يعرض 1 - 15 نتائج من 15 نتيجة بحث عن '"W1282X"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The work has been funded by the state assignment of the Ministry of Science and Higher Education of the Russian Federation., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ».

    المصدر: Medical Genetics; Том 22, № 11 (2023); 20-26 ; Медицинская генетика; Том 22, № 11 (2023); 20-26 ; 2073-7998

    وصف الملف: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2370/1749; Shteinberg M., Haq I.J., Polineni D., Davies J.C. Cystic fibrosis. Lancet. 2021 Jun 5;397(10290):2195-2211. doi:10.1016/S01406736(20)32542-3; Lopes-Pacheco M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front Pharmacol. 2020 Feb 21;10:1662. doi:10.3389/fphar.2019.01662; Zainal Abidin N., Haq I.J., Gardner A.I., Brodlie M. Ataluren in cystic fibrosis: development, clinical studies and where are we now? Expert Opin Pharmacother. 2017 Sep;18(13):1363-1371. doi:10.1080/14656566.2017.1359255; Doudna J.A. The promise and challenge of therapeutic genome editing. Nature. 2020 Feb;578(7794):229-236. doi:10.1038/s41586020-1978-5; Anzalone A.V., Koblan L.W., Liu D.R. Genome editing with CRISPRCas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020 Jul;38(7):824-844. doi:10.1038/s41587-020-0561-9; Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu .DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016 May 19;533(7603):4204. doi:10.1038/nature17946; Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017 Nov 23;551(7681):464-471. doi:10.1038/nature24644; Lavrov A.V., Varenikov G.G., Skoblov M.Y. Genome scale analysis of pathogenic variants targetable for single base editing. BMC Med Genomics. 2020 Sep 18;13(Suppl 8):80. doi:10.1186/s12920-020-00735-8; Petrova N., Balinova N., Marakhonov A., Vasilyeva T., Kashirskaya N., Galkina V., Ginter E., Kutsev S., Zinchenko R. Ethnic Differences in the Frequency of CFTR Gene Mutations in Populations of the European and North Caucasian Part of the Russian Federation. Front Genet. 2021 Jun 16;12:678374. doi:10.3389/fgene.2021.678374; Регистр пациентов с муковисцидозом в Российской Федерации. 2020 год. Под редакцией Е.И. Кондратьевой, С.А. Красовского, М.А. Стариновой, А.Ю. Воронковой, Е.Л. Амелиной, Н.Ю. Каширской, С.Н. Авдеева, С.И. Куцева. Москва: МЕДПРАКТИКА-М, 2022. 68 с.; Kondrateva E., Demchenko A., Slesarenko Y,. Pozhitnova V., Yasinovsky M., Amelina E., Tabakov V., Voronina E., Lavrov A., Smirnikhina S. Generation of two induced pluripotent stem cell lines (RCMGi004-A and -B) from human skin fibroblasts of a cystic fibrosis patient with compound heterozygous F508del/W1282X mutations. Stem Cell Research 2021; 52: 102232. DOI:10.1016/j.scr.2021.102232; Hwang G.H., Park J., Lim K., Kim S., Yu J., Yu E., Kim S.T., Eils R., Kim J.S., Bae S. Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics. 2018 Dec 27;19(1):542. doi:10.1186/s12859-018-2585-4; Clement K., Rees H., Canver M.C., Gehrke J.M., Farouni R., Hsu J.Y., Cole M.A., Liu D.R., Joung J.K., Bauer D.E., Pinello L. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. 2019 Mar; 37(3):224-226. doi:10.1038/s41587-019-0032-3; Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M, Gao X., Rees H.A., Lin Z., Liu D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018 Apr 5;556(7699):57-63. doi:10.1038/nature26155; Rees H.A., Liu D.R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018 Dec;19(12):770-788. doi:10.1038/s41576-018-0059-1; Wilschanski M. Class 1 CF Mutations. Front Pharmacol. 