-
1Conference
المؤلفون: Rumbo, Iliana, Cases-Hurtado, Jesús, Manrique Córdoba, Juliana, Romero Ante, Juan David, Martorell, Carlos, Vivas Albán, Óscar Andrés, Sabater-Navarro, José María
مصطلحات موضوعية: Cirugía robótica, Estimación de fuerzas, Mínima invasión, Surgical robotics, Force computation, Minimally invasive surgery
Relation: https://doi.org/10.17979/spudc.9788497498609.110; Rumbo, I, Cases-Hurtado, J., Manrique-Córdoba, J, Romero-Ante, J.D, Martorell, C., Vivas, A, Sabater-Navarro, J.M. 2023. Plataforma experimental para la obtención de las fuerzas de interacción en cirugía mínimamente invasiva. XLIV Jornadas de Automática, 110-115. https://doi.org/10.17979/spudc.9788497498609.110; http://hdl.handle.net/2183/33560
-
2Academic Journal
المؤلفون: Montenegro-Bravo, Juan Sebastián, Ruiz-Flórez, Juan David, Romero-Ante, Juan David, Manrique-Córdoba, Juliana, Vivas Albán, Oscar Andrés, Sabater-Navarro, José María
مصطلحات موضوعية: Path-planning, Soft grippers, ROS, Collaborative robots, Robotic manipulation, Free collision path, Planificación de trayectorias, Pinzas blandas, Robots colaborativos, Ruta libre de colisión, Manipulación robótica
Relation: Revista Iberoamericana de Automática e Informática industrial; https://doi.org/10.4995/riai.2023.19332; urn:issn:1697-7912; http://hdl.handle.net/10251/201504; urn:eissn:1697-7920
-
3Academic Journal
المصدر: Revista Científica Ingeniería y Desarrollo.; Vol. 41 No. 1 (2023): Enero-Junio; 28-49 ; Revista Científica Ingeniería y Desarrollo; Vol. 41 Núm. 1 (2023): Enero-Junio; 28-49 ; 2145-9371 ; 0122-3461
مصطلحات موضوعية: glove, rehabilitation, serious games, virtual reality, juegos serios, guante, realidad virtual, rehabilitación
وصف الملف: application/pdf
-
4Academic Journal
المصدر: Entre ciencia e ingeniería; Vol 17 No 33 (2023); 39-46 ; Entre Ciencia e Ingeniería; Vol. 17 Núm. 33 (2023); 39-46 ; Entre ciencia e ingeniería; v. 17 n. 33 (2023); 39-46 ; 2539-4169 ; 1909-8367
وصف الملف: application/pdf
Relation: https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2769/2618; https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2769
-
5Conference
المؤلفون: Solarte Orozco, Juan Camilo, Manrique Córdoba, Juliana, Vivas Albán, Óscar Andrés, Romero Ante, Juan David, Juan Poveda, Carlos Gabriel, Vicente-Samper, José María, Sabater-Navarro, José María
مصطلحات موضوعية: Diabetes mellitus, Alimentos, Alexa Amazon, Control glucémico, Insulina, Food, Glycemic control, Insulin
Relation: https://doi.org/10.17979/spudc.9788497498418.0148; Solarte Orozco, J.C., Manrique Córdoba, J., Vivas Albán, O.A., Romero Ante, J.D., Juan Poveda, C.G., Vicente Samper, J.M., Sabater Navarro, J.M. (2022) Calculador inteligente de bolo de insulina en skill Alexa Amazon para pacientes con diabetes mellitus y deficiencia visual. XLIII Jornadas de Automática: libro de actas, pp.148-155 https://doi.org/10.17979/spudc.9788497498418.0148; http://hdl.handle.net/2183/31372
-
6Electronic Resource
المؤلفون: Tapias Díaz, Omaira Luz, Consuegra, José Luis, Vivas Albán, Oscar Andrés, Fraile Marinero, Juan Carlos
المصدر: Revista EIA, ISSN 1794-1237, Vol. 21, Nº. 41, 2024
-
7Academic Journal
المؤلفون: Aguilar, Eliana, Solarte Correa, Pedro Luis, Dorado, Jesus Humberto, Sabater, José María, Vivas Albán, Oscar Andrés
المصدر: Ingeniería; Vol. 28 No. 1 (2023): January-April; e18543 ; Ingeniería; Vol. 28 Núm. 1 (2023): Enero-Abril; e18543 ; 2344-8393 ; 0121-750X
مصطلحات موضوعية: realidad aumentada, realidad mixta, casco Meta 2, exploración quirúrgica, Augmented reality, mixed reality, Meta 2 headset, surgical exploration
وصف الملف: application/pdf; text/xml
Relation: https://revistas.udistrital.edu.co/index.php/reving/article/view/18543/18650; https://revistas.udistrital.edu.co/index.php/reving/article/view/18543/18992; S. Abou El-Seoud, A. Mady, and E. Rashed, “An interactive mixed reality ray tracing rendering mobile application of medical data in minimally invasive surgeries”, Int. J. Interact. Mob. Technol. (iJIM), vol. 13, no. 3, pp. 29-39, 2019. https://doi.org/10.3991/ijim.v13i03.9893; P. R. Armijo, C.-K. Huang, R. High, M. Leon, K.-C. Siu, and D. Oleynikov, “Ergonomics of minimally invasive surgery: An analysis of muscle effort and fatigue in the operating room between laparoscopic and robotic surgery”, Surg. Endosc, vol. 33, no. 7, pp. 2323-2331, 2019.; E. Azimi, R. Liu, C. Molina, J. Huang, and P. Kazanzides, “Interactive navigation system in mixedreality for neurosurgery”, 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 782-783, 2020. https://doi.org/10.1109/VRW50115.2020.00242; H. Brun, R. A. B. Bugge, L. K. R. Suther, S. Birkeland, R. Kumar, E. Pelanis, and O. J. Elle, “Mixed reality holograms for heart surgery planning: First user experience in congenital heart disease”, Eur. Heart J. Cardiovasc. Imaging, vol. 20, no. 8, pp. 883-888, 2019. https://doi.org/10.1093/ehjci/jey184; G. Caccianiga, A. Mariani, E. De Momi, G. Cantarero, and J. D. Brown, “An