يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Ya. D. Zelyakh"', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Izvestiya. Non-Ferrous Metallurgy; № 1 (2024); 5-13 ; Izvestiya Vuzov. Tsvetnaya Metallurgiya; № 1 (2024); 5-13 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    Relation: https://cvmet.misis.ru/jour/article/view/1579/716; Лебедь А.Б., Набойченко С.С., Шунин В.А. Производство селена и теллура на ОАО «Уралэлектро-медь». Екатеринбург: УрФУ, 2015. 112 с.; Yang S., Li Z., Yan K., Zhang X., Xu Z., Liu W., Liu Z., Liu H. Removing and recycling mercury from scrubbingsolution produced in wet nonferrous metal smelting flue gas purification process. Journal of Environmental Sciences. 2021;(103):59—68. https://doi.org/10.1016/j.jes.2020.10.013; Fabre E., Rocha A., Cardoso S.P., Brandão P., Vale C. Lopes C.B., Pereira E., Silva C.M. Purification of mercury-contaminated water using new AM-11 and AM-14 microporous silicates. Separation and Purification Technology. 2020;(239):116438. https://doi.org/10.1016/j.seppur.2019.116438; Ponomarev A.V., Bludenko A.V., Makarov I.E., Pikaev A.K., Kim D.K., Kim Y., Han B. Combined electronbeam and adsorption purification of water from mercury and chromium using materials of vegetable origin as sorbents. Radiation Physics and Chemistry. 1997;49(4):473—476. http://dx.doi.org/10.1016/S0969-806X(96)00148-X; Zhang B., Petcher S., Gao H., Yan P., Cai D., Fleming G., Parker D.J., Chong S.Y., Hasell T. Magnetic sulfur-doped carbons for mercury adsorption. Journal of Colloid and Interface Science. 2021;(603):728—737. https://doi.org/10.1016/j.jcis.2021.06.129; Pang X., Liu W., Xu H., Hong Q., Cui P., Huang W., Qu Z., Yan N. Selective uptake of gaseous sulfur trioxide and mercury in ZnO—CuS composite at elevated temperatures from SO2-rich flue gas. Chemical Engineering Journal. 2022;(427):132035. https://doi.org/10.1016/j.cej.2021.132035; Xin F., Xiao R., Zhao Y., Zhang J. Surface sulfidation modification of magnetospheres from fly ash for elemental mercury removal from coal combustion flue gas. Chemical Engineering Journal. 2022;(436):135212. http://dx.doi.org/10.1016/j.cej.2022.135212; Teng H., Altaf A.R. Elemental mercury (Hg 0 ) emission, hazards, and control: A brief review. Journal of Hazardous Materials Advances. 2022;(5):100049. https://doi.org/10.1016/j.hazadv.2022.100049; Ji Z., Huang B., Gan M., Fan X., Wang Y., Chen X., Sun Z., Huang X., Zhang D., Fan Y. Recent progress on the clean and sustainable technologies for removing mercury from typical industrial flue gases: A review. Process Safety and Environmental Protection. 2021;(150):578—593. https://doi.org/10.1016/j.psep.2021.04.017; Jia T., Luo F., Wu J., Chu F., Xiao Y., Liu Q., Pan W., Li F. Nanosized Zn—In spinel-type sulfides loaded on facet-oriented CeO 2 nanorods heterostructures as Z-scheme photocatalysts for efficient elemental mercury removal. Science of the Total Environment. 2022;(813):151865. https://doi.org/10.1016/j.scitotenv.2021.151865; Meng F., Umair M.M., Iqbal K., Jin X., Zhang S., Tang B. Rapid fabrication of noniridescent structural color coatings with high color visibility, good structural stability, and self-healing properties. ACS Applied Materials Interfaces. 2019;11(13):13022—13028. https://doi.org/10.1021/acsami.9b01522; Anacleto A.L., Carvalho J.R. Mercury cementation from chloride solutions using iron, zinc and aluminium. Minerals Engineering. 1996;9(4):385—397. https://doi.org/10.1016/0892-6875(96)00025-8; Гладышев В.П., Левицкая С.А., Филиппова Л.М. Аналитическая химия ртути. М.: Наука, 1974. 