2012 Jun 20;3:117. doi:10.3389/fphar.2012.00117; Demchenko A., Kondrateva E., Tabakov V., Efremova A., Salikhova D., Bukharova T., Goldshtein D., Balyasin M., Bulatenko N., Amelina E., Lavrov A., Smirnikhina S. Airway and Lung Organoids from HumanInduced Pluripotent Stem Cells Can Be Used to Assess CFTR Conductance. Int. J. Mol. Sci. 2023, 24, 6293. https://doi.org/10.3390/ijms24076293; Maxwell K.G., Millman J.R. Applications of iPSC-derived beta cells from patients with diabetes. Cell Rep Med. 2021 Apr 20;2(4):100238. doi:10.1016/j.xcrm.2021.100238; Fleischer A., Vallejo-Díez S., Martín-Fernández J.M., SánchezGilabert A., Castresana M., Del Pozo A., Esquisabel A., Ávila S., Castrillo J.L., Gaínza E., Pedraz J.L., Viñas M., Bachiller D. iPSCDerived Intestinal Organoids from Cystic Fibrosis Patients Acquire CFTR Activity upon TALEN-Mediated Repair of the p.F508del Mutation. Mol Ther Methods Clin Dev. 2020 Apr 18;17:858-870. doi:10.1016/j.omtm.2020.04.005; Palmer D.J., Turner D.L., Ng P. A Single «All-in-One» HelperDependent Adenovirus to Deliver Donor DNA and CRISPR/ Cas9 for Efficient Homology-Directed Repair. Mol Ther Methods Clin Dev. 2020 Feb 4;17:441-447. doi:10.1016/j.omtm.2020.01.014; Suzuki S., Chosa K., Barillà C., Yao M., Zuffardi O., Kai H., Shuto T., Suico M.A., Kan Y.W., Sargent R.G., Gruenert D.C. Seamless Gene Correction in the Human Cystic Fibrosis Transmembrane Conductance Regulator Locus by Vector Replacement and Vector Insertion Events. Front Genome Ed. 2022 Apr 6;4:843885. doi:10.3389/fgeed.2022.843885; Johnson L.G., Olsen J.C., Sarkadi B., Moore K.L., Swanstrom R., Boucher R.C. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet. 1992 Sep;2(1):21-5. doi:10.1038/ng0992-21; Geurts M.H., de Poel E., Amatngalim G.D., et al. CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank [published online ahead of print, 2020 Feb 13]. Cell Stem Cell. 2020;S1934-5909(20)30019-9. doi:10.1016/j.stem.2020.01.019; Krishnamurthy S., Traore S., Cooney A.L., Brommel C.M., Kulhankova K., Sinn P.L., Newby GA, Liu DR, McCray PB. Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Res. 2021 Oct 11;49(18):10558-10572. doi:10.1093/nar/gkab788; Chiavetta R.F., Titoli S., Barra V., Cancemi P., Melfi R., Di Leonardo A. Site-Specific RNA Editing of Stop Mutations in the CFTR mRNA of Human Bronchial Cultured Cells. Int J Mol Sci. 2023 Jun 30;24(13):10940. doi:10.3390/ijms241310940; Melfi R., Cancemi P., Chiavetta R., Barra V., Lentini L., Di Leonardo A. Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int J Mol Sci. 2020 Jul 6;21(13):4781. doi:10.3390/ijms21134781; Cuevas-Ocaña S., Yang J.Y., Aushev M., Schlossmacher G., Bear C.E., Hannan N.R.F., Perkins N.D., Rossant J., Wong A.P., Gray M.A. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. Int J Mol Sci. 2023 Jun 17;24(12):10266. doi:10.3390/ijms241210266; Erwood S., Laselva O., Bily T.M.I., Brewer R.A., Rutherford A.H., Bear C.E., Ivakine E.A. Allele-Specific Prevention of Nonsense-Mediated Decay in Cystic Fibrosis Using Homology-Independent Genome Editing. Mol Ther Methods Clin Dev. 2020 May 12;17:11181128. doi:10.1016/j.omtm.2020.05.002; Santos L., Mention K., Cavusoglu-Doran K., Sanz D.J., Bacalhau M., Lopes-Pacheco M., Harrison P.T., Farinha C.M. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation. J Cyst Fibros. 2021 Jun 5:S15691993(21)00167-3. doi:10.1016/j.jcf.2021.05.014; https://www.medgen-journal.ru/jour/article/view/2370

  2. 2
    Academic Journal
  3. 3
  4. 4
    Academic Journal
  5. 5
  6. 6
  7. 7
    Image
  8. 8
    Image
  9. 9
    Image
  10. 10
    Image
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Dissertation/ Thesis

    المؤلفون: Atalar Aksit, Melis

    المساهمون: Beaty, Terri H, Cutting, Garry R, Blackman, Scott M, Goff, Loyal A, Arking, Dan E

    وصف الملف: application/pdf