يعرض 1 - 20 نتائج من 121 نتيجة بحث عن '"Vivas Albán, Oscar Andrés"', وقت الاستعلام: 0.65s تنقيح النتائج
  1. 1
    Conference
  2. 2
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Conference
  6. 6
    Electronic Resource
  7. 7
    Academic Journal

    المصدر: Ingeniería; Vol. 28 No. 1 (2023): January-April; e18543 ; Ingeniería; Vol. 28 Núm. 1 (2023): Enero-Abril; e18543 ; 2344-8393 ; 0121-750X

    وصف الملف: application/pdf; text/xml

    Relation: https://revistas.udistrital.edu.co/index.php/reving/article/view/18543/18650; https://revistas.udistrital.edu.co/index.php/reving/article/view/18543/18992; S. Abou El-Seoud, A. Mady, and E. Rashed, “An interactive mixed reality ray tracing rendering mobile application of medical data in minimally invasive surgeries”, Int. J. Interact. Mob. Technol. (iJIM), vol. 13, no. 3, pp. 29-39, 2019. https://doi.org/10.3991/ijim.v13i03.9893; P. R. Armijo, C.-K. Huang, R. High, M. Leon, K.-C. Siu, and D. Oleynikov, “Ergonomics of minimally invasive surgery: An analysis of muscle effort and fatigue in the operating room between laparoscopic and robotic surgery”, Surg. Endosc, vol. 33, no. 7, pp. 2323-2331, 2019.; E. Azimi, R. Liu, C. Molina, J. Huang, and P. Kazanzides, “Interactive navigation system in mixedreality for neurosurgery”, 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 782-783, 2020. https://doi.org/10.1109/VRW50115.2020.00242; H. Brun, R. A. B. Bugge, L. K. R. Suther, S. Birkeland, R. Kumar, E. Pelanis, and O. J. Elle, “Mixed reality holograms for heart surgery planning: First user experience in congenital heart disease”, Eur. Heart J. Cardiovasc. Imaging, vol. 20, no. 8, pp. 883-888, 2019. https://doi.org/10.1093/ehjci/jey184; G. Caccianiga, A. Mariani, E. De Momi, G. Cantarero, and J. D. Brown, “An evaluation of inanimate and virtual reality training for psychomotor skill development in robot-assisted minimally invasive surgery”, IEEE Trans. Med. Robot. Bionics, vol. 2, no. 2, pp. 118-129, 2020. https://doi.org/10.1109/TMRB.2020.2990692; J. Cartucho, D. Shapira, H. Ashrafian, and S. Giannarou, “Multimodal mixed reality visualisation for intraoperative surgical guidance”, Inter. J. Comput. Assist. Radiol. Surge, vol. 15, no. 5, pp. 819-826, 2020. https://doi.org/10.1007/s11548-020-02165-4; B. Fiani, F. De Stefano, A. Kondilis, C. Covarrubias, L. Reier, and K. Sarhadi, “Virtual reality in neurosurgery: “Can you see it?” - A review of the current applications and future potential”, World Neurosurg, vol. 141, pp. 291-298, 2020. https://doi.org/10.1016/j.wneu.2020.06.066; Y. Georgiou, and E. A. Kyza, “The development and validation of the ARI questionnaire: An instrument for measuring immersion in location-based augmented reality settings”, Int. J. Hum. Comput. Studies, vol. 98, pp. 24-37, 2017. https://doi.org/10.1016/j.ijhcs.2016.09.014; K. D. Gray, J. G. Burshtein, L. Obeid, M. D. Moore, G. Dakin, A. Pomp, and C. Afaneh, “Laparoscopic appendectomy: Minimally invasive surgery training improves outcomes in basic laparoscopic procedures”, World J. Surg, vol. 42, no. 6, pp. 1706-1713, 2018. https://doi.org/10.1007/s00268-017-4374-z; H. G. Guedes, Z. M. Câmara Costa Ferreira, L. Ribeiro de Sousa Leão, E. F. Souza Montero, J. P. Otoch, and E. L. de Almeida Artifon, “Virtual reality simulator versus box-trainer to teach minimally invasive procedures: A meta-analysis”, Int. J. Surg, vol. 61, pp. 60-68, 2019. https://doi.org/10.1016/j.ijsu.2018.12.001; B. Hoppenstedt et al. “Applicability of immersive analytics in mixed reality: Usability study”, IEEE Access, vol. 7, pp. 71921-71932, 2019. https://doi.org/10.1109/ACCESS.2019.2919162; H.