evaluation of inanimate and virtual reality training for psychomotor skill development in robot-assisted minimally invasive surgery”, IEEE Trans. Med. Robot. Bionics, vol. 2, no. 2, pp. 118-129, 2020. https://doi.org/10.1109/TMRB.2020.2990692; J. Cartucho, D. Shapira, H. Ashrafian, and S. Giannarou, “Multimodal mixed reality visualisation for intraoperative surgical guidance”, Inter. J. Comput. Assist. Radiol. Surge, vol. 15, no. 5, pp. 819-826, 2020. https://doi.org/10.1007/s11548-020-02165-4; B. Fiani, F. De Stefano, A. Kondilis, C. Covarrubias, L. Reier, and K. Sarhadi, “Virtual reality in neurosurgery: “Can you see it?” - A review of the current applications and future potential”, World Neurosurg, vol. 141, pp. 291-298, 2020. https://doi.org/10.1016/j.wneu.2020.06.066; Y. Georgiou, and E. A. Kyza, “The development and validation of the ARI questionnaire: An instrument for measuring immersion in location-based augmented reality settings”, Int. J. Hum. Comput. Studies, vol. 98, pp. 24-37, 2017. https://doi.org/10.1016/j.ijhcs.2016.09.014; K. D. Gray, J. G. Burshtein, L. Obeid, M. D. Moore, G. Dakin, A. Pomp, and C. Afaneh, “Laparoscopic appendectomy: Minimally invasive surgery training improves outcomes in basic laparoscopic procedures”, World J. Surg, vol. 42, no. 6, pp. 1706-1713, 2018. https://doi.org/10.1007/s00268-017-4374-z; H. G. Guedes, Z. M. Câmara Costa Ferreira, L. Ribeiro de Sousa Leão, E. F. Souza Montero, J. P. Otoch, and E. L. de Almeida Artifon, “Virtual reality simulator versus box-trainer to teach minimally invasive procedures: A meta-analysis”, Int. J. Surg, vol. 61, pp. 60-68, 2019. https://doi.org/10.1016/j.ijsu.2018.12.001; B. Hoppenstedt et al. “Applicability of immersive analytics in mixed reality: Usability study”, IEEE Access, vol. 7, pp. 71921-71932, 2019. https://doi.org/10.1109/ACCESS.2019.2919162; H.-Z. Hu, X.-B. Feng, Z.-W. Shao, M. Xie, S. Xu, X.-H. Wu, and Z.-W. Ye, “Application and prospect of mixed reality technology in medical field”, Curr. Med. Sci, vol. 39, no. 1, pp. 1-6, 2019. https://doi.org/10.1007/s11596-019-1992-8; F. Incekara, M. Smits, C. Dirven, and A. Vincent, “Clinical feasibility of a wearable mixedreality device in neurosurgery”, World Neurosurg, vol. 118, pp. e422-e427, 2018. https://doi.org/10.1016/j.wneu.2018.06.208; A. Javaux, D. Bouget, C. Gruijthuijsen, D. Stoyanov, T. Vercauteren, S. Ourselin, J. Deprest, K. Denis, and E. Vander Poorten, “A mixed-reality surgical trainer with comprehensive sensing for fetal laser minimally invasive surgery”, Int. J. Comput. Assist. Radiol. Surg, vol. 13, pp. 1949-1957, 2018. https://doi.org/10.1007/s11548-018-1822-7; T. Koike et al., “Development of innovative neurosurgical operation support method using mixed-reality computer graphics”, World Neurosurg, X, vol. 11, 2021. https://doi.org/10.1016/j.wnsx.2021.100102; A. J Lungu, W. Swinkels, L. Claesen, P. Tu, J. Egger, and X. Chen, “A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: An extension to different kinds of surgery”, Expert Rev. Med. Devices, vol. 18, no. 1, pp. 47-62, 2021. https://doi.org/10.1080/17434440.2021.1860750; D. Panariello et al., “Using the KUKA LBR iiwa robot as haptic device for virtual reality training of hip replacement surgery”, 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 449-450, 2019. https://doi.org/10.1109/IRC.2019.00094; A. Parisi et al., “Minimally invasive surgery for gastric cancer: A comparison between robotic, laparoscopic and open surgery”, World J. Gastroenterol, vol. 23, no. 13, pp. 2376-2384, 2017. https://doi.org/10.3748/wjg.v23.i13.2376; Z. Qi et al., “Holographic mixed-reality neuronavigation with a head-mounted device: Technical feasibility and clinical application”, J. Neurosurg. Focus, vol. 51, no. 2, 2021. https://doi.org/10.3171/2021.5.FOCUS21175; M. Runciman, A. Darzi, and G. P. Mylonas, “Soft robotics in minimally invasive surgery”, Soft Robotics, vol. 6, no. 4, pp. 423-443, 2019. https://doi.org/10.1089/soro.2018.0136; Y. Saito et al., “Intraoperative 3D hologram support with mixed reality techniques in liver surgery”, Ann. Surg, vol. 271, no. 1, pp. e4-e7, 2020. https://doi.org/10.1097/SLA.0000000000003552; S. Sharif, and A. Afsar, “Learning curve and minimally invasive spine surgery”, World Neurosurg, vol. 119, pp. 472-478, 2018. https://doi.org/10.1016/j.wneu.2018.06.094; R. Wierzbicki et al., “3D mixed-reality visualization of medical imaging data as a supporting tool for innovative, minimally invasive surgery for gastrointestinal tumors and systemic treatment as a new path in personalized treatment of advanced cancer diseases”, J. Cancer Res. Clin. Oncol, vol. 148, pp. 237-243, 2022. https://doi.org/10.1007/s00432-021-03680-w; J. Zeiger, A. Costa, J. Bederson, R. K. Shrivastava, and A. M. C. Iloreta, “Use of mixed reality visualization in endoscopic endonasal skull base surgery”, Oper. Neurosurg, vol. 19, no. 1, pp. 43-52, 2020. https://doi.org/10.1093/ons/opz355; Z.-Y. Zhang et al., “Preliminary application of mixed reality in neurosurgery: Development and evaluation of a new intraoperative procedure”, J. Clinic Neurosci, vol. 67, pp. 234238, 2019. https://doi.org/10.1016/j.jocn.2019.05.038; https://revistas.udistrital.edu.co/index.php/reving/article/view/18543