231 с.; Shen F., He S., Li J., Liu C., Xiang K., Liu H. Formation of sulfur oxide groups by SO 2 and their roles in mercury adsorption on carbon-based materials. Journal of Environmental Sciences. 2022;(119):44—49. https://doi.org/10.1016/j.jes.2021.11.011; Wadi V.S., Mittal H., Fosso-Kankeu E., Jena K.K., Alhassan S.M. Mercury removal by porous sulfur copolymers: Adsorption isotherm and kinetics studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;(606):125333. http://dx.doi.org/10.1016/j.colsurfa.2020.125333; Lennie A.R., Charnock J.M., Pattrick R.A.D. Structure of mercury (II)—sulfur complexes by EXAFS spectroscopic measurements. Chemical Geology. 2003;199(3-4):199—207. https://doi:10.1016/S0009-2541(03)00118-9; Bell A.M.T., Charnock J.M., Helz G.R., Lennie A.R., Livens F.R., Mosselmas J.F.W., Pattrick R.A.D., Vaughan D.J. Evidence for dissolved polymeric mercury(II)-sulfur complexes. Chemical Geology. 2007; 243(1-2):122—127. https://doi.org/10.1016/J.CHEMGEO.2007.05.013; Al-Jibori S.A., Al-Doori L.A., Al-Janabi A.S.M., Alheety M.A., Wagner C., Karadag A. Mercury (II) mixed ligand complexes of phosphines or amines with 2-cyanoamino thiophenolate ligands formed via monodeprotonation and carbon—sulfur bond cleavage of 2-aminoben-zothiazole. X-ray crystal structures of [Hg(SC 6H4 NCN) (PPh 3)]2 and [Hg(SC 6H4 NCN)(Ph 2 PCH 2 PPh 2)]2 . Polyhedron. 2021;(206):115349. http://dx.doi.org/10.1016/j.poly.2021.115349; Шунин В.А., Соколова И.С., Лебедь А.Б. Сорбционная очистка продуктивных селеновых растворов от примесей тяжелых металлов. В сб.: Новые технологии обогащения и комплексной переработки труднообогатимого природного и техногенного минерального сырья (Плаксинские чтения 2011): Тезисы докладов международного совещания (Верхняя Пышма, 19—24 сент. 2011 г.). Екатеринбург: Форт Диалог-Исеть, 2011. С. 428—429.; Habashi F. Metallurgical plants: How mercury pollution is abated. Environmental Science and Technology. 1978; 23(13):1372—1376. https://doi.org/10.1021/ES60148A011; Hylander I.D., Herbert R.B. Global emission and production of mercury during the pyrometallurgical extraction of nonferrous sulfide ores. Environmental Science and Technology. 2008;42(16):5971—5977. https://doi.org/10.1021/es800495g; Yu M-H., Yang H-H., Gu Y-C., Wang B-H., Liu F-C., Lin I.J.B., Lee G-H. Formation of anionic NHC complexes through the reaction of benzimidazoles with mercury chloride. Subsequent protonation and transmetallation reactions. Journal of Organometallic Chemistry. 2019;(887):12—17. https://doi.org/10.1016/J.JORGANCHEM.2019.02.015; Tugashov K.I., Gribanyov D.A., Dolgushin F.M., Smol′yakov A.F., Peregudov A.S., Klemenkova Z.S., Matvienko O.V., Tikhonova I.A., Shur V.B. Coordination chemistry of anticrowns. Isolation of the chloride complex of the four-mercury anticrown {[(o,o′-C 6 F 4 C 6 F 4 Hg) 4 ]Cl}− from the reaction of o,o′-dilithiooctaf luorobiphenyl with HgCl 2 and its transformations to the free anticrown and the complexes with o-xylene, acetonitrile, and acetone. Organometallics. 2017;36(13): 2437—2445. https://doi.org/10.1021/ACS.ORGANOMET.7B00315; Al-Amri A-H.D., Fettouhi M., Wazeer M.I.M., Isab A.A. Synthesis, X-ray structure and 199 Hg, 77 Se CP MAS NMR studies on the first tris(imidazolidine-2-selone) mercury complex: {chloro-tris[N-methyl-2(3H)-imidazolidine-2-selone]mercury(II)}chloride. Inorganic Chemistry Communications. 2005;8(12):1109—1112. https://doi.org/10.1016/J.INOCHE.2005.09.010; Hadjikakou S.K., Kubicki M. Synthesis, characterisation and study of mercury (II) chloride complexes with triphenylphosphine and heterocyclic thiones. The crystal structures of [(benzothiazole-2-thionato)(benzothia-zole-2-thione)(bis-triphenylphosphine) chloro mercury (II)] and [(μ 2-dichloro){(bis-pyrimidine-2-thionato) mercury (II)}{(bis-triphenylphosphine) mercury (II)}] at 100 K. Polyhedron. 