-Z. Hu, X.-B. Feng, Z.-W. Shao, M. Xie, S. Xu, X.-H. Wu, and Z.-W. Ye, “Application and prospect of mixed reality technology in medical field”, Curr. Med. Sci, vol. 39, no. 1, pp. 1-6, 2019. https://doi.org/10.1007/s11596-019-1992-8; F. Incekara, M. Smits, C. Dirven, and A. Vincent, “Clinical feasibility of a wearable mixedreality device in neurosurgery”, World Neurosurg, vol. 118, pp. e422-e427, 2018. https://doi.org/10.1016/j.wneu.2018.06.208; A. Javaux, D. Bouget, C. Gruijthuijsen, D. Stoyanov, T. Vercauteren, S. Ourselin, J. Deprest, K. Denis, and E. Vander Poorten, “A mixed-reality surgical trainer with comprehensive sensing for fetal laser minimally invasive surgery”, Int. J. Comput. Assist. Radiol. Surg, vol. 13, pp. 1949-1957, 2018. https://doi.org/10.1007/s11548-018-1822-7; T. Koike et al., “Development of innovative neurosurgical operation support method using mixed-reality computer graphics”, World Neurosurg, X, vol. 11, 2021. https://doi.org/10.1016/j.wnsx.2021.100102; A. J Lungu, W. Swinkels, L. Claesen, P. Tu, J. Egger, and X. Chen, “A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: An extension to different kinds of surgery”, Expert Rev. Med. Devices, vol. 18, no. 1, pp. 47-62, 2021. https://doi.org/10.1080/17434440.2021.1860750; D. Panariello et al., “Using the KUKA LBR iiwa robot as haptic device for virtual reality training of hip replacement surgery”, 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 449-450, 2019. https://doi.org/10.1109/IRC.2019.00094; A. Parisi et al., “Minimally invasive surgery for gastric cancer: A comparison between robotic, laparoscopic and open surgery”, World J. Gastroenterol, vol. 23, no. 13, pp. 2376-2384, 2017. https://doi.org/10.3748/wjg.v23.i13.2376; Z. Qi et al., “Holographic mixed-reality neuronavigation with a head-mounted device: Technical feasibility and clinical application”, J. Neurosurg. Focus, vol. 51, no. 2, 2021. https://doi.org/10.3171/2021.5.FOCUS21175; M. Runciman, A. Darzi, and G. P. Mylonas, “Soft robotics in minimally invasive surgery”, Soft Robotics, vol. 6, no. 4, pp. 423-443, 2019. https://doi.org/10.1089/soro.2018.0136; Y. Saito et al., “Intraoperative 3D hologram support with mixed reality techniques in liver surgery”, Ann. Surg, vol. 271, no. 1, pp. e4-e7, 2020. https://doi.org/10.1097/SLA.0000000000003552; S. Sharif, and A. Afsar, “Learning curve and minimally invasive spine surgery”, World Neurosurg, vol. 119, pp. 472-478, 2018. https://doi.org/10.1016/j.wneu.2018.06.094; R. Wierzbicki et al., “3D mixed-reality visualization of medical imaging data as a supporting tool for innovative, minimally invasive surgery for gastrointestinal tumors and systemic treatment as a new path in personalized treatment of advanced cancer diseases”, J. Cancer Res. Clin. Oncol, vol. 148, pp. 237-243, 2022. https://doi.org/10.1007/s00432-021-03680-w; J. Zeiger, A. Costa, J. Bederson, R. K. Shrivastava, and A. M. C. Iloreta, “Use of mixed reality visualization in endoscopic endonasal skull base surgery”, Oper. Neurosurg, vol. 19, no. 1, pp. 43-52, 2020. https://doi.org/10.1093/ons/opz355; Z.-Y. Zhang et al., “Preliminary application of mixed reality in neurosurgery: Development and evaluation of a new intraoperative procedure”, J. Clinic Neurosci, vol. 67, pp. 234238, 2019. https://doi.org/10.1016/j.jocn.2019.05.038; https://revistas.udistrital.edu.co/index.php/reving/article/view/18543