-
8Academic Journal
المصدر: Ingeniería Solidaria; Vol. 18 No. 3 (2022); 1-24 ; Ingeniería Solidaria; Vol. 18 Núm. 3 (2022); 1-24 ; Ingeniería Solidaria; v. 18 n. 3 (2022); 1-24 ; 2357-6014 ; 1900-3102
مصطلحات موضوعية: microdevices, microrobots, minimally invasive surgery, drug delivery, cranial instrusions, micro dispositivos, micro robots, cirugia minimamente invasiva, administracion de farmacos, intrusiones craneales, instrusiones vascular
وصف الملف: application/pdf
Relation: https://revistas.ucc.edu.co/index.php/in/article/view/4330/3389; https://revistas.ucc.edu.co/index.php/in/article/view/4330
-
9Academic Journal
المصدر: Pistas Educativas; Vol. 44, Núm. 143 (2022): Número semestral (julio-diciembre 2022) ; 2448-847X ; 1405-1249
وصف الملف: application/pdf
Relation: http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/2986/2248; http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/downloadSuppFile/2986/2086; http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/downloadSuppFile/2986/2087; Ayed I., Ghazel A., Jaume A. (2019). Vision-based serious games and virtual reality systems for motor rehabilitation: A review geared toward a research methodology. International Journal of Medical Informatics 131. DOI 10.1016/j.ijmedinf.2019.06.016.; Burke J., McNeill J., Charles D. (2010). Augmented Reality Games for Upper-Limb Stroke Rehabilitation. Second International Conference on Games and Virtual Worlds for Serious Applications, pp. 75-78, DOI 10.1109/VS-GAMES.2010.21.; Chen X., Liu F., Lin S. (2022). Effects of Virtual Reality Rehabilitation Training on Cognitive Function and Activities of Daily Living of Patients with Post-Stroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Archives of Physical Medicine and Rehabilitation. In Press. DOI 10.1016/j.apmr.2022.03.012.; Domínguez J., Domínguez M., Miró L. (2019). Rehabilitación de pacientes con movilidad reducida usando exoesqueleto y técnicas de gamificación. Avances en la Investigación en Ciencia e Ingeniería, 3ciencias, Sevilla, pp. 57-66, 2019.; Hernández A., Domínguez J., Pi A. (2018). Arquitectura de software para el desarrollo de videojuegos sobre el motor de juego Unity 3D. I+ D Tecnológico 14:54-65. DOI 10.33412/idt.v14.1.1803.; Hoffman H., Boe D., Rombokas E. (2020). Virtual reality hand therapy: A new tool for nonopioid analgesia for acute procedural pain, hand rehabilitation, and VR embodiment therapy for phantom limb pain. Journal of Hand Therapy 33:254–262, 2020, DOI:10.1016/j.jht.2020.04.001.; Jonsdottir J., Bertoni R., Lawo M. et al. (2018). Serious games for arm rehabilitation of persons with multiple sclerosis. A randomized controlled pilot study. Multiple Sclerosis and Related Disorders 19:25-29. DOI 10.1016/j.msard.2017.10.010.; Lo K., Stephenson M., Lockwood C. (2019). The economic cost of robotic rehabilitation for adult stroke patients: a systematic review. JBI Evidence Synthesis 17:520-547. DOI 10.11124/JBISRIR-2017-003896.; Muri F., Carbajal C., Perez E. (2013). Diseño de un sistema de rehabilitación para miembro superior en entorno de realidad virtual 7: 81-89. DOI 10.24050/19099762.n14.2013.475.; Rubin P. (2018). Future Presence: How Virtual Reality Is Changing Human Connection, Intimacy, and the Limits of Ordinary Life. HarperCollins Publishers, New York.; Shi Y., Peng Q. (2018). A VR-based user interface for the upper limb rehabilitation. Procedia CIRP 78:115-120. DOI 10.1016/j.procir.2018.08.311.; Standen P., Threapleton K., Richardson A. et al. (2017). A low cost virtual reality system for home based rehabilitation of the arm following stroke: a randomised controlled feasibility trial. Clinical rehabilitation 31:340-350. DOI 10.1177/0269215516640320.; http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/2986
-
10Academic Journal
المؤلفون: Fernández-Riomalo, Carlos Eduardo, Guástar-Morillo, Héctor Andrés, Vivas-Albán, Oscar Andrés
المصدر: Revista Facultad de Ingeniería; Vol. 25 No. 42 (2016); 21-32 ; Revista Facultad de Ingeniería; Vol. 25 Núm. 42 (2016); 21-32 ; 2357-5328 ; 0121-1129
مصطلحات موضوعية: maparoscopic, modeling robot, surgical robotics, surgical simulator virtual robot, laparoscopia, modelado de robots, robot virtual, robótica quirúrgica, simulador quirúrgico
وصف الملف: application/pdf; text/html
Relation: https://revistas.uptc.edu.co/index.php/ingenieria/article/view/4627/3798; https://revistas.uptc.edu.co/index.php/ingenieria/article/view/4627/5049; https://revistas.uptc.edu.co/index.php/ingenieria/article/view/4627; https://repositorio.uptc.edu.co/handle/001/14140
-
11Academic Journal
المصدر: TecnoLógicas; Vol. 26 No. 56 (2023); e2412 ; TecnoLógicas; Vol. 26 Núm. 56 (2023); e2412 ; 2256-5337 ; 0123-7799