2000;19(20-21):2231—2236. https://doi.org/10.1016/S0277-5387(00)00533-7; Pazderski L., Szlyk E., Wojtczak A., Kozerski L., Sitkowski J., Kamieński B. The crystal and molecular structures of catena[bis(μ 2-chloro)-(μ 2-pyridazine-N,N′)] cadmium (II) and catena[bis(μ 2-chloro)-(μ 2 -pyridazine-N,N′)]mercury (II) and the solid-phase 13 C, 15 N NMR studies of Zn(II), Cd(II), Hg(II) chloride complexes with pyridazine. Journal of Molecular Structure. 2004;697(1-3): 143—149. https://doi.org/10.1016/j.molstruc.2004.03.048; Королев А.А., Шунин В.А., Тимофеев К.Л., Мальцев Г.И., Воинков Р.С. Сорбционная очистка от ртути растворов селенистой кислоты. Химия в интересах устойчивого развития. 2022;(30):372—382.; https://cvmet.misis.ru/jour/article/view/1579

  2. 2
    Academic Journal

    المصدر: Izvestiya. Non-Ferrous Metallurgy; № 3 (2023); 27-37 ; Izvestiya Vuzov. Tsvetnaya Metallurgiya; № 3 (2023); 27-37 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    Relation: https://cvmet.misis.ru/jour/article/view/1506/653; https://cvmet.misis.ru/jour/article/view/1506/660; Nagai H., Shibata E., Nakamura T. Development of methods for concentration and dissolution of Rh and Ru from copper slime. Hydrometallurgy. 2017;169:282—289. https://doi.org/10.1016/j.hydromet.2017.01.004; Crundwell F.K., Moats M.S., Ramachandran V., Robinson T.G., Davenport W.G. Extractive metallurgy of nickel, cobalt and platinum group metals. Chapter 37. Refining of the platinum-group metals. Elsevier Ltd., 2011. P. 489—534. https://doi.org/10.1016/C2009-0-63541-8; Nakhjiri A.T., Sanaeepur H, Amooghin A.E., Shirazi M.M.A. Recovery of precious metals from industrial wastewater towards resource recovery and environmental sustainability: A critical review. Desalination. 2022;527:115510. https://doi.org/10.1016/j.desal.2021.115510; Hayashibe Y. Reference module in chemistry, molecular sciences and chemical engineering. In: Precious Metals. Elsevier Ltd., 2005. P. 277—287.; Мастюгин С.А., Волкова Н.А., Набойченко С.С., Ласточкина М.А. Шламы электролитического рафинирования меди и никеля. Екатеринбург: УрФУ, 2013. 256 с.; Mulwanda J., Dorfling C. Recovery of dissolved platinum group metals from copper leach solutions by precipitation. Minerals Engineering. 2015;80:50—56. https://doi.org/10.1016/j.mineng.2015.07.002; Boduen A.Y., Fokina S.B., Polezhaev S.Yu. The hydrometallurgical pretreatment of a refractory gold sulfide concentrate. In: Innovation-based development of the mineral resources sector: challenges and prospects: Proceedings of the 11th Russian-German raw materials conference (Potsdam, Germany, 7—8 Nov. 2018). London: CRC Press, 2018. P. 331—340. https://doi.org/10.1201/9780429022388; Королев А.А., Краюхин С.А., Мастюгин С.А., Гибадуллин Т.З., Лебедь А.Б. Способ получения серебра и металлов платиновой группы: Пат. 2680552 (РФ). 2018.; Zotova I.E. , Fokina S.B., Boduen A.Ya., Petrov G.V. Sorption concentration of ruthenium from sulfuric solutions. Non-Ferrous Metals. 2019;(1):12—15. https://doi.org/10.17580/nfm.2019.01.02; Aghaei E., Alorro R.D., Encila A.N., Yoo K. Magnetic adsorbents for the recovery of precious metals from leach solutions and wastewater. Metals. 2017;7(12):529. https://doi.org/10.3390/met7120529; Александрова Т.Н., О’Коннор С. Переработка платинометалльных руд в России и Южной Африке: состояние и перспективы. Записки Горного института. 