  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المصدر: Pistas Educativas; Vol. 44, Núm. 143 (2022): Número semestral (julio-diciembre 2022) ; 2448-847X ; 1405-1249

    وصف الملف: application/pdf

    Relation: http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/2986/2248; http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/downloadSuppFile/2986/2086; http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/downloadSuppFile/2986/2087; Ayed I., Ghazel A., Jaume A. (2019). Vision-based serious games and virtual reality systems for motor rehabilitation: A review geared toward a research methodology. International Journal of Medical Informatics 131. DOI 10.1016/j.ijmedinf.2019.06.016.; Burke J., McNeill J., Charles D. (2010). Augmented Reality Games for Upper-Limb Stroke Rehabilitation. Second International Conference on Games and Virtual Worlds for Serious Applications, pp. 75-78, DOI 10.1109/VS-GAMES.2010.21.; Chen X., Liu F., Lin S. (2022). Effects of Virtual Reality Rehabilitation Training on Cognitive Function and Activities of Daily Living of Patients with Post-Stroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Archives of Physical Medicine and Rehabilitation. In Press. DOI 10.1016/j.apmr.2022.03.012.; Domínguez J., Domínguez M., Miró L. (2019). Rehabilitación de pacientes con movilidad reducida usando exoesqueleto y técnicas de gamificación. Avances en la Investigación en Ciencia e Ingeniería, 3ciencias, Sevilla, pp. 57-66, 2019.; Hernández A., Domínguez J., Pi A. (2018). Arquitectura de software para el desarrollo de videojuegos sobre el motor de juego Unity 3D. I+ D Tecnológico 14:54-65. DOI 10.33412/idt.v14.1.1803.; Hoffman H., Boe D., Rombokas E. (2020). Virtual reality hand therapy: A new tool for nonopioid analgesia for acute procedural pain, hand rehabilitation, and VR embodiment therapy for phantom limb pain. Journal of Hand Therapy 33:254–262, 2020, DOI:10.1016/j.jht.2020.04.001.; Jonsdottir J., Bertoni R., Lawo M. et al. (2018). Serious games for arm rehabilitation of persons with multiple sclerosis. A randomized controlled pilot study. Multiple Sclerosis and Related Disorders 19:25-29. DOI 10.1016/j.msard.2017.10.010.; Lo K., Stephenson M., Lockwood C. (2019). The economic cost of robotic rehabilitation for adult stroke patients: a systematic review. JBI Evidence Synthesis 17:520-547. DOI 10.11124/JBISRIR-2017-003896.; Muri F., Carbajal C., Perez E. (2013). Diseño de un sistema de rehabilitación para miembro superior en entorno de realidad virtual 7: 81-89. DOI 10.24050/19099762.n14.2013.475.; Rubin P. (2018). Future Presence: How Virtual Reality Is Changing Human Connection, Intimacy, and the Limits of Ordinary Life. HarperCollins Publishers, New York.; Shi Y., Peng Q. (2018). A VR-based user interface for the upper limb rehabilitation. Procedia CIRP 78:115-120. DOI 10.1016/j.procir.2018.08.311.; Standen P., Threapleton K., Richardson A. et al. (2017). A low cost virtual reality system for home based rehabilitation of the arm following stroke: a randomised controlled feasibility trial. Clinical rehabilitation 31:340-350. DOI 10.1177/0269215516640320.; http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/2986

  10. 10
    Academic Journal
  11. 11
    Academic Journal

    المصدر: TecnoLógicas; Vol. 26 No. 56 (2023); e2412 ; TecnoLógicas; Vol. 26 Núm. 56 (2023); e2412 ; 2256-5337 ; 0123-7799

