يعرض 1 - 13 نتائج من 13 نتيجة بحث عن '"Yu, Tinghui"', وقت الاستعلام: 0.40s تنقيح النتائج
  1. 1
    Report
  2. 2
  3. 3
    Academic Journal
  4. 4
    Report

    المصدر: Zapiski Nauchnykh Seminarov POMI, Special issue in honour of I. A. Ibragimov's 80th birthday, Vol. 408, pp. 245-267, 2012

    مصطلحات موضوعية: Mathematics - Statistics Theory

    URL الوصول: http://arxiv.org/abs/1302.3238

  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
  8. 8
    Academic Journal

    المصدر: Journal of Biopharmaceutical Statistics ; volume 26, issue 6, page 1067-1077 ; ISSN 1054-3406 1520-5711

  9. 9
    Academic Journal
  10. 10
    Conference
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المؤلفون: Kagan, Abram, Yu, Tinghui

    وصف الملف: application/pdf

    Relation: mr:MR2411124; zbl:Zbl 1186.62009; reference:[1] Carlen, E. A.: Superadditivity of Fisher's information and logarithmic Sobolev inequalities.J. Funct. Anal. 101 (1991), 194-211. Zbl 0732.60020, MR 1132315, 10.1016/0022-1236(91)90155-X; reference:[2] Ibragimov, I. A., Khas'minskij, R. Z.: Statistical Estimation. Asymptotic Theory.Springer New York (1981). Zbl 0467.62026, MR 0620321; reference:[3] Kagan, A., Landsman, Z.: Statistical meaning of Carlen's superadditivity of the Fisher information.Statist. Probab. Lett. 32 (1997), 175-179. Zbl 0874.60002, MR 1436863, 10.1016/S0167-7152(96)00070-3; reference:[4] Kagan, A.: An inequality for the Pitman estimators related to the Stam inequality.Sankhya A64 (2002), 282-292. Zbl 1192.62099, MR 1981759; reference:[5] Kagan, A., Shepp, L. A.: A sufficiency paradox: an insufficient statistic preserving the Fisher information.Amer. Statist. 59 (2005), 54-56. MR 2113195, 10.1198/000313005X21041; reference:[6] Kagan, A., Yu, T., Barron, A., Madiman, M.: Contribution to the theory of Pitman estimators.Submitted.; reference:[7] Madiman, M., Barron, A.: The monotonicity of information in the central limit theorem and entropy power inequalities.Preprint Dept. of Statistics, Yale University (2006). MR 2128239; reference:[8] Shao, J.: Mathematical Statistics, 2nd ed.Springer New York (2003). Zbl 1018.62001, MR 2002723; reference:[9] Stam, A. J.: Some inequalities satisfied by the quantities of information of Fisher and Shannon.Inform. and Control 2 (1959), 101-112. Zbl 0085.34701, MR 0109101, 10.1016/S0019-9958(59)90348-1; reference:[10] Zamir, R.: A proof of the Fisher information inequality via a data processing argument.IEEE Trans. Inf. Theory 44 (1998), 1246-1250. Zbl 0901.62005, MR 1616672, 10.1109/18.669301

  13. 13
    Academic Journal