يعرض 1 - 20 نتائج من 228 نتيجة بحث عن '"Weno Scheme"', وقت الاستعلام: 0.64s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Conference
  7. 7
    Academic Journal

    المؤلفون: Tiexiang Mo, Guodong Li

    المصدر: Applied Sciences; Volume 12; Issue 14; Pages: 7350

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Fluid Science and Technology; https://dx.doi.org/10.3390/app12147350

  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Dissertation/ Thesis
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal

    المؤلفون: Han, Wonho, Kim, Kwangil, Hong, Unhyok

    وصف الملف: application/pdf

    Relation: reference:[1] Abgrall, R.: Construction of simple, stable, and convergent high order schemes for steady first order Hamilton-Jacobi equations.SIAM J. Sci. Comput. 31 (2009), 2419-2446. Zbl 1197.65167, MR 2520283, 10.1137/040615997; reference:[2] Amat, S., Ruiz, J., Shu, C.-W.: On new strategies to control the accuracy of WENO algorithms close to discontinuities.SIAM J. Numer. Anal. 57 (2019), 1205-1237. Zbl 1436.65095, MR 3956155, 10.1137/18M1214937; reference:[3] Bokanowski, O., Falcone, M., Sahu, S.: An efficient filtered scheme for some first order time-dependent Hamilton-Jacobi equations.SIAM J. Sci. Comput. 38 (2016), A171--A195. Zbl 1407.65093, MR 3449908, 10.1137/140998482; reference:[4] Bryson, S., Levy, D.: High-order central WENO schemes for multidimensional Hamilton-Jacobi equations.SIAM J. Numer. Anal. 41 (2003), 1339-1369. Zbl 1050.65076, MR 2034884, 10.1137/S0036142902408404; reference:[5] Carlini, E., Ferretti, R., Russo, G.: A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations.SIAM J. Sci. Comput. 27 (2005), 1071-1091. Zbl 1105.65090, MR 2199921, 10.1137/040608787; reference:[6] Crandall, M. G., Lions, P.-L.: Two approximations of solutions of Hamilton-Jacobi equations.Math. Comput. 43 (1984), 1-19. Zbl 0556.65076, MR 0744921, 10.2307/2007396; reference:[7] Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.SIAM Rev. 43 (2001), 89-112. Zbl 0967.65098, MR 1854647, 10.1137/S003614450036757X; reference:[8] Henrick, A. K., Aslam, T. D., Powers, J. M.: Mapped weighted essentially non-oscillarotry schemes: Achieving optimal order near critical points.J. Comput. Phys. 207 (2005), 542-567. Zbl 1072.65114, 10.1016/j.jcp.2005.01.023; reference:[9] Huang, C.: WENO scheme with new smoothness indicator for Hamilton-Jacobi equation.Appl. Math. Comput. 290 (2016), 21-32. Zbl 1410.65313, MR 3523409, 10.1016/j.amc.2016.05.022; reference:[10] Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations.SIAM J. Sci. Comput. 21 (2000), 2126-2143. Zbl 0957.35014, MR 1762034, 10.1137/S106482759732455X; reference:[11] Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes.J. Comput. Phys. 126 (1996), 202-228. Zbl 0877.65065, MR 1391627, 10.1006/jcph.1996.0130; reference:[12] Kim, K., Hong, U., Ri, K., Yu, J.: Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes.Appl. Math., Praha 66 (2021), 599-617. Zbl 07396169, MR 4283305, 10.21136/AM.2021.0368-19; reference:[13] Kim, K., Li, Y.: Construction of convergent high order schemes for time dependent Hamilton-Jacobi equations.J. Sci. Comput. 65 (2015), 110-137. Zbl 1408.65053, MR 3394440, 10.1007/s10915-014-9955-5; reference:[14] Kurganov, A., Petrova, G.: Adaptive central-upwind schemes for Hamilton-Jacobi equations with nonconvex Hamiltonians.J. Sci. Comput. 27 (2006), 323-333. Zbl 1115.65093, MR 2285784, 10.1007/s10915-005-9033-0; reference:[15] Levy, D., Nayak, S., Shu, C.-W., Zhang, Y.-T.: Central WENO schemes for Hamilton-Jacobi equations on triangular meshes.SIAM J. Sci. Comput. 28 (2006), 2229-2247. Zbl 1126.65075, MR 2272259, 10.1137/040612002; reference:[16] Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes.J. Comput. Phys. 115 (1994), 200-212. Zbl 0811.65076, MR 1300340, 10.1006/jcph.1994.1187; reference:[17] Oberman, A. M., Salvador, T.: Filtered schemes for Hamilton-Jacobi equations: A simple construction of convergent accurate difference schemes.J. Comput. Phys. 284 (2015), 367-388. Zbl 1352.65422, MR 3303624, 10.1016/j.jcp.2014.12.039; reference:[18] Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations.SIAM J. Numer. Anal. 28 (1991), 907-922. Zbl 0736.65066, MR 1111446, 10.1137/0728049; reference:[19] Qiu, J.-M., Shu, C.-W.: Convergence of high order finite volume weighted essentially nonoscillatory scheme and discontinuous Galerkin method for nonconvex conservation laws.SIAM J. Sci. Comput. 31 (2008), 584-607. Zbl 1186.65123, MR 2460790, 10.1137/070687487; reference:[20] Qiu, J.-X., Shu, C.-W.: Hermite WENO schemes for Hamilton-Jacobi equations.J. Comput. Phys. 204 (2005), 82-99. Zbl 1070.65078, MR 2121905, 10.1016/j.jcp.2004.10.003; reference:[21] Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems.SIAM Rev. 51 (2009), 82-126. Zbl 1160.65330, MR 2481112, 10.1137/070679065; reference:[22] Xu, Z., Shu, C.-W.: Anti-diffusive high order WENO schemes for Hamilton-Jacobi equations.Methods Appl. Anal. 12 (2005), 169-190. Zbl 1119.65378, MR 2257526, 10.4310/MAA.2005.v12.n2.a6; reference:[23] Zhang, Y.-T., Shu, C.-W.: High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes.SIAM J. Sci. Comput. 24 (2003), 1005-1030. Zbl 1034.65051, MR 1950522, 10.1137/S1064827501396798; reference:[24] Zhu, J., Qiu, J.: Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes.J. Comput. Phys. 254 (2013), 76-92. Zbl 1349.65364, MR 3143358, 10.1016/j.jcp.2013.07.030; reference:[25] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws.J. Comput. Phys. 318 (2016), 110-121. Zbl 1349.65365, MR 3503990, 10.1016/j.jcp.2016.05.010; reference:[26] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations.Numer. Methods Partial Differ. Equations 33 (2017), 1095-1113. Zbl 1371.65089, MR 3652179, 10.1002/num.22133

  19. 19
    Academic Journal
  20. 20
    Academic Journal

    المساهمون: Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Tokyo Institute of Technology Tokyo (TITECH), Helsingin yliopisto = Helsingfors universitet = University of Helsinki

    المصدر: ISSN: 0307-904X.