يعرض 1 - 8 نتائج من 8 نتيجة بحث عن '"Yang, Meichan"', وقت الاستعلام: 0.40s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: Yang, Meichan; Zhang, Deqiang; Zhao, Zifeng; Sit, Julian; Saint‐sume, Mischael; Shabandri, Omar; Zhang, Kezhong; Yin, Lei; Tong, Xin (2020). "Hepatic E4BP4 induction promotes lipid accumulation by suppressing AMPK signaling in response to chemical or diet- induced ER stress." The FASEB Journal (10): 13533-13547.; https://hdl.handle.net/2027.42/162728; The FASEB Journal; Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG. 5’- AMP activates the AMP- activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin- dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem. 1995; 270: 27186 - 27191.; Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol. 2013; 59: 583 - 594.; Iracheta- Vellve A, Petrasek J, Gyongyosi B, et al. Endoplasmic reticulum stress- induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes. J Biol Chem. 2016; 291: 26794 - 26805.; Tong X, Muchnik M, Chen Z, et al. Transcriptional repressor E4- binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J Biol Chem. 2010; 285: 36401 - 36409.; Flowers MT, Ntambi JM. Stearoyl- CoA desaturase and its relation to high- carbohydrate diets and obesity. Biochim Biophys Acta. 2009; 1791: 85 - 91.; Miyazaki M, Sampath H, Liu X, et al. Stearoyl- CoA desaturase- 1 deficiency attenuates obesity and insulin resistance in leptin- resistant obese mice. Biochem Biophys Res Commun. 2009; 380: 818 - 822.; Smith BK, Steinberg GR. AMP- activated protein kinase, fatty acid metabolism, and insulin sensitivity. Curr Opin Clin Nutr Metab Care. 2017; 20: 248 - 253.; Winder WW, Hardie DG. Inactivation of acetyl- CoA carboxylase and activation of AMP- activated protein kinase in muscle during exercise. Am J Physiol. 1996; 270: E299 - E304.; Kim SJ, Tang T, Abbott M, Viscarra JA, Wang Y, Sul HS. AMPK phosphorylates desnutrin/ATGL and hormone- sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue. Mol Cell Biol. 2016; 36: 1961 - 1976.; Woods A, Williams JR, Muckett PJ, et al. Liver- specific activation of AMPK prevents steatosis on a high- fructose diet. Cell Rep. 2017; 18: 3043 - 3051.; Li Y, Xu S, Mihaylova MM, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet- induced insulin- resistant mice. Cell Metab. 2011; 13: 376 - 388.; Polekhina G, Gupta A, Michell BJ, et al. AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol. 2003; 13: 867 - 871.; Lee MS, Han HJ, Han SY, et al. Loss of the E3 ubiquitin ligase MKRN1 represses diet- induced metabolic syndrome through AMPK activation. Nat Commun. 2018; 9: 3404 - 3417.; Deng M, Yang X, Qin B, et al. Deubiquitination and activation of AMPK by USP10. Mol Cell. 2016; 61: 614 - 624.; Kwon E, Li X, Deng Y, Chang HW, Kim DY. AMPK is down- regulated by the CRL4A- CRBN axis through the polyubiquitination of AMPKalpha isoforms. FASEB J. 2019; 33: 6539 - 6550.; Li YY, Wu C, Shah SS, et al. Degradation of AMPK- alpha1 sensitizes BRAF inhibitor- resistant melanoma cells to arginine deprivation. Mol Oncol. 2017; 11: 1806 - 1825.; Vila IK, Yao Y, Kim G, et al. A UBE2O- AMPKalpha2 axis that promotes tumor initiation and progression offers opportunities for therapy. Cancer Cell. 2017; 31: 208 - 224.; Zhang W, Hietakangas V, Wee S, Lim SC, Gunaratne J, Cohen SM. ER stress potentiates insulin resistance through PERK- mediated FOXO phosphorylation. Genes Dev. 2013; 27: 441 - 449.; So JS, Hur KY, Tarrio M, et al. Silencing of lipid metabolism genes through IRE1alpha- mediated mRNA decay lowers plasma lipids in mice. Cell Metab. 