-
1ReportGeneralization Ability of Deep Learning Algorithms Trained using SEM Data for Objects Classification
المؤلفون: Yasmina Zaky (10899615), nicolas fortino (10899747), Benoit Miramond (10899749), Jean-Yves Dauvignac (10899750)
-
2
المؤلفون: Yasmina Zaky, Nicolas Fortino, Jean-Yves Dauvignac, Benoit Miramond
المساهمون: Laboratoire d'Electronique, Antennes et Télécommunications (LEAT), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
المصدر: European Radar Conference 2021
European Radar Conference 2021, Feb 2022, Londres, United Kingdom. pp.4مصطلحات موضوعية: [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism, ComputingMethodologies_PATTERNRECOGNITION, Support Vector Machine, Decision Tree, Singularity Expansion Method, Time domain, [INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE], Artificial Neural Networks, Frequency domain, [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
-
3Generalization Ability of Deep Learning Algorithms Trained using SEM Data for Objects Classification
المؤلفون: Benoit Miramond, Nicolas Fortino, Jean-Yves Dauvignac, Yasmina Zaky
المساهمون: Laboratoire d'Electronique, Antennes et Télécommunications (LEAT), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
مصطلحات موضوعية: natural resonances, Computer science, Feature extraction, Singularity Expansion Method, Data type, Field (computer science), radar target classification, [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI], radar target recognition, Support Vector Machines, Classifier (linguistics), Electrical and Electronic Engineering, Vector Fitting, Artificial neural network, business.industry, Deep learning, Supervised learning, Decision Trees, Pattern recognition, Condensed Matter Physics, neural networks, [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism, General Earth and Planetary Sciences, frequency response, Artificial intelligence, Noise (video), business