A. Helal, Ghany, Mohamed A. Abd El, Salama, Khaled N., Mostafa, Hassan
المساهمون: Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Electrical and Computer Engineering Program, Sensors Lab, Department of Electronics, German University in Cairo (GUC), New Cairo, Egypt, Department of Electronics and Communications Engineering, Cairo University, Giza, Egypt
مصطلحات موضوعية: Low power, support vector machine (SVM), sequential minimal optimization (SMO), accelerator IP, feature extraction, classification, FPGA, dynamic partial reconfiguration (DPR), ASIC
وصف الملف: application/pdf
Relation: https://ieeexplore.ieee.org/document/9427493/; https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9427493; Elhosary, H., Zakhari, M. H., Elgammal, M. A., Helal Kelany, K. A., Abd El Ghany, M. A., Salama, K. N., & Mostafa, H. (2021). Hardware Acceleration of High Sensitivity Power-Aware Epileptic Seizure Detection System Using Dynamic Partial Reconfiguration. IEEE Access, 1–1. doi:10.1109/access.2021.3079155; 2-s2.0-85105843347; IEEE Access; 1-1; http://hdl.handle.net/10754/669517
-
2Conference
المساهمون: Zewail City of Science and Technology
المصدر: 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)
-
3Academic Journal
المؤلفون: Mohammed, Haitham S., Hassan, Hagar M., Zakhari, Michael H., Mostafa, Hassan, Mohamad, Ebtesam A.
المصدر: Biomedical Engineering / Biomedizinische Technik ; volume 66, issue 6, page 563-572 ; ISSN 0013-5585 1862-278X
-
4Academic Journal
المؤلفون: Elhosary, Heba, Zakhari, Michael H., ElGammal, Mohamed A., Elghany, Mohamed Abd, Salama, Khaled N., Mostafa, Hassan
المساهمون: Electrical Engineering Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Department of Electronics, German University in Cairo (GUC), Egypt, Department of Electronics and Communications Engineering, Cairo University, Egypt
مصطلحات موضوعية: Low power, Support vector machine (SVM), Sequential minimal optimization (SMO), Accelerator IP, Feature extraction, Classification, FPGA, ASIC
Relation: https://ieeexplore.ieee.org/document/8867922/; https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8867922; Elhosary, H., Zakhari, M. H., ElGammal, M. A., Abd Elghany, M., Salama, K., & Mostafa, H. (2019). Low-Power Hardware Implementation of a Support Vector Machine Training and Classification for Neural Seizure Detection. IEEE Transactions on Biomedical Circuits and Systems, 1–1. doi:10.1109/tbcas.2019.2947044; IEEE Transactions on Biomedical Circuits and Systems; http://hdl.handle.net/10754/658642