2012; 16: 487 - 499.; Santhekadur PK, Kumar DP, Sanyal AJ. Preclinical models of non- alcoholic fatty liver disease. J Hepatol. 2018; 68: 230 - 237.; Xu G, Huang K, Zhou J. Hepatic AMP kinase as a potential target for treating nonalcoholic fatty liver disease: evidence from studies of natural products. Curr Med Chem. 2018; 25: 889 - 907.; Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab. 2016; 311: E730 - E740.; Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018; 27: 299 - 313.; Boudaba N, Marion A, Huet C, Pierre R, Viollet B, Foretz M. AMPK re- activation suppresses hepatic steatosis but its downregulation does not promote fatty liver development. EBioMedicine. 2018; 28: 194 - 209.; Xu Y, Gu Y, Liu G, et al. Cidec promotes the differentiation of human adipocytes by degradation of AMPKalpha through ubiquitin- proteasome pathway. Biochim Biophys Acta. 2015; 1850: 2552 - 2562.; Yang F, Liu Y, Ren H, Zhou G, Yuan X, Shi X. ER- stress regulates macrophage polarization through pancreatic EIF- 2alpha kinase. Cell Immunol. 2019; 336: 40 - 47.; Palmisano BT, Zhu L, Eckel RH, Stafford JM. Sex differences in lipid and lipoprotein metabolism. Mol Metab. 2018; 15: 45 - 55.; Zhu L, Shi J, Luu TN, et al. Hepatocyte estrogen receptor alpha mediates estrogen action to promote reverse cholesterol transport during Western- type diet feeding. Mol Metab. 2018; 8: 106 - 116.; Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat Rev Immunol. 2016; 16: 469 - 484.; Henkel A, Green RM. The unfolded protein response in fatty liver disease. Semin Liver Dis. 2013; 33: 321 - 329.; Byun S, Kim YC, Zhang Y, et al. A postprandial FGF19- SHP- LSD1 regulatory axis mediates epigenetic repression of hepatic autophagy. EMBO J. 2017; 36: 1755 - 1769.; Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res. 2016; 57: 1329 - 1338.; Lee JS, Mendez R, Heng HH, Yang ZQ, Zhang K. Pharmacological ER stress promotes hepatic lipogenesis and lipid droplet formation. Am J Transl Res. 2012; 4: 102 - 113.; Rinella ME, Siddiqui MS, Gardikiotes K, Gottstein J, Elias M, Green RM. Dysregulation of the unfolded protein response in db/db mice with diet- induced steatohepatitis. Hepatology. 2011; 54: 1600 - 1609.; Samuel VT, Shulman GI. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 2018; 27: 22 - 41.; Noureddin M, Sanyal AJ. Pathogenesis of NASH: the impact of multiple pathways. Curr Hepatol Rep. 2018; 17: 350 - 360.; Friedman SL, Neuschwander- Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018; 24: 908 - 922.; Song MJ, Malhi H. The unfolded protein response and hepatic lipid metabolism in non- alcoholic fatty liver disease. Pharmacol Ther. 2019; 203: 107401.; Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004; 306: 457 - 461.; Puri P, Mirshahi F, Cheung O, et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology. 