-
1Academic Journal
المؤلفون: Haochen HUANG, Daisuke KONO, Masahiro TOYOURA
المصدر: Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol 18, Iss 6, Pp JAMDSM0080-JAMDSM0080 (2024)
مصطلحات موضوعية: vision-based measurement, intensity peak detection, dynamic motion error, high speed camera, motion trajectory measurement, Engineering machinery, tools, and implements, TA213-215, Mechanical engineering and machinery, TJ1-1570
وصف الملف: electronic resource
-
2Academic Journal
المصدر: Ingeniería, Vol 29, Iss 1, Pp e20057-e20057 (2024)
مصطلحات موضوعية: acceleration, computer vision, deep learning, machine learning, motion blur, vision-based measurement, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Andong Zhu, Xinlong Gong, Jie Zhou, Xiaolong Zhang, Dashan Zhang
المصدر: Sensors, Vol 24, Iss 13, p 4413 (2024)
مصطلحات موضوعية: vision-based measurement, experimental modal analysis, dynamic deviation extraction, modal shape visualization, high-speed camera system, Chemical technology, TP1-1185
وصف الملف: electronic resource
-
4Academic Journal
المصدر: Sensors, Vol 24, Iss 15, p 4936 (2024)
مصطلحات موضوعية: vision-based measurement systems, clustering techniques, image processing, measurement uncertainty assessment, Chemical technology, TP1-1185
وصف الملف: electronic resource
-
5Academic Journal
المصدر: Ingeniería; Vol. 29 No. 1 (2024): January-April; e20057 ; Ingeniería; Vol. 29 Núm. 1 (2024): Enero-Abril; e20057 ; 2344-8393 ; 0121-750X
مصطلحات موضوعية: acceleration, computer vision, deep learning, machine learning, motion blur, vision-based measurement, aceleración, visión artificial, aprendizaje profundo, aprendizaje automático, desenfoque de movimiento, medición basada en la visión
وصف الملف: application/pdf; text/xml
Relation: https://revistas.udistrital.edu.co/index.php/reving/article/view/20057/19885; https://revistas.udistrital.edu.co/index.php/reving/article/view/20057/20097; S. Shirmohammadi and A. Ferrero, “Camera as the instrument: the rising trend of vision based measurement,” IEEE Instrumenta-tion Measurement Magazine, vol. 17, no. 3, pp. 41–47, 2014. https://doi.org/10.1109/MIM.2014.6825388; S. S. Beauchemin, M. A. Bauer, T. Kowsari, and J. Cho, “Portable and scalable vision-based vehicular instrumentation for the analysis of driver intentionality,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 2, pp. 391–401, 2012. https://doi.org/10.1109/TIM.2011.2164854; P. Dutkiewicz, M. Kielczewski, K. Kozłowski, and D. Pazderski, “Vision localization system for mobile robot with velocities and acceleration estimator,” Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 58, no. 1, pp. 29–41, 2010. https://doi.org/10.2478/v10175-010-0003-9; J. Leifer, B. Weems, S. C. Kienle, and A. M. Sims, “Three-dimensional acceleration measurement using videogrammetry tracking data,” Experimental Mechanics, vol. 51, no. 2, pp. 199–217, 2011. https://doi.org/10.1007/s11340-010-9352-4; F. Karimirad, S. Chauhan, and B. Shirinzadeh, “Vision-based force measurement using neural networks for biological cell mi-croinjection,” Journal of Biomechanics, vol. 47, no. 5, pp. 1157–1163, 2014. https://doi.org/10.1016/j.jbiomech.2013.12.007; Y. Fukuda, M. Q. Feng, and M. Shinozuka, “Cost-effective vision-based system for monitoring dynamic response of civil engineer-ing structures,” Structural Control and Health Monitoring, vol. 17, no. 8, pp. 918–936, 2010. https://doi.org/10.1002/stc.360; S. Benameur, M. Mignotte, and F. Lavoie, “An homomorphic filtering and