    وصف الملف: application/pdf; application/zip; text/xml; text/html

    Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2412/2651; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2412/2671; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2412/2672; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2412/2673; F. Reyes and S. Ma, “Snake robots in contact with the environment: Influence of the friction on the applied wrench,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 5790–5795. https://doi.org/10.1109/IROS.2017.8206471; G. S. Chirikjian and J. W. Burdick, “The kinematics of hyper-redundant robot locomotion,” IEEE Transactions on Robotics and Automation, vol. 11, no. 6, pp. 781–793, Dec. 1995, https://doi.org/10.1109/70.478426; P. Liljeback, S. Fjerdingen, K. Y. Pettersen, and O. Stavdahl, “A snake robot joint mechanism with a contact force measurement system,” in 2009 IEEE International Conference on Robotics and Automation, May 2009, pp. 3815–3820. https://doi.org/10.1109/ROBOT.2009.5152276; C. Nidhi and S. Shruti, “A review study on future applicability of snake robots in India,” IOSR J Comput Eng, vol. 17, no. 5, pp. 3–6, Sep. 2015. Accessed: Feb. 17, 2022. [Online]. Available: https://www.iosrjournals.org/iosr-jce/papers/Vol17-issue5/Version-1/B017510306.pdf; S. Manzoor, U. Khan, and I. Ullah, “Serpentine and Rectilinear Motion Generation in Snake Robot Using Central Pattern Generator with Gait Transition,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 44, no. 3, pp. 1093–1103, Sep. 2020, https://doi.org/10.1007/s40998-019-00301-8; F. Sanfilippo, E. Helgerud, P. A. Stadheim, and S. L. Aronsen, “Serpens, A Low-Cost Snake Robot with Series Elastic Torque-Controlled Actuators and A Screw-Less Assembly Mechanism,” in 2019 5th International Conference on Control, Automation and Robotics (ICCAR), Apr. 2019, pp. 133–139. https://doi.org/10.1109/ICCAR.2019.8813482; J. Gray, “The Mechanism of Locomotion in Snakes,” Journal of Experimental Biology, vol. 23, no. 2, pp. 101–120, Dec. 1946, https://doi.org/10.1242/jeb.23.2.101; T. Owen, “Biologically Inspired Robots: Snake-Like Locomotors and Manipulators,” Robotica, vol. 12, no. 3, p. 282, May 1994, https://doi.org/10.1017/S0263574700017264; M. Mori and S. Hirose, “Three-dimensional serpentine motion and lateral rolling by active cord mechanism ACM-R3,” in IEEE/RSJ International Conference on Intelligent Robots and System, 2002, vol. 1, pp. 829–834. https://doi.org/10.1109/IRDS.2002.1041493; P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, “A review on modelling, implementation, and control of snake robots,” Rob Auton Syst, vol. 60, no. 1, pp. 29–40, Jan. 2012, https://doi.org/10.1016/j.robot.2011.08.010; A. H. Chang and P. A. Vela, “Evaluation of Bio-Inspired Scales on Locomotion Performance of Snake-Like Robots,” Robotica, vol. 37, no. 8, pp. 1302–1319, Aug. 2019, https://doi.org/10.1017/S0263574718001522; J. Liu, Y. Tong, and J. Liu, “Review of snake robots in constrained environments,” Rob Auton Syst, vol. 141, p. 103785, Jul. 2021, https://doi.org/10.1016/j.robot.2021.103785; W. Yang, “Biomorphic Hyper-Redundant Snake Robot: Locomotion