2008; 134: 568 - 576.; Ren LP, Song GY, Hu ZJ, et al. The chemical chaperon 4- phenylbutyric acid ameliorates hepatic steatosis through inhibition of de novo lipogenesis in high- fructose- fed rats. Int J Mol Med. 2013; 32: 1029 - 1036.; Cho EJ, Yoon JH, Kwak MS, et al. Tauroursodeoxycholic acid attenuates progression of steatohepatitis in mice fed a methionine- choline- deficient diet. Dig Dis Sci. 2014; 59: 1461 - 1474.; Bandla H, Dasgupta D, Mauer AS, et al. Deletion of endoplasmic reticulum stress- responsive co- chaperone p58(IPK) protects mice from diet- induced steatohepatitis. Hepatol Res. 2018; 48: 479 - 494.; Yoo J, Cho IJ, Jeong IK, Ahn KJ, Chung HY, Hwang YC. Exendin- 4, a glucagon- like peptide- 1 receptor agonist, reduces hepatic steatosis and endoplasmic reticulum stress by inducing nuclear factor erythroid- derived 2- related factor 2 nuclear translocation. Toxicol Appl Pharmacol. 2018; 360: 18 - 29.; Han CY, Rho HS, Kim A, et al. FXR inhibits endoplasmic reticulum stress- induced NLRP3 inflammasome in hepatocytes and ameliorates liver injury. Cell Rep. 2018; 24: 2985 - 2999.; Rahman SM, Schroeder- Gloeckler JM, Janssen RC, et al. CCAAT/enhancing binding protein beta deletion in mice attenuates inflammation, endoplasmic reticulum stress, and lipid accumulation in diet- induced nonalcoholic steatohepatitis. Hepatology. 2007; 45: 1108 - 1117.; Rahman K, Liu Y, Kumar P, et al. C/EBP homologous protein modulates liraglutide- mediated attenuation of non- alcoholic steatohepatitis. Lab Invest. 2016; 96: 895 - 908.; Liu X, Henkel AS, LeCuyer BE, Schipma MJ, Anderson KA, Green RM. Hepatocyte X- box binding protein 1 deficiency increases liver injury in mice fed a high- fat/sugar diet. Am J Physiol Gastrointest Liver Physiol. 2015; 309: G965 - G974.; Zheng Z, Kim H, Qiu Y, et al. CREBH couples circadian clock with hepatic lipid metabolism. Diabetes. 2016; 65: 3369 - 3383.; Keniry M, Dearth RK, Persans M, Parsons R. New frontiers for the NFIL3 bZIP transcription factor in cancer, metabolism and beyond. Discoveries. 2014; 2: e15.; Gascoyne DM, Long E, Veiga- Fernandes H, et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol. 2009; 10: 1118 - 1124.; Kostrzewski T, Borg AJ, Meng Y, et al. Multiple levels of control determine how E4bp4/Nfil3 regulates NK cell development. J Immunol. 2018; 200: 1370 - 1381.; Kang G, Han HS, Koo SH. NFIL3 is a negative regulator of hepatic gluconeogenesis. Metabolism. 2017; 77: 13 - 22.; Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science. 2017; 357: 912 - 916.; Tong X, Li P, Zhang D, et al. E4BP4 is an insulin- induced stabilizer of nuclear SREBP- 1c and promotes SREBP- 1c- mediated lipogenesis. J Lipid Res. 2016; 57: 1219 - 1230.; Qiu B, Simon MC. BODIPY 493/503 staining of neutral lipid droplets for microscopy and quantification by flow cytometry. Bio Protoc. 2016; 6: 1 - 6.; Ohta Y, Taguchi A, Matsumura T, et al. Clock gene dysregulation induced by chronic ER stress disrupts beta- cell function. EBioMedicine. 2017; 18: 146 - 156.; Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab. 2006; 291: E275 - E281.; Khoury T, Ben Ya’acov A, Shabat Y, Zolotarovya L, Snir R, Ilan Y. Altered distribution of regulatory lymphocytes by oral administration of soy- extracts exerts a hepatoprotective effect alleviating immune mediated liver injury, non- alcoholic steatohepatitis and insulin resistance. World J Gastroenterol. 2015; 21: 7443 - 7456.; Sano R, Reed JC. ER stress- induced cell death mechanisms. Biochim Biophys Acta. 2013; 1833: 3460 - 3470.; Chikka MR, McCabe DD, Tyra HM, Rutkowski DT. C/EBP homologous protein (CHOP) contributes to suppression of metabolic genes during endoplasmic reticulum stress in the liver. J Biol Chem. 2013; 288: 4405 - 4415.; Rui L. Energy metabolism in the liver. Compr Physiol. 2014; 4: 177 - 197.