مصطلحات موضوعية: Robot control, simulation modeling, robot motion, biomimetic robot, snake robot, Control de robots, modelado de simulación, movimiento del robot, robot biomimético, robot serpiente
وصف الملف: application/pdf; application/zip; text/xml; text/html
Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2412/2651; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2412/2671; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2412/2672; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2412/2673; F. Reyes and S. Ma, “Snake robots in contact with the environment: Influence of the friction on the applied wrench,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 5790–5795. https://doi.org/10.1109/IROS.2017.8206471; G. S. Chirikjian and J. W. Burdick, “The kinematics of hyper-redundant robot locomotion,” IEEE Transactions on Robotics and Automation, vol. 11, no. 6, pp. 781–793, Dec. 1995, https://doi.org/10.1109/70.478426; P. Liljeback, S. Fjerdingen, K. Y. Pettersen, and O. Stavdahl, “A snake robot joint mechanism with a contact force measurement system,” in 2009 IEEE International Conference on Robotics and Automation, May 2009, pp. 3815–3820. https://doi.org/10.1109/ROBOT.2009.5152276; C. Nidhi and S. Shruti, “A review study on future applicability of snake robots in India,” IOSR J Comput Eng, vol. 17, no. 5, pp. 3–6, Sep. 2015. Accessed: Feb. 17, 2022. [Online]. Available: https://www.iosrjournals.org/iosr-jce/papers/Vol17-issue5/Version-1/B017510306.pdf; S. Manzoor, U. Khan, and I. Ullah, “Serpentine and Rectilinear Motion Generation in Snake Robot Using Central Pattern Generator with Gait Transition,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 44, no. 3, pp. 1093–1103, Sep. 2020, https://doi.org/10.1007/s40998-019-00301-8; F. Sanfilippo, E. Helgerud, P. A. Stadheim, and S. L. Aronsen, “Serpens, A Low-Cost Snake Robot with Series Elastic Torque-Controlled Actuators and A Screw-Less Assembly Mechanism,” in 2019 5th International Conference on Control, Automation and Robotics (ICCAR), Apr. 2019, pp. 133–139. https://doi.org/10.1109/ICCAR.2019.8813482; J. Gray, “The Mechanism of Locomotion in Snakes,” Journal of Experimental Biology, vol. 23, no. 2, pp. 101–120, Dec. 1946, https://doi.org/10.1242/jeb.23.2.101; T. Owen, “Biologically Inspired Robots: Snake-Like Locomotors and Manipulators,” Robotica, vol. 12, no. 3, p. 282, May 1994, https://doi.org/10.1017/S0263574700017264; M. Mori and S. Hirose, “Three-dimensional serpentine motion and lateral rolling by active cord mechanism ACM-R3,” in IEEE/RSJ International Conference on Intelligent Robots and System, 2002, vol. 1, pp. 829–834. https://doi.org/10.1109/IRDS.2002.1041493; P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, “A review on modelling, implementation, and control of snake robots,” Rob Auton Syst, vol. 60, no. 1, pp. 29–40, Jan. 2012, https://doi.org/10.1016/j.robot.2011.08.010; A. H. Chang and P. A. Vela, “Evaluation of Bio-Inspired Scales on Locomotion Performance of Snake-Like Robots,” Robotica, vol. 37, no. 8, pp. 1302–1319, Aug. 2019, https://doi.org/10.1017/S0263574718001522; J. Liu, Y. Tong, and J. Liu, “Review of snake robots in constrained environments,” Rob Auton Syst, vol. 141, p. 103785, Jul. 2021, https://doi.org/10.1016/j.robot.2021.103785; W. Yang, “Biomorphic Hyper-Redundant Snake Robot: Locomotion Simulation, 3D Printed Prototype and Inertial-Measurement-Unit-Based Motion Tracking,” University of Nevada, 2016. Accessed: Mar. 26, 2022. [Online]. Available: https://scholarworks.unr.edu//handle/11714/2349; M. Saito, M. Fukaya, and T. Iwasaki, “Serpentine locomotion with robotic snakes,” IEEE Control Syst, vol. 22, no. 1, pp. 64–81, Feb. 2002, https://doi.org/10.1109/37.980248; I. Virgala, M. Dovica, M. Kelemen, E. Prada, and Z. Bobovský, “Snake Robot Movement in the Pipe Using Concertina Locomotion,” Applied Mechanics and Materials, vol. 611, pp. 121–129, Aug. 2014, https://doi.org/10.4028/www.scientific.net/AMM.611.121; K. Lipkin et al., “Differentiable and piecewise differentiable gaits for snake robots,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2007, pp. 1864–1869. https://doi.org/10.1109/IROS.2007.4399638; I. Tanev, T. Ray, and A. Buller, “Evolution, Robustness, and Adaptation of Sidewinding Locomotion of Simulated Snake-Like Robot,” in Genetic and Evolutionary Computation – GECCO 2004, vol. 3102, Springer, 2004, pp. 627–639. https://doi.org/10.1007/978-3-540-24854-5_65; K. Wang, W. Gao, and S. Ma, “Snake-Like Robot with Fusion Gait for High Environmental Adaptability: Design, Modeling, and Experiment,” Applied Sciences, vol. 7, no. 11, p. 1133, Nov. 2017, https://doi.org/10.3390/app7111133; M. Tesch et al., “Parameterized and Scripted Gaits for Modular Snake Robots,” Advanced Robotics, vol. 23, no. 9, pp. 1131–1158, Jan. 2009, https://doi.org/10.1163/156855309X452566; F. Sanfilippo, J. Azpiazu, G. Marafioti, A. A. Transeth, Ø. Stavdahl, and