Simulation, 3D Printed Prototype and Inertial-Measurement-Unit-Based Motion Tracking,” University of Nevada, 2016. Accessed: Mar. 26, 2022. [Online]. Available: https://scholarworks.unr.edu//handle/11714/2349; M. Saito, M. Fukaya, and T. Iwasaki, “Serpentine locomotion with robotic snakes,” IEEE Control Syst, vol. 22, no. 1, pp. 64–81, Feb. 2002, https://doi.org/10.1109/37.980248; I. Virgala, M. Dovica, M. Kelemen, E. Prada, and Z. Bobovský, “Snake Robot Movement in the Pipe Using Concertina Locomotion,” Applied Mechanics and Materials, vol. 611, pp. 121–129, Aug. 2014, https://doi.org/10.4028/www.scientific.net/AMM.611.121; K. Lipkin et al., “Differentiable and piecewise differentiable gaits for snake robots,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2007, pp. 1864–1869. https://doi.org/10.1109/IROS.2007.4399638; I. Tanev, T. Ray, and A. Buller, “Evolution, Robustness, and Adaptation of Sidewinding Locomotion of Simulated Snake-Like Robot,” in Genetic and Evolutionary Computation – GECCO 2004, vol. 3102, Springer, 2004, pp. 627–639. https://doi.org/10.1007/978-3-540-24854-5_65; K. Wang, W. Gao, and S. Ma, “Snake-Like Robot with Fusion Gait for High Environmental Adaptability: Design, Modeling, and Experiment,” Applied Sciences, vol. 7, no. 11, p. 1133, Nov. 2017, https://doi.org/10.3390/app7111133; M. Tesch et al., “Parameterized and Scripted Gaits for Modular Snake Robots,” Advanced Robotics, vol. 23, no. 9, pp. 1131–1158, Jan. 2009, https://doi.org/10.1163/156855309X452566; F. Sanfilippo, J. Azpiazu, G. Marafioti, A. A. Transeth, Ø. Stavdahl, and P. Liljebäck, “Perception-Driven Obstacle-Aided Locomotion for Snake Robots: The State of the Art, Challenges and Possibilities †,” Applied Sciences, vol. 7, no. 4, p. 336, Mar. 2017, https://doi.org/10.3390/app7040336; S. Xuandon, G. Junyao, Z. Zhengyang, W. Qianying, and H. Chengzu, “Structural analysis and design of round belt drive snake-like robot,” in IET International Conference on Information Science and Control Engineering 2012 (ICISCE 2012), Dec. https://doi.org/10.1049/cp.2012.2299; R. Featherstone, Rigid Body Dynamics Algorithms, 1a ed. Boston, MA: Springer US, 2008. https://doi.org/10.1007/978-1-4899-7560-7; M. Malayjerdi and A. Akbarzadeh, “Analytical modeling of a 3-D snake robot based on sidewinding locomotion,” Int J Dyn Control, vol. 7, no. 1, pp. 83–93, Mar. 2019, https://doi.org/10.1007/s40435-018-0441-z; W. Khalil and J. Kleinfinger, “A new geometric notation for open and closed-loop robots,” in Proceedings. 1986 IEEE International Conference on Robotics and Automation, May 1986, vol. 3, pp. 1174–1179. https://doi.org/10.1109/ROBOT.1986.1087552; O. A. Vivas, Diseño y control de robots industriales: teoría y práctica, 1a ed. Elaleph.com S.R.L., 2010. [Online]. Accessed: Feb. 09, 2022. Available: https://www.elaleph.com/libro/Diseno-y-control-de-robots-industriales-teoria-y-practica-de-Oscar-Andres-Vivas-Alban/576371/; R. Bogue, “Snake robots: A review of research, products and applications,” Industrial Robot, vol. 41, no. 3, pp. 253–258, May 2014, https://doi.org/10.1108/IR-02-2014-0309; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2412