  8. 8
    Academic Journal

    مصطلحات موضوعية: Internal Medicine and Specialties, Health Sciences

    وصف الملف: application/pdf

    Relation: Zhang, Deqiang; Tong, Xin; Nelson, Bradley B.; Jin, Ethan; Sit, Julian; Charney, Nicholas; Yang, Meichan; Omary, M. Bishr; Yin, Lei (2018). "The hepatic BMAL1/AKT/lipogenesis axis protects against alcoholic liver disease in mice via promoting PPARα pathway." Hepatology 68(3): 883-896.; http://hdl.handle.net/2027.42/146413; Hepatology; Zhang DQ, Tong X, VanDommelen K, Gupta N, Stamper K, Brady GF, et al. Lipogenic transcription factor ChREBP mediates fructose‐induced metabolic adaptations to prevent hepatotoxicity. J Clin Invest 2017; 127.; Canaple L, Rambaud J, Dkhissi‐Benyahya O, Rayet B, Tan NS, Michalik L, et al. Reciprocal regulation of brain and muscle Arnt‐like protein 1 and peroxisome proliferator‐activated receptor α defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 2006; 20: 1715 ‐ 1727.; Oishi K, Shirai H, Ishida N. CLOCK is involved in the circadian transactivation of peroxisome‐proliferator‐activated receptor α (PPARα) in mice. Biochem 2005; 386: 575 ‐ 581.; Nakajima T, Kamijo Y, Tanaka N, Sugiyama E, Tanaka E, Kiyosawa K, et al. Peroxisome proliferator‐activated receptor α protects against alcohol‐induced liver damage. Hepatology 2004; 40: 972 ‐ 980.; Forcheron F, Cachefo A, Thevenon S, Pinteur C, Beylot M. Mechanisms of the triglyceride‐and cholesterol‐lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients. Diabetes 2002; 51: 3486 ‐ 3491.; Vega GL, Ma PT, Cater NB, Filipchuk N, Meguro S, Garcia‐Garcia AB, et al. Effects of adding fenofibrate (200 mg/day) to simvastatin (10 mg/day) in patients with combined hyperlipidemia and metabolic syndrome. American J Cardiol 2003; 91: 956 ‐ 960.; Tsutsumi M, Takase S. Effect of fenofibrate on fatty liver in rats treated with alcohol. Alcohol Clin Exp Res 2001; 25 ( 6 Suppl ): 75S ‐ 89S.; Liu S, Alexander RK, Lee C‐H. Lipid metabolites as metabolic messengers in inter‐organ communication. Trends Endocrinol Metab 2014; 25: 356 ‐ 363.; Zhang D, Yin L. Transcriptional Regulation of De Novo Lipogenesis in Liver. In: Ntambi, J, ed. Hepatic De Novo Lipogenesis and Regulation of Metabolism. 1 st ed. Switzerland: Springer; 2016; 1 ‐ 31.; Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1‐dependent and independent pathways. Cell Metab 2011; 14: 21 ‐ 32.; Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008; 134: 317 ‐ 328.; Abdul‐Wahed A, Guilmeau S, Postic C. Sweet Sixteenth for ChREBP: Established Roles and Future Goals. Cell Metab 2017; 26: 324 ‐ 341.; Marmier S, Dentin R, Daujat‐Chavanieu M, Guillou H, Bertrand‐Michel J, Gerbal‐Chaloin S, et al. Novel role for carbohydrate responsive element binding protein in the control of ethanol metabolism and susceptibility to binge drinking. Hepatology 2015; 62: 1086 ‐ 1100.; Udoh US, Valcin JA, Gamble KL, Bailey SM. The molecular circadian clock and alcohol‐induced liver injury. Biomolecules 2015; 5: 2504 ‐ 2537.; Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, et al. High‐fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007; 6: 414 ‐ 421.; Li MD, Ruan HB, Hughes ME, Lee JS, Singh JP, Jones SP, et al. O‐GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 2013; 17: 303 ‐ 310.; Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, et al. CLOCK‐mediated acetylation of BMAL1 controls circadian function. Nature 2007; 450: 1086 ‐ 1090.; Sahar S, Zocchi L, Kinoshita C, Borrelli E, Sassone‐Corsi P. Regulation of BMAL1 protein stability and circadian function by GSK3β‐mediated phosphorylation. PloS One 2010; 5: e8561.; Tamaru T, Hirayama J, Isojima Y, Nagai K, Norioka S, Takamatsu K, et al. CK2α phosphorylates BMAL1 to regulate the mammalian clock. Nat Struc Mol Biol 2009; 16: 446 ‐ 448.; Sanchez‐Gurmaches J, Tang Y, Jespersen NZ, Wallace M, Martinez Calejman C, Gujja S, et al. Brown fat AKT2 is a cold‐induced kinase that stimulates ChREBP‐mediated de novo lipogenesis to optimize fuel storage and thermogenesis. Cell Metab 2018; 27: 195 ‐ 209.; Yang Z, Tsuchiya H, Zhang Y, Lee S, Liu C, Huang Y, et al. REV‐ERBα activates C/EBP homologous protein to control small heterodimer partner–mediated oscillation of alcoholic fatty liver. American J Pathol 2016; 186: 2909 ‐ 2920.; Filiano AN, Millender‐Swain T, Johnson R Jr, Young ME, Gamble KL, Bailey SM. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus. PloS One 2013; 8: e71684.; Zhou P, Ross RA, Pywell CM, Liangpunsakul S, Duffield GE. Disturbances in the murine hepatic circadian clock in alcohol‐induced hepatic steatosis. Sci Rep 2014; 4: 3725.; Massey VL, Arteel GE. Acute alcohol‐induced liver injury. Front Physiol 2012; 3: 193.; Poppitt SD. Beverage Consumption: Are Alcoholic and Sugary Drinks Tipping the Balance towards Overweight and Obesity? Nutrients 2015; 7: 6700 ‐ 6718.; Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 2015; 12: 231 ‐ 242.; Summa KC, Voigt RM, Forsyth CB, Shaikh M, Cavanaugh K, Tang Y, et al. Disruption of the circadian clock in mice increases intestinal permeability and promotes alcohol‐induced hepatic pathology and inflammation. PloS One 2013; 8: e67102.; Swanson GR, Gorenz A, Shaikh M, Desai V, Kaminsky T, Van Den Berg J, et al. Night workers with circadian misalignment are susceptible to alcohol‐induced intestinal hyperpermeability with social drinking. Am J Gastrointest Liver Physiol 2016; 311: G192 ‐ G201.; Asher G, Sassone‐Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015; 161: 84 ‐ 92.; Zhang D, Tong X, Arthurs B, Guha A, Rui L, Kamath A, et al. Liver clock protein BMAL1 promotes de novo lipogenesis through insulin‐mTORC2‐AKT signaling. J Biol Chem 2014; 289: 25925 ‐ 25935.; Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, et al. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell metab 2015; 22: 709 ‐ 720.; Fischer M, You M, Matsumoto M, Crabb DW. Peroxisome proliferator‐activated receptor α (PPARα) agonist treatment reverses PPARα dysfunction and abnormalities in hepatic lipid metabolism in ethanol‐fed mice. J Biol Chem 2003; 278: 27997 ‐ 28004.; Galli A, Pinaire J, Fischer M, Dorris R, Crabb DW. The transcriptional and dna binding activity of peroxisome proliferator‐activated receptor α is inhibited by ethanol metabolism. a novel mechanism for the development of ethanol‐induced fatty liver. J Biol Chem 2001; 276: 68 ‐ 75.; You M, Fischer M, Deeg MA, Crabb DW. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element‐binding protein (SREBP). J Biol Chem 2002; 277: 29342 ‐ 29347.; Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, et al. “ New” hepatic fat activates PPARα to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 2005; 1: 309 ‐ 322.; Chakravarthy MV, Lodhi IJ, Yin L, Malapaka RR, Xu HE, Turk J, et al. Identification of a physiologically relevant endogenous ligand for PPARα in liver. Cell 2009; 138: 476 ‐ 488.; Bertola A, Mathews S, Ki SH, Wang H, Gao B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 2013; 8: 627.; Yin H, Hu M, Zhang R, Shen Z, Flatow L, You M. MicroRNA‐217 promotes ethanol‐induced fat accumulation in hepatocytes by down‐regulating SIRT1. J Biol Chem 2012; 287: 9817 ‐ 9826.; Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, et al. The NAD+‐dependent deacetylase SIRT1 modulates CLOCK‐mediated chromatin remodeling and circadian control. Cell 2008; 134: 329 ‐ 340.; Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone‐Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK‐SIRT1. Science 2009; 324: 654 ‐ 657.; Tong X, Zhang D, Arthurs B, Li P, Durudogan L, Gupta N, et al. Palmitate inhibits SIRT1‐dependent BMAL1/CLOCK interaction and disrupts circadian gene oscillations in hepatocytes. PloS One 2015; 10: e0130047.; Hoek JB, Cahill A, Pastorino JG. Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology 2002; 122: 2049 ‐ 2063.; Mehta AJ, Guidot DM. Alcohol abuse, the alveolar macrophage and pneumonia. Am J Med Sci 2012; 343: 244 ‐ 247.; Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, et al. Alcohol stimulates macrophage activation through caspase‐dependent hepatocyte derived release of CD40L containing extracellular vesicles. J Hepatol 2016; 64: 651 ‐ 660.; Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat Rev Immunol 2013; 13: 190 ‐ 198.