P. Liljebäck, “Perception-Driven Obstacle-Aided Locomotion for Snake Robots: The State of the Art, Challenges and Possibilities †,” Applied Sciences, vol. 7, no. 4, p. 336, Mar. 2017, https://doi.org/10.3390/app7040336; S. Xuandon, G. Junyao, Z. Zhengyang, W. Qianying, and H. Chengzu, “Structural analysis and design of round belt drive snake-like robot,” in IET International Conference on Information Science and Control Engineering 2012 (ICISCE 2012), Dec. https://doi.org/10.1049/cp.2012.2299; R. Featherstone, Rigid Body Dynamics Algorithms, 1a ed. Boston, MA: Springer US, 2008. https://doi.org/10.1007/978-1-4899-7560-7; M. Malayjerdi and A. Akbarzadeh, “Analytical modeling of a 3-D snake robot based on sidewinding locomotion,” Int J Dyn Control, vol. 7, no. 1, pp. 83–93, Mar. 2019, https://doi.org/10.1007/s40435-018-0441-z; W. Khalil and J. Kleinfinger, “A new geometric notation for open and closed-loop robots,” in Proceedings. 1986 IEEE International Conference on Robotics and Automation, May 1986, vol. 3, pp. 1174–1179. https://doi.org/10.1109/ROBOT.1986.1087552; O. A. Vivas, Diseño y control de robots industriales: teoría y práctica, 1a ed. Elaleph.com S.R.L., 2010. [Online]. Accessed: Feb. 09, 2022. Available: https://www.elaleph.com/libro/Diseno-y-control-de-robots-industriales-teoria-y-practica-de-Oscar-Andres-Vivas-Alban/576371/; R. Bogue, “Snake robots: A review of research, products and applications,” Industrial Robot, vol. 41, no. 3, pp. 253–258, May 2014, https://doi.org/10.1108/IR-02-2014-0309; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2412
-
12Academic Journal
المؤلفون: Vivas Albán, Oscar Andrés, Valencia Chacón, Deisy Carolina, Quijano Guzmán, Katherin Julieth, Bonett, Vincent David
مصطلحات موضوعية: extended Kalman filter, human gait, inertial measurement units, parametric estimation, kinematic parameters, filtro de Kalman extendido, marcha humana, sensores inerciales, parámetros cinemáticos, identificación paramétrica
وصف الملف: application/pdf; text/html; application/xml
Relation: Inge Cuc; A. Calasans, Diez datos sobre la discapacidad. Ginebra: OMS, 2013.; M. El-Gohary, L. Holmstrom, J. Huisinga, E. King, J. McNames & F. Horak, “Upper limb joint angle tracking with inertial sensors”, IEEE. Trans. Biomed. Eng., vol. 59, no. 9, pp. 2635–2641, Sept. 2012. https://doi.org/10.1109/IEMBS.2011.6091362; K. Sweeting & M. Mock, “Gait and posture-assessment in general practice”, Aust. Fam. Physician, vol. 36, no. 6, pp. 398–401, Jul. 2007. Available: https://www.racgp.org.au/afp/200706/200706sweeting.pdf; A, Fontes, T. Menezes, P. Fallavollita, L. Silva & V. Teichrieb, “Rehabilitation motion recognition based on the international biomechanical standards”, Expert. Syst. Appl., vol. 116, pp. 396–409, Feb. 2019. https://doi.org/10.1016/j.eswa.2018.09.026; A. Villa, E. Gutiérrez y J. Pérez, “Consideraciones para el análisis de la marcha humana, técnicas de videogrametría, electromiografía y dinamometría”, Rev. Ing. Biomed., vol. 2, no. 3, pp. 16–26, Jun. 2008. Disponible en: https://pesquisa.bvsalud.org/portal/resource/pt/lil-773325; V. Bonnet, G. Daune, V. Joukov, R. Dumas, P. Fraisse, D. Kulic, A. Seilles, S. Andary & G. Venture, “A constrained extended kalman filter for dynamically consistent inverse kinematics and inertial parameters identification”, in 6th IEEE International Conference on Biomedical Robotics and Biomechatronics, BioRob 2016, Singapore, SG, 26-29 Jun. 2016. https://doi.org/10.1109/BIOROB.2016.7523749; V. Bonnet, C. Mazza, P. Fraisse & A. Cappozzo, “A least-squares identification algorithm for estimating squat exercise mechanics using a single inertial measurement unit”, J. Biomech., vol. 45, no. 8, pp. 1472 –1477, May. 2012. https://doi.org/10.1016/j.jbiomech.2012.02.014; T. Seel, J. Raisch & T. Schauer, “Imu-based joint angle measurement for gait analysis”, Sensors, vol. 14, no. 4, pp. 6891–6909, Apr. 2014. https://doi.org/10.3390/s140406891; H. Vathsangam, A. Emken, D. Spruijt & G. Sukhatme, “Toward freeliving walking speed estimation using gaussian process-based regression with on-body accelerometers and gyroscopes”, in 4th International ICST Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2010, Munich, GE, Marc. 2010. https://doi.org/10.4108/ICST.PERVASIVEHEALTH2010.8786; W. Jiang & Z. Yin, “Combining passive visual cameras and active IMU sensors for persistent pedestrian tracking”, J. Vis. Commun. Image R., vol. 48, no. 5, pp. 419–431, Oct. 2017. https://doi.org/10.1016/j.jvcir.2017.03.015; M. Djuric, N. Jovicic, D. Popovic & A. Djordjevic, “Nonlinear optimization for drift removal in estimation of gait kinematics based on accelerometers”, J. Biomech., vol. 45, no. 16, pp. 2849–2854, Sept. 2012. Available: https://www.researchgate.net/publication/230869449_Nonlinear_optimization_for_drift_removal_in_estimation_of_gait_kinematics_based_on_accelerometers; D. Roetenberg, H. Luinge & P. Slycke, “Xsens mvn: full 6dof human motion