  12. 12
    Academic Journal

    وصف الملف: application/pdf; text/html; application/xml

    Relation: Inge Cuc; A. Calasans, Diez datos sobre la discapacidad. Ginebra: OMS, 2013.; M. El-Gohary, L. Holmstrom, J. Huisinga, E. King, J. McNames & F. Horak, “Upper limb joint angle tracking with inertial sensors”, IEEE. Trans. Biomed. Eng., vol. 59, no. 9, pp. 2635–2641, Sept. 2012. https://doi.org/10.1109/IEMBS.2011.6091362; K. Sweeting & M. Mock, “Gait and posture-assessment in general practice”, Aust. Fam. Physician, vol. 36, no. 6, pp. 398–401, Jul. 2007. Available: https://www.racgp.org.au/afp/200706/200706sweeting.pdf; A, Fontes, T. Menezes, P. Fallavollita, L. Silva & V. Teichrieb, “Rehabilitation motion recognition based on the international biomechanical standards”, Expert. Syst. Appl., vol. 116, pp. 396–409, Feb. 2019. https://doi.org/10.1016/j.eswa.2018.09.026; A. Villa, E. Gutiérrez y J. Pérez, “Consideraciones para el análisis de la marcha humana, técnicas de videogrametría, electromiografía y dinamometría”, Rev. Ing. Biomed., vol. 2, no. 3, pp. 16–26, Jun. 2008. Disponible en: https://pesquisa.bvsalud.org/portal/resource/pt/lil-773325; V. Bonnet, G. Daune, V. Joukov, R. Dumas, P. Fraisse, D. Kulic, A. Seilles, S. Andary & G. Venture, “A constrained extended kalman filter for dynamically consistent inverse kinematics and inertial parameters identification”, in 6th IEEE International Conference on Biomedical Robotics and Biomechatronics, BioRob 2016, Singapore, SG, 26-29 Jun. 2016. https://doi.org/10.1109/BIOROB.2016.7523749; V. Bonnet, C. Mazza, P. Fraisse & A. Cappozzo, “A least-squares identification algorithm for estimating squat exercise mechanics using a single inertial measurement unit”, J. Biomech., vol. 45, no. 8, pp. 1472 –1477, May. 2012. https://doi.org/10.1016/j.jbiomech.2012.02.014; T. Seel, J. Raisch & T. Schauer, “Imu-based joint angle measurement for gait analysis”, Sensors, vol. 14, no. 4, pp. 6891–6909, Apr. 2014. https://doi.org/10.3390/s140406891; H. Vathsangam, A. Emken, D. Spruijt & G. Sukhatme, “Toward freeliving walking speed estimation using gaussian process-based regression with on-body accelerometers and gyroscopes”, in 4th International ICST Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2010, Munich, GE, Marc. 2010. https://doi.org/10.4108/ICST.PERVASIVEHEALTH2010.8786; W. Jiang & Z. Yin, “Combining passive visual cameras and active IMU sensors for persistent pedestrian tracking”, J. Vis. Commun. Image R., vol. 48, no. 5, pp. 419–431, Oct. 2017. https://doi.org/10.1016/j.jvcir.2017.03.015; M. Djuric, N. Jovicic, D. Popovic & A. Djordjevic, “Nonlinear optimization for drift removal in estimation of gait kinematics based on accelerometers”, J. Biomech., vol. 45, no. 16, pp. 2849–2854, Sept. 2012. Available: https://www.researchgate.net/publication/230869449_Nonlinear_optimization_for_drift_removal_in_estimation_of_gait_kinematics_based_on_accelerometers; D. Roetenberg, H. Luinge & P. Slycke, “Xsens mvn: full 6dof human motion tracking using miniature inertial sensors,” Tech. Rep., Xsens Motion Technologies, Enschede, Ni, Jan. 2009. Available: https://www.researchgate.net/publication/239920367_Xsens_MVN_Full_6DOF_human_motion_tracking_using_miniature_inertial_sensors; A. Guzik, M. Druzbicki, A. Wolan, G. Przysada & A. Kwolek, “The Wisconsin gait scale – The Minimal clinicaly important difference”, Gait Posture, vol. 68, pp. 453–457, Feb. 2019. https://doi.org/10.1016/j.gaitpost.2018.12.036; L. Benson, X. Clermont, E. Bosnjak & R. Ferber, “The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review”, Gait Posture, vol. 63, pp. 124–138, Jun. 2018. https://doi.org/10.1016/j.gaitpost.2018.04.047; C. Díaz, A. Torres, J. Ramírez, L. García & N. Álvarez, “Descripción de un dispositivo destinado al análisis de la marcha en dos dimensiones, CineMED”, Rev. EIA, vol. 5, pp. 85–92, Jun. 2006. Disponible en https://revistas.eia.edu.co/index.php/reveia/article/view/149/148; E. Camargo, Y. Garzón & V. Camacho, “Sistema portátil de captura de movimiento para el análisis cinemático de la marcha humana”, Rev. Tecnura, vol. 16, no. 34, pp. 67–83, Oct. 2012. https://doi.org/10.14483/udistrital.jour.tecnura.2012.4.a05; T. Weise, Global optimization algorithms: theory and application. Hefei, CHN: Self-Published, 2011.; G. Cooper, I. Sheret, L. McMillian, K. Siliverdis, N. Sha, D. Hodgins & D. Howard, “Inertial sensor-based knee flexion/extension angle estimation”, J. Biomech., vol. 