2020;244:462—473. https://doi.org/10.31897/PMI.2020.4.9; Jacek Sitko. Analysis of selected technologies of precious metal recovery processes. Multidisciplinary Aspects of Production Engineering 2019;2(1):72—80. https://doi.org/10.2478/mape-2019-0007; Kobylyanski A., Zhukova V., Petrov G., Boduen A. Challenges in processing copper ores containing sulfosalts. In: Scientific and practical studies of raw material issues: Proceedings of the Russian-German raw materials dialogue: A collection of young scientists papers and discussion (19 Nov. 2019). London: CRC Press, 2020. P. 120—126. https://doi.org/10.1201/9781003017226-18; Лебедь А.Б., Мальцев Г.И., Мамяченков С.В. Аффинаж золотосеребряных сплавов на ОАО «Уралэлектромедь». Екатеринбург: УрФУ, 2015. 159 с.; Лебедь А.Б., Скороходов В.И., Кремко Е.Г., Волкова Н.А., Мастюгин С.А., Горяева О.Ю., Рычков Д.М. Способ выделения платиновых металлов: Пат. 2111272 (РФ). 1998.; Polvanov S., Ergashev N., Khodzhiev M., Tashmuratov A. Study of obtaining accompanying elements in the processing of gold-bearing ores of the muruntau deposit. Universum: Engineering Sciences. 2022;7(100):20—24. https://doi.org/10.32743/UniTech.2022.100.7.14079; Кононова О.Н., Мельников А.М., Борисова Т.В. Способ разделения платины (II, IV), родия (III) и никеля (II) в хлоридных растворах: Пат. 2527830 (РФ). 2010.; Гинзбург С.И., Езерская Н.А., Прокофьева И.В., Федоренко Н.В., Шленская В.И., Бельский Н.К. Аналитическая химия платиновых металлов. М.: Наука, 1972. 616 с.; Плеханов К.А., Ашихин В.В., Шевелева Л.Д., Лебедь А.Б., Краюхин С.А., Скопин Д.Ю. Способ выделения платиновых металлов: Пат. 2238244 (РФ). 2002.; Huang Z.S., Yang T.Z. Comparative study on refractory gold concentrate kinetics and mechanisms by pilot scale batch and continuous bio-oxidation. Minerals. 2021;11(12):1343. https://doi.org/10.3390/min11121343; Rinne M., Elomaa H., Seisko S., Lundstrom M. Direct cupric chloride leaching of gold from refractory sulfide ore: process simulation and life cycle assessment. Mineral Processing and Extractive Metallurgy Review. 2021;43(5):598—609. https://doi.org/10.1080/08827508.2021.1910510; Масленицкий И.Н., Чугаев Л.В. Металлургия благородных металлов. М.: Металлургия, 1987. 432 с.; Меретуков М.А., Орлов А.М. Металлургия благородных металлов. Зарубежный опыт. М.: Металлургия, 1991. 416 с.; Kepp K.P. Chemical causes of metal nobleness. ChemPhysChem. 2020;21(5):360—369. https://doi.org/10.1002/cphc.202000013; Федоров И.А. Родий. М.: Наука, 1966. 276 с.; Бимиш Ф. Аналитическая химия благородных металлов. Пер. с англ. под ред. С.И. Гинзбург. М.: Мир, 1969. 592 с.; Kunimori K., Oyanagi H., Shindo H., Ishigaki T., Uchijima T. Structural transformation and catalytic behaviors of rhodium ternary oxides during calcination and reduction treatments. Studies in Surface Science and Catalysis. 1993;75:2039—2042. https://doi.org/10.1016/S0167-2991(08)64220-2; Šarić A., Popović S., Trojko R., Music S. The thermal behavior of amorphous rhodium hydrous oxide. Journal of Alloys and Compounds. 2001;320(1):140—148. https://doi.org/10.1016/S0925-8388(01)00938-0; Barclay G.A., Broadbent R.F., Kingston J.V., Scollary G.R. The thermal behaviour of some rhodium complexes. Thermochimica Acta. 1974;10(1):73—83. https://doi.org/10.1016/0040-6031(74)85025-2; Ниценко А.В., Володин В.Н., Линник К.А., Тулеутай Ф.Х., Бурабаева Н.М. Дистилляционное извлечение теллура из теллурида меди в оксидных формах. Известия вузов. Цветная металлургия. 2022;28(4): 45—54. https://doi.org/10.17073/0021-3438-2022-4-45-54; https://cvmet.misis.ru/jour/article/view/1506

  3. 3
  4. 4