tracking using miniature inertial sensors,” Tech. Rep., Xsens Motion Technologies, Enschede, Ni, Jan. 2009. Available: https://www.researchgate.net/publication/239920367_Xsens_MVN_Full_6DOF_human_motion_tracking_using_miniature_inertial_sensors; A. Guzik, M. Druzbicki, A. Wolan, G. Przysada & A. Kwolek, “The Wisconsin gait scale – The Minimal clinicaly important difference”, Gait Posture, vol. 68, pp. 453–457, Feb. 2019. https://doi.org/10.1016/j.gaitpost.2018.12.036; L. Benson, X. Clermont, E. Bosnjak & R. Ferber, “The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review”, Gait Posture, vol. 63, pp. 124–138, Jun. 2018. https://doi.org/10.1016/j.gaitpost.2018.04.047; C. Díaz, A. Torres, J. Ramírez, L. García & N. Álvarez, “Descripción de un dispositivo destinado al análisis de la marcha en dos dimensiones, CineMED”, Rev. EIA, vol. 5, pp. 85–92, Jun. 2006. Disponible en https://revistas.eia.edu.co/index.php/reveia/article/view/149/148; E. Camargo, Y. Garzón & V. Camacho, “Sistema portátil de captura de movimiento para el análisis cinemático de la marcha humana”, Rev. Tecnura, vol. 16, no. 34, pp. 67–83, Oct. 2012. https://doi.org/10.14483/udistrital.jour.tecnura.2012.4.a05; T. Weise, Global optimization algorithms: theory and application. Hefei, CHN: Self-Published, 2011.; G. Cooper, I. Sheret, L. McMillian, K. Siliverdis, N. Sha, D. Hodgins & D. Howard, “Inertial sensor-based knee flexion/extension angle estimation”, J. Biomech., vol. 42, no. 16, pp. 2678–2685, Dec. 2009. https://doi.org/10.1016/j.jbiomech.2009.08.004; V. Bonnet & G. Venture, “Fast determination of the planar body segment inertial parameters using affordable sensors”, IEEE T. Neur. Sys. Reh., vol. 23, no. 4, pp. 628–635, Jul. 2015. https://doi.org/10.1109/TNSRE.2015.2405087; J. Figueiredo, C. Santos & J. Moreno, “Automatic recognition of gait patterns in human motor disorders using machine learning: A review”, Med. Eng. Physics, vol. 53, pp. 1–12, Mar. 2018. https://doi.org/10.1016/j.medengphy.2017.12.006; F. Schültje, P. Beckerle, M. Grimmer, J. Wojtusch & S. Rinderknecht, “Comparison of trajectory generation methods for a human-robot interface based on motion tracking in the int2bot”, in Proc. 23rd IEEE Ro-man 2014, 23ISRHIC, Edinburgh, UK, 25-29 Aug. 2014. https://doi.org/10.1109/ROMAN.2014.6926336; M. El-Gohary & J. McNames, “Human joint angle estimation with inertial sensors and validation with a robot arm”, IEEE Trans. Biomed. Eng., vol. 62, no. 7, pp. 1759–1767, Jul. 2015. https://doi.org/10.1109/TBME.2015.2403368; C. Lightcap & S. Banks, “An extended Kalman filter for real-time estimation and control of a rigid-link flexible-joint manipulator”, IEEE T. Contr. Syst. T., vol. 18, no. 1, pp. 91–103, Jun. 2010. https://doi.org/10.1109/TCST.2009.2014959; J. Grosso & D. Tibaduiza, “Diseño y validación de un exoesqueleto maestro-esclavo para rehabilitación de piernas”, Tesis de grado, dpto IMEC, UNAB, B/manga, CO, 2008.; V. Ortiz, M. Nieto & E. Quintero, “Metodología para la estimación de parámetros en tiempo real mediante filtros de Kalman y mínimos cuadrados”, Iteckne, vol. 10, no. 1, pp. 37–44, Jul. 2013. https://doi.org/10.15332/iteckne.v10i1.178; V. Bravo, M. Arias & J. Cárdenas, “Análisis y aplicación del filtro de Kalman a una señal con ruido aleatorio”, Scientia Et Technica, vol. 18, no. 1, pp. 267–274, Abr. 2013.; J. Chen & W. Liao, “A leg exoskeleton utilizing a magnetorheological actuator”, in Proc. IEEE RoBio 2006, IEEE, Kunming, CN, 17-20 Dec. 2006. https://doi.org/10.1109/ROBIO.2006.340320; C. Prakash, R. Kumar, N. Mittal & G. Raj, “Vision based identification of joint coordinates for marker-less gait analysis”, Procedia Comput. Sci., vol. 132, pp. 68–75, Jan. 2018. https://doi.org/10.1016/j.procs.2018.05.060; M. Lafortune, P. Cavanagh, H. Sommer & A. Kalenak, “Three-dimensional kinematics of the human knee during walking”, J. Biomech., vol. 25, no. 4, pp. 347–357, Apr. 1992. https://doi.org/10.1016/0021-9290(92)90254-X; A. Cappozzo, F. Catani, U. Croce & A. Leardini, “Position and orientation in space of bones during movement: anatomical frame definition and determination”, Clin. Biomech., vol. 10, no. 4, pp. 171–178, Jun. 1995. https://doi.org/10.1016/0268-0033(95)91394-T; R. Davis, S. Ounpuu, D. Tyburski & J. Gage, “A gait analysis data collection and reduction technique”, Hum. Movement Sci., vol. 10, no. 5, pp. 575–587, Oct. 1991. https://doi.org/10.1016/0167-9457(91)90046-Z; E. Portilla, O. Avilés, P. Niño, R. Pina, M. Molina & E. Moya, “Análisis cinemático y diseño de un mecanismo de cuatro barras para falange proximal de dedo antropomórfico”, Cienc. Ing. Neogranad., vol. 20, no. 1, pp. 45–49, Jun. 2010. https://doi.org/10.18359/rcin.283; K. Quijano & D. Valencia, “Estimación de la cinemática de las articulaciones de miembro inferior a partir de un arreglo reducido de sensores”, Tesis de grado, dpto IAIA, Unicauca, Popayán, CO, 2018.; J. Osio, J. Salvatore, E. Kunysz, D. Montezanti, D, Alonso, V. Guarepi & D. Morales, “Análisis de eficiencia en arquitecturas multiprocesador para aplicaciones de transmisión y procesamiento de datos”, en WICC 2017, ITBA, Bs. As., AR, Abr. 2017, pp. 163–167.; S. Garrido, R. Muñoz, F. Madrid & M. Marín, “Automatic generation and detection of highly reliable fiducial markers under occlusion”, Pattern Recognit., vol. 47, no. 6, pp. 2280–2292, Jun. 2014. https://doi.org/10.1016/j.patcog.2014.01.005; A. Salazar, W. Castrillón & F. Prieto, “Herramienta de asistencia en el diagnóstico de la movilidad articular en 3D”, Rev Avances Sist. Inf., vol. 5, no. 1, pp. 55–64, May. 2008.; 266; 252; 16; https://revistascientificas.cuc.edu.co/ingecuc/article/download/2451/2700; https://revistascientificas.cuc.edu.co/ingecuc/article/download/2451/3479; https://revistascientificas.cuc.edu.co/ingecuc/article/download/2451/3525; Núm. 1 , Año 2020 : (Enero-Junio); https://hdl.handle.net/11323/12235; https://doi.org/10.17981/ingecuc.16.1.2020.19
-
13Academic Journal
المؤلفون: Vivas Albán, Oscar Andrés, Valencia Chacón, Deisy Carolina, Quijano Guzmán, Katherin Julieth, Bonett, Vincent David
المصدر: INGE CUC; Vol. 16 No. 1 (2020): (January - June); 252-266 ; INGE CUC; Vol. 16 Núm. 1 (2020): (Enero-Junio); 252-266 ; 2382-4700 ; 0122-6517
مصطلحات موضوعية: extended Kalman filter, human gait, inertial measurement units, parametric estimation, kinematic parameters, filtro de Kalman extendido, marcha humana, sensores inerciales, parámetros cinemáticos, identificación paramétrica
وصف الملف: application/pdf; text/html; application/xml
-
14Conference
المؤلفون: Aguilar Larrarte, Eliana Margarita, Vivas Albán, Oscar Andrés, Sabater Navarro, José María
Relation: Actas de las XXXVIII Jornadas de Automática; http://hdl.handle.net/10651/46489
الاتاحة: http://hdl.handle.net/10651/46489
-
15Conference
المؤلفون: Manrique Córdoba, Juliana, Romero Ante, Juan David, Sabater Navarro, José María, Vivas Albán, Oscar Andrés, Vicente Samper, José María
المساهمون: Universidad del Cauca. Colombia, Universidad Miguel Hernández
مصطلحات موضوعية: Modelo matemático, Glucosa-insulina, T1D (Tipo 1 Diabetes), Tiempo real, Mathematical model, Glucose-insulin, Real time, 3303 Ingeniería y Tecnología Químicas, 1102.10 Teoría de Modelos, 12 Matemáticas, 2411.04 Fisiología Endocrina
وصف الملف: 8 p.; application/pdf
Relation: Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018; http://hdl.handle.net/10662/8133; Manrique Córdoba, J., Romero Ante, J.D., Sabater Navarro, J.M., Vivas Albán, O.A. y Vicente Samper, J.M. 2018. Simulador de paciente T1D en tiempo real. En: I. Tejado Balsera, E. Pérez Hernández, A.J. Calderón Godoy, I. González Pérez, P. Merchán García, J. Lozano Rogado, S. Salamanca Miño y B.M. Vinagre Jara (eds.) Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018. Badajoz: Universidad de Extremadura, pp. 64-71. ISBN 978-84-09-044460-3
الاتاحة: http://hdl.handle.net/10662/8133
-
16Conference
المؤلفون: Solarte Correa, Pedro Luis, Sabater-Navarro, José María, Aguilar Larrarte, Eliana Margarita, Vivas Albán, Óscar Andrés, Vicente-Samper, José María
مصطلحات موضوعية: Realidad aumentada, Neurocirugía, Navegación quirúrgica, Augmented reality, Neurosurgery, Surgical navigation
Relation: http://hdl.handle.net/10662/8109; https://doi.org/10.17979/spudc.9788497497565.0051; Solarte Correa, P. L., Sabater Navarro, J. M., Aguilar Larrarte, E.M., Vivas Albán, O. A., Vicente Samper, J. M. Uso de realidad aumentada como apoyo a un sistema de navegación en neurocirugía. En Actas de las XXXIX Jornadas de Automática, Badajoz, 5-7 de Septiembre de 2018 (pp.51-56). DOI capítulo: https://doi.org/10.17979/spudc.9788497497565.0051 DOI libro: https://doi.org/10.17979/spudc.9788497497565; http://hdl.handle.net/2183/24861
-
17Electronic Resource
المصدر: TecnoLógicas, ISSN 0123-7799, Nº. 56, 2023
-
18Academic Journal
المؤلفون: Aguilar Larrarte, Eliana Margarita, Vivas Alban, Oscar Andrés, Sabater Navarro, José María
المصدر: Entre ciencia e ingeniería; Vol 12 No 24 (2018); 15-24 ; Entre Ciencia e Ingeniería; Vol. 12 Núm. 24 (2018); 15-24 ; Entre ciencia e ingeniería; v. 12 n. 24 (2018); 15-24 ; 2539-4169 ; 1909-8367
وصف الملف: application/pdf; application/xml
Relation: https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/83/83; https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/83/1164; https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/83
-
19Conference
المؤلفون: Aguilar Larrarte, Eliana Margarita, Vivas Albán, Oscar Andrés, Sabater Navarro, José María
مصطلحات موضوعية: Realidad aumentada, Cirugía laparoscópica, Aplicaciones móviles, Deformación de objetos
Relation: http://hdl.handle.net/10651/46489; https://doi.org/10.17979/spudc.9788497497749.0238; Aguilar Larrarte, E. M., Vivas Albán, O. A., Sabater Navarro, J. M. Marcadores cuadrados y deformación de objetos en navegación quirúrgica con realidad aumentada. En Actas de las XXXVIII Jornadas de Automática, Gijón, 6-8 de Septiembre de 2017 (pp.238-243). DOI capítulo: https://doi.org/10.17979/spudc.9788497497749.0238 DOI libro: https://doi.org/10.17979/spudc.9788497497749; http://hdl.handle.net/2183/25979
