يعرض 1 - 20 نتائج من 34 نتيجة بحث عن '"Yoshii, Kentarou"', وقت الاستعلام: 0.43s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal

    المؤلفون: MALAGUTI, LUISA1 luisa.malaguti@unimore.it, YOSHII, KENTAROU2 ket.yoshii@gmail.com

    المصدر: Fixed Point Theory. 2020, Vol. 21 Issue 2, p657-684. 28p.

  8. 8
  9. 9
  10. 10
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3238845; zbl:Zbl 06362264; reference:[1] Clément, P., Okazawa, N., Sobajima, M., Yokota, T.: A simple approach to the Cauchy problem for complex Ginzburg-Landau equations by compactness methods.J. Differ. Equations 253 (2012), 1250-1263. Zbl 1248.35203, MR 2925912, 10.1016/j.jde.2012.05.002; reference:[2] Giga, M., Giga, Y., Saal, J.: Nonlinear Partial Differential Equations. Asymptotic Behavior of Solutions and Self-Similar Solutions.Progress in Nonlinear Differential Equations and Their Applications 79 Birkhäuser, Boston (2010). Zbl 1215.35001, MR 2656972; reference:[3] Ginibre, J., Velo, G.: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation I. Compactness methods.Physica D 95 (1996), 191-228. Zbl 0889.35045, MR 1406282, 10.1016/0167-2789(96)00055-3; reference:[4] Ginibre, J., Velo, G.: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation II. Contraction methods.Commun. Math. Phys. 187 (1997), 45-79. Zbl 0889.35046, MR 1463822, 10.1007/s002200050129; reference:[5] Kobayashi, Y., Matsumoto, T., Tanaka, N.: Semigroups of locally Lipschitz operators associated with semilinear evolution equations.J. Math. Anal. Appl. 330 (2007), 1042-1067. Zbl 1123.34044, MR 2308426, 10.1016/j.jmaa.2006.08.028; reference:[6] Levermore, C. D., Oliver, M.: The complex Ginzburg-Landau equation as a model problem.Dynamical Systems and Probabilistic Methods in Partial Differential Equations P. Deift et al. Lect. Appl. Math. 31 AMS, Providence 141-190 (1996). Zbl 0845.35003, MR 1363028; reference:[7] Matsumoto, T., Tanaka, N.: Semigroups of locally Lipschitz operators associated with semilinear evolution equations of parabolic type.Nonlinear Anal. 69 (2008), 4025-4054. Zbl 1169.47045, MR 2463352, 10.1016/j.na.2007.10.035; reference:[8] Matsumoto, T., Tanaka, N.: Well-posedness for the complex Ginzburg-Landau equations.Current Advances in Nonlinear Analysis and Related Topics T. Aiki et al. GAKUTO Internat. Ser. Math. Sci. Appl. 32 Gakk$\bar o$tosho, Tokyo (2010), 429-442. Zbl 1208.35143, MR 2668292; reference:[9] Okazawa, N.: Smoothing effect and strong $L^2$-wellposedness in the complex Ginzburg-Landau equation.Differential Equations. Inverse and Direct Problems A. Favini, A. Lorenzi Lecture Notes in Pure and Applied Mathematics 251 CRC Press, Boca Raton (2006), 265-288. Zbl 1110.35030, MR 2275982, 10.1201/9781420011135.ch14; reference:[10] Okazawa, N., Yokota, T.: Monotonicity method applied to the complex Ginzburg-Landau and related equations.J. Math. Anal. Appl. 267 (2002), 247-263. Zbl 0995.35029, MR 1886827, 10.1006/jmaa.2001.7770; reference:[11] Okazawa, N., Yokota, T.: Perturbation theory for $m$-accretive operators and generalized complex Ginzburg-Landau equations.J. Math. Soc. Japan 54 (2002), 1-19. Zbl 1045.35080, MR 1864925, 10.2969/jmsj/1191593952; reference:[12] Okazawa, N., Yokota, T.: Non-contraction semigroups generated by the complex Ginz-burg-Landau equation.Nonlinear Partial Differential Equations and Their Applications N. Kenmochi et al. GAKUTO Internat. Ser. Math. Sci. Appl. 20 Gakk$\bar o$tosho, Tokyo (2004), 490-504. MR 2087493; reference:[13] Okazawa, N., Yokota, T.: Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation.Discrete Contin. Dyn. Syst. 28 (2010), 311-341. Zbl 1198.47089, MR 2629484, 10.3934/dcds.2010.28.311; reference:[14] Yang, Y.: On the Ginzburg-Landau wave equation.Bull. Lond. Math. Soc. 22 (1990), 167-170. Zbl 0663.35095, MR 1045289, 10.1112/blms/22.2.167; reference:[15] Yokota, T., Okazawa, N.: Smoothing effect for the complex Ginzburg-Landau equation (general case).Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 305-316. MR 2268800

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal

    المساهمون: Ministry of Education, Culture, Sports, Science and Technology, Ministry of Health, Labour and Welfare, Japan Society for the Promotion of Science

    المصدر: Vaccine ; volume 19, issue 32, page 4774-4779 ; ISSN 0264-410X

  16. 16
    Academic Journal
  17. 17
    Electronic Resource
  18. 18
    Academic Journal

    المؤلفون: OKAZAWA, NOBORU, YOSHII, KENTAROU

    المصدر: Discrete & Continuous Dynamical Systems - Series S; Jun2011, Vol. 4 Issue 3, p723-744, 22p

  19. 19
  20. 20
    Academic Journal