expectation maximization approach for the point spread function estimation in ultrasound imaging,” in Image Processing: Algorithms and Systems X; and Parallel Processing for Imaging Applications II, International Society for Optics and Photonics, vol. 8295, 2012, 82950T. https://doi.org/10.1117/12.903785; O. Mattausch and O. Goksel, “Image-based psf estimation for ultrasound training simulation,” in International Workshop on Simulation and Synthesis in Medical Imaging, Springer, 2016, pp. 23–33. https://doi.org/10.1007/978-3-319-46630-9_3; A. P. Janwale and S. S. Lomte, “Enhancement of cotton leaves images using various filtering techniques,” in Data Management, Analytics and Innovation (ICDMAI), 2017 International Conference on, IEEE, 2017, pp. 303–305. https://doi.org/10.1109/ICDMAI.2017.8073530; J. Kim, K. Kim, and H. Sohn, “Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements,” Mechanical Systems and Signal Processing, vol. 42, no. 1-2, pp. 194–205, 2014. https://doi.org/10.1016/j.ymssp.2013.09.014; F. Zheng, L. Shao, V. Racic, and J. Brownjohn, “Measuring human-induced vibrations of civil engineering structures via vision-based motion tracking,” Measurement, vol. 83, pp. 44–56, 2016. https://doi.org/10.1016/j.measurement.2016.01.015; D. Ribeiro, R. Calçada, J. Ferreira, and T. Martins, “Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system,” Engineering Structures, vol. 75, pp. 164–180, 2014. https://doi.org/10.1016/j.engstruct.2014.04.051; D. Béréziat and I. Herlin, “Motion and acceleration from image assimilation with evolution models,” Digital Signal Processing, vol. 83, pp. 45–58, 2018. https://doi.org/10.1016/j.dsp.2018.08.008; A. Y. Sun, D. Wang, and X. Xu, “Monthly streamflow forecasting using gaussian process regression,” Journal of Hydrology, vol. 511, pp. 72–81, 2014. https://doi.org/10.1016/j.jhydrol.2014.01.023; S. Chatterjee and A. S. Hadi, Sensitivity analysis in linear regression. John Wiley Sons, 2009, vol. 327.; A. Girard, C. Rasmussen, J. Q. Candela, and R. Murray-Smith, “Gaussian process priors with uncertain inputs application to multiple-step ahead time series forecasting,” Advances in neural information processing systems, vol. 15, pp. 545–552, 2002.; C. E. Rasmussen, “Gaussian processes in machine learning,” Summer School on Machine Learning, pp. 63–71, 2003. https://doi.org/10.1007/978-3-540-28650-9_4; D. Anguita, A. Ghio, N. Greco, L. Oneto, and S. Ridella, “Model selection for support vector machines: Advantages and disad-vantages of the machine learning theory,” in The 2010 international joint conference on neural networks (IJCNN), IEEE, 2010, pp. 1–8. https://doi.org/10.1109/IJCNN.2010.5596450; T. Chan and J. Shen, Image processing and analysis. Society for Industrial and Applied Mathematics SIAM, 2005, vol. 94.; H. Lin and K. Li, “Motion blur removal and its application to vehicle speed detection,” Electrical Engineering, no. 2, pp. 3407–3410, 2004.; S. Som, “Analysis of the effect of linear smear on photographic images,” JOSA, vol. 61, no. 7, pp. 859–864, 1971. https://doi.org/10.1364/JOSA.61.000859; X. Y. Qi, L. Zhang, and C. L. Tan, “Motion deblurring for optical character recognition,” in Document Analysis and Recognition, 2005. Proceedings. Eighth International Conference on, IEEE, 2005, pp. 389–393.; Y. Yitzhaky and A. Stern, “Restoration of interlaced images degraded by variable velocity motion,” Optical Engineering, vol. 42, no. 12, pp. 3557–3565, 2003. https://doi.org/10.1117/1.1621406; Y. Yitzhaky, I. Mor, A. Lantzman, and