-
20Academic Journal
المؤلفون: Aguilar Larrarte, Eliana Margarita, Vivas Albán, Oscar Andrés, Sabater Navarro, José María
المصدر: Pistas Educativas; Vol. 39, Núm. 128 (2018): Número Especial (SENIE 2017) ; 2448-847X ; 1405-1249
وصف الملف: application/pdf
Relation: http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/1166/934; http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/downloadSuppFile/1166/194; http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/downloadSuppFile/1166/195; Autorino, R., Cadeddu, J. A., Desai, M. M., Gettman, M., Gill,I. S., Kavoussi, L. R., Lima, E., Montorsi, F., Richstone, L., Stolzenburg, J. U., Laparoendoscopic single-site and natural orifice transluminal endoscopic surgery in urology: a critical analysis of the literature. European Urology 59, 1, pp. 26-45, 2011.; Bae, J. H., Development of smart game based on multi-platform game engine. International Journal of Multimedia and Ubiquitous Engineering 11, 3, pp. 345-350, 2016.; Bruellmann, D. D., H. Tjaden, U. Schwanecke, and P. Barth, An optimized video system for augmented reality in endodontics: a feasibility study, Clinical oral investigations 17, no. 2, pp. 441-448, 2013.; Collins, T., Bartoli, A., Bourdel, N., & Canis, M., Robust, real-time, dense and deformable 3d organ tracking in laparoscopic videos. In International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer International Publishing, pp. 404-412, 2016.; Cukovic, S., Gattullo, M., Pankratz, F., Devedzic, G., Carrab-ba, E., Baizid, K. Marker based vs. natural feature tracking augmented reality visualization of the 3D foot phantom. Electrical and Bio-medical Engineering, Clean Energy and Green Computing 1, 2016.; Cristie, V., Berger, M., Bus, P., Kumar, A., Klein, B., City-heat: visualizing cellular automata-based traffic heat in unity3d, Visualization in High Performance Computing, ACM, 6, SIG-GRAPH, Asia 2015.; De Lacy, A. M., Rattner, D. W., Adelsdorfer, C., Tasende, M. M., Fernández, M., Delgado, S., Sylla, P., Martínez-Palli, G., Transanal natural orifice transluminal endoscopic surgery (notes) rectal resection:“down-to-up” total mesorectal excision (tme)—short-term outcomes in the first 20 cases. Surgical Endoscopy 27, 9, pp. 3165–3172, 2013.; De Paolis, L. T., Ricciardi, F., Dragoni, A. F., Aloisio, G. An augmented reality application for the radio frequency ablation of the liver tumors. In International Conference on Computational Science and Its Applications, Springer, Berlin, Heidelberg, pp. 572-581, 2011.; Duchene, D. A., Moinzadeh, A., Gill, I. S., Clayman, R. V., and Winfield, H. N., Survey of residency training in laparoscopic and robotic surgery. The Journal of Urology 176, pp. 2158–2167, 2016.; Llena, C., S. Folguera, L. Forner, and F. J. Rodríguez Lozano, Implementation of augmented reality in operative dentistry learning. European Journal of Dental Education, 2017.; Furst, J., Fierro, G., Bonnet, P., Culler, D. E., Busico 3d: building simulation and control in unity 3d. 12th ACM Conference on Embedded Network Sensor Systems, ACM, pp. 326–327, 2014.; Gutiérrez Puerto, E.M., Sistema de Realidad Aumentada para la interacción con el Instrumental en el procedimiento de Acceso Venoso Central, Tesis, Universidad Militar Nueva Granada, 2015.; Jamali, S. S., Shiratuddin, M. F., Wong, K. W., Oskam, C. L., Utilising mobile-augmented reality for learning human anatomy. Social and Behavioral Sciences 197, pp. 659–668, 2015.; Kipper, G., Rampolla, J., Augmented Reality: an emerging tech-nologies guide to AR. Elsevier, 2012.; Mahmoud, N., Hostettler, A., Collins, T., Soler, L., Doignon, C., & Montiel, J. M. M. SLAM based Quasi Dense Reconstruction For Minimally Invasive Surgery Scenes, 2017.; Pauly, O., Diotte, B., Fallavollita, P., Weidert, S., Euler, E., & Navab, N. Machine learning-based augmented reality for improved surgical scene understanding. Computerized Medical Imaging and Graphics, pp. 55-60, 2015.; Puerto-Souza, G. A., & Mariottini, G. L. An augmented-reality system for laparoscopic surgery robust to complete occlusions and fast camera motions, In International Conference on Robotics and Automotion, 2013.; Marescaux, J., Diana, M., Next step in minimally invasive surgery: hybrid image-guided surgery. Journal of pediatric surgery 50, pp. 30–36, 2015.; Moreno, M. R., Moraes, T. F., Amorim, P. H., da Silva, J. V. L., Rodriguez, C. A. Virtual open source environment for training and simulation of laparoscopic surgery. XII Work-shop de Informática Médica (WIM2012) XXXII Congresso da Sociedade Brasileira de Computacao, pp. 1–4, 2012.; Narahara, T., Abbruzzese, K. M., Foulds, R. A. Haptic collaboration: biomedical engineering meets digital design, SIGGRAPH 2015, 2015.; http://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/1166