42, no. 16, pp. 2678–2685, Dec. 2009. https://doi.org/10.1016/j.jbiomech.2009.08.004; V. Bonnet & G. Venture, “Fast determination of the planar body segment inertial parameters using affordable sensors”, IEEE T. Neur. Sys. Reh., vol. 23, no. 4, pp. 628–635, Jul. 2015. https://doi.org/10.1109/TNSRE.2015.2405087; J. Figueiredo, C. Santos & J. Moreno, “Automatic recognition of gait patterns in human motor disorders using machine learning: A review”, Med. Eng. Physics, vol. 53, pp. 1–12, Mar. 2018. https://doi.org/10.1016/j.medengphy.2017.12.006; F. Schültje, P. Beckerle, M. Grimmer, J. Wojtusch & S. Rinderknecht, “Comparison of trajectory generation methods for a human-robot interface based on motion tracking in the int2bot”, in Proc. 23rd IEEE Ro-man 2014, 23ISRHIC, Edinburgh, UK, 25-29 Aug. 2014. https://doi.org/10.1109/ROMAN.2014.6926336; M. El-Gohary & J. McNames, “Human joint angle estimation with inertial sensors and validation with a robot arm”, IEEE Trans. Biomed. Eng., vol. 62, no. 7, pp. 1759–1767, Jul. 2015. https://doi.org/10.1109/TBME.2015.2403368; C. Lightcap & S. Banks, “An extended Kalman filter for real-time estimation and control of a rigid-link flexible-joint manipulator”, IEEE T. Contr. Syst. T., vol. 18, no. 1, pp. 91–103, Jun. 2010. https://doi.org/10.1109/TCST.2009.2014959; J. Grosso & D. Tibaduiza, “Diseño y validación de un exoesqueleto maestro-esclavo para rehabilitación de piernas”, Tesis de grado, dpto IMEC, UNAB, B/manga, CO, 2008.; V. Ortiz, M. Nieto & E. Quintero, “Metodología para la estimación de parámetros en tiempo real mediante filtros de Kalman y mínimos cuadrados”, Iteckne, vol. 10, no. 1, pp. 37–44, Jul. 2013. https://doi.org/10.15332/iteckne.v10i1.178; V. Bravo, M. Arias & J. Cárdenas, “Análisis y aplicación del filtro de Kalman a una señal con ruido aleatorio”, Scientia Et Technica, vol. 18, no. 1, pp. 267–274, Abr. 2013.; J. Chen & W. Liao, “A leg exoskeleton utilizing a magnetorheological actuator”, in Proc. IEEE RoBio 2006, IEEE, Kunming, CN, 17-20 Dec. 2006. https://doi.org/10.1109/ROBIO.2006.340320; C. Prakash, R. Kumar, N. Mittal & G. Raj, “Vision based identification of joint coordinates for marker-less gait analysis”, Procedia Comput. Sci., vol. 132, pp. 68–75, Jan. 2018. https://doi.org/10.1016/j.procs.2018.05.060; M. Lafortune, P. Cavanagh, H. Sommer & A. Kalenak, “Three-dimensional kinematics of the human knee during walking”, J. Biomech., vol. 25, no. 4, pp. 347–357, Apr. 1992. https://doi.org/10.1016/0021-9290(92)90254-X; A. Cappozzo, F. Catani, U. Croce & A. Leardini, “Position and orientation in space of bones during movement: anatomical frame definition and determination”, Clin. Biomech., vol. 10, no. 4, pp. 171–178, Jun. 1995. https://doi.org/10.1016/0268-0033(95)91394-T; R. Davis, S. Ounpuu, D. Tyburski & J. Gage, “A gait analysis data collection and reduction technique”, Hum. Movement Sci., vol. 10, no. 5, pp. 575–587, Oct. 1991. https://doi.org/10.1016/0167-9457(91)90046-Z; E. Portilla, O. Avilés, P. Niño, R. Pina, M. Molina & E. Moya, “Análisis cinemático y diseño de un mecanismo de cuatro barras para falange proximal de dedo antropomórfico”, Cienc. Ing. Neogranad., vol. 20, no. 1, pp. 45–49, Jun. 2010. https://doi.org/10.18359/rcin.283; K. Quijano & D. Valencia, “Estimación de la cinemática de las articulaciones de miembro inferior a partir de un arreglo reducido de sensores”, Tesis de grado, dpto IAIA, Unicauca, Popayán, CO, 2018.; J. Osio, J. Salvatore, E. Kunysz, D. Montezanti, D, Alonso, V. Guarepi & D. Morales, “Análisis de eficiencia en arquitecturas multiprocesador para aplicaciones de transmisión y procesamiento de datos”, en WICC 2017, ITBA, Bs. As., AR, Abr. 2017, pp. 163–167.; S. Garrido, R. Muñoz, F. Madrid & M. Marín, “Automatic generation and detection of highly reliable fiducial markers under occlusion”, Pattern Recognit., vol. 47, no. 6, pp. 2280–2292, Jun. 2014. https://doi.org/10.1016/j.patcog.2014.01.005; A. Salazar, W. Castrillón & F. Prieto, “Herramienta de asistencia en el diagnóstico de la movilidad articular en 3D”, Rev Avances Sist. Inf., vol. 5, no. 1, pp. 55–64, May. 2008.; 266; 252; 16; https://revistascientificas.cuc.edu.co/ingecuc/article/download/2451/2700; https://revistascientificas.cuc.edu.co/ingecuc/article/download/2451/3479; https://revistascientificas.cuc.edu.co/ingecuc/article/download/2451/3525; Núm. 1 , Año 2020 : (Enero-Junio); https://hdl.handle.net/11323/12235; https://doi.org/10.17981/ingecuc.16.1.2020.19

  13. 13
    Academic Journal
  14. 14
    Conference
  15. 15
    Conference

    المساهمون: Universidad del Cauca. Colombia, Universidad Miguel Hernández

    وصف الملف: 8 p.; application/pdf

    Relation: Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018; http://hdl.handle.net/10662/8133; Manrique Córdoba, J., Romero Ante, J.D., Sabater Navarro, J.M., Vivas Albán, O.A. y Vicente Samper, J.M. 2018. Simulador de paciente T1D en tiempo real. En: I. Tejado Balsera, E. Pérez Hernández, A.J. Calderón Godoy, I. González Pérez, P. Merchán García, J. Lozano Rogado, S. Salamanca Miño y B.M. Vinagre Jara (eds.) Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018. Badajoz: Universidad de Extremadura, pp. 64-71. ISBN 978-84-09-044460-3

  16. 16
    Conference
  17. 17
    Electronic Resource
  18. 18
    Academic Journal
  19. 19
    Conference
  20. 20
    Academic Journal

    المصدر: Pistas Educativas; Vol. 39, Núm. 128 (2018): Número Especial (SENIE 2017) ; 2448-847X ; 1405-1249

    وصف الملف: application/pdf

    Relation: http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/1166/934; http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/downloadSuppFile/1166/194; http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/downloadSuppFile/1166/195; Autorino, R., Cadeddu, J. A., Desai, M. M., Gettman, M., Gill,I. S., Kavoussi, L. R., Lima, E., Montorsi, F., Richstone, L., Stolzenburg, J. U., Laparoendoscopic single-site and natural orifice transluminal endoscopic surgery in urology: a critical analysis of the literature. European Urology 59, 1, pp. 26-45, 2011.; Bae, J. H., Development of smart game based on multi-platform game engine. International Journal of Multimedia and Ubiquitous Engineering 11, 3, pp. 345-350, 2016.; Bruellmann, D. D., H. Tjaden, U. Schwanecke, and P. Barth, An optimized video system for augmented reality in endodontics: a feasibility study, Clinical oral investigations 17, no. 2, pp. 441-448, 2013.; Collins, T., Bartoli, A., Bourdel, N., & Canis, M., Robust, real-time, dense and deformable 3d organ tracking in laparoscopic videos. In International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer International Publishing, pp. 404-412, 2016.; Cukovic, S., Gattullo, M., Pankratz, F., Devedzic, G., Carrab-ba, E., Baizid, K. Marker based vs. natural feature tracking augmented reality visualization of the 3D foot phantom. Electrical and Bio-medical Engineering, Clean Energy and Green Computing 1, 2016.; Cristie, V., Berger, M., Bus, P., Kumar, A., Klein, B., City-heat: visualizing cellular automata-based traffic heat in unity3d, Visualization in High Performance Computing, ACM, 6, SIG-GRAPH, Asia 2015.; De Lacy, A. M., Rattner, D. W., Adelsdorfer, C., Tasende, M. M., Fernández, M., Delgado, S., Sylla, P., Martínez-Palli, G., Transanal natural orifice transluminal endoscopic surgery (notes) rectal resection:“down-to-up” total mesorectal excision (tme)—short-term outcomes in the first 20 cases. Surgical Endoscopy 27, 9, pp. 3165–3172, 2013.; De Paolis, L. T., Ricciardi, F., Dragoni, A. F., Aloisio, G. An augmented reality application for the radio frequency ablation of the liver tumors. In International Conference on Computational Science and Its Applications, Springer, Berlin, Heidelberg, pp. 572-581, 2011.; Duchene, D. A., Moinzadeh, A., Gill, I. S., Clayman, R. V., and Winfield, H. N., Survey of residency training in laparoscopic and robotic surgery. The Journal of Urology 176, pp. 2158–2167, 2016.; Llena, C., S. Folguera, L. Forner, and F. J. Rodríguez Lozano, Implementation of augmented reality in operative dentistry learning. European Journal of Dental Education, 2017.; Furst, J., Fierro, G., Bonnet, P., Culler, D. E., Busico 3d: building simulation and control in unity 3d. 12th ACM Conference on Embedded Network Sensor Systems, ACM, pp. 326–327, 2014.; Gutiérrez Puerto, E.M., Sistema de Realidad Aumentada para la interacción con el Instrumental en el procedimiento de Acceso Venoso Central, Tesis, Universidad Militar Nueva Granada, 2015.; Jamali, S. S., Shiratuddin, M. F., Wong, K. W., Oskam, C. L., Utilising mobile-augmented reality for learning human anatomy. Social and Behavioral Sciences 197, pp. 659–668, 2015.; Kipper, G., Rampolla, J., Augmented Reality: an emerging tech-nologies guide to AR. Elsevier, 2012.; Mahmoud, N., Hostettler, A., Collins, T., Soler, L., Doignon, C., & Montiel, J. M. M. SLAM based Quasi Dense Reconstruction For Minimally Invasive Surgery Scenes, 2017.; Pauly, O., Diotte, B., Fallavollita, P., Weidert, S., Euler, E., & Navab, N. Machine learning-based augmented reality for improved surgical scene understanding. Computerized Medical Imaging and Graphics, pp. 55-60, 2015.; Puerto-Souza, G. A., & Mariottini, G. L. An augmented-reality system for laparoscopic surgery robust to complete occlusions and fast camera motions, In International Conference on Robotics and Automotion, 2013.; Marescaux, J., Diana, M., Next step in minimally invasive surgery: hybrid image-guided surgery. Journal of pediatric surgery 50, pp. 30–36, 2015.; Moreno, M. R., Moraes, T. F., Amorim, P. H., da Silva, J. V. L., Rodriguez, C. A. Virtual open source environment for training and simulation of laparoscopic surgery. XII Work-shop de Informática Médica (WIM2012) XXXII Congresso da Sociedade Brasileira de Computacao, pp. 1–4, 2012.; Narahara, T., Abbruzzese, K. M., Foulds, R. A. Haptic collaboration: biomedical engineering meets digital design, SIGGRAPH 2015, 2015.; http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/1166