N. Kopeika, “Direct method for restoration of motion-blurred images,” Journal of the Optical Society of America, vol. 15, no. 6, pp. 1512–1519, 1998. https://doi.org/10.1364/JOSAA.15.001512; M. Cannon, “Blind deconvolution of spatially invariant image blurs with phase,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 24, no. 1, pp. 58–63, 1976. https://doi.org/10.1109/TASSP.1976.1162770; M. Sakano, N. Suetake, and E. Uchino, “Robust identification of motion blur parameters by using angles of gradient vectors,” in Intelligent Signal Processing and Communications, 2006. ISPACS’06. International Symposium on, IEEE, 2006, pp. 522–525. https://doi.org/10.1109/ISPACS.2006.364711; M. E. Moghaddam and M. Jamzad, “Linear motion blur parameter estimation in noisy images using fuzzy sets and power spec-trum,” EURASIP Journal on Advances in Signal Processing, vol. 2007, no. 1, pp. 1–8, 2007. https://doi.org/10.1155/2007/68985; M. A. Lata, S. Ghosh, F. Bobi, and M. A. Yousuf, “Novel method to assess motion blur kernel parameters and comparative study of restoration techniques using different image layouts,” in 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), IEEE, 2016, pp. 367–372. https://doi.org/10.1109/ICIEV.2016.7760027; H.-Y. Lin, “Vehicle speed detection and identification from a single motion blurred image,” in Application of Computer Vision, 2005. WACV/MOTIONS’05 Volume 1. Seventh IEEE Workshops on, IEEE, vol. 1, 2005, pp. 461–467.; M. Celestino and O. Horikawa, “Velocity measurement based on image blur,” Computer graphics and image processing, vol. 3, pp. 633–642, 2008.; H. Pazhoumand-Dar, A. M. T. Abolhassani, and E. Saeedi, “Object speed estimation by using fuzzy set,” World Academy of Sci-ence, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineer-ing, vol. 4, no. 4, pp. 688–691, 2010.; S. Rezvankhah, A. A. Bagherzadeh, H. Moradi, and B. N. A. Member, “A Real-time Velocity Estimation using Motion Blur in Air Hockey,” in 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012, pp. 1767-1772, https://doi.org/10.1109/ROBIO.2012.6491223; J. Mohammadi and A. Taherkhani, “Object Speed Estimation in Frequency Domain of Single Taken Image,” Journal of Basic and Applied Scientific Research, vol. 3, pp. 120-124, 2013.; S. McCloskey, Y. Ding, and J. Yu, “Design and estimation of coded exposure point spread functions,” IEEE transactions on pat-tern analysis and machine intelligence, vol. 34, no. 10, p. 2071, 2012. https://doi.org/10.1109/TPAMI.2012.108; A. Agrawal, Y. Xu, and R. Raskar, “Invertible motion blur in video,” in ACM Transactions on Graphics (TOG), vol. 28, 2009, p. 95. https://doi.org/10.1145/1531326.1531401; M. Lee, K.-S. Kim, and S. Kim, “Measuring vehicle velocity in real time using modulated motion blur of camera image data,” IEEE Transactions on Vehicular Technology, vol. 66, no. 5, pp. 3659–3673, 2016. https://doi.org/10.1109/TVT.2016.2600281; M. Lee, “A study on measuring vehicle velocity in real time using modulated motion blur of camera image data,” Ph.D. disser-tation, Korea Advanced Institute of Science and Technology, 2017. https://doi.org/10.1109/TVT.2016.2600281; M. Lee, K.-S. Kim, J. Cho, and S. Kim, “Development of a vehicle body velocity sensor using modulated motion blur,” in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2017, pp. 406–411. https://doi.org/10.1109/AIM.2017.8014051; J. Jing, F. Xiao, L. Yang, S. Wang, and B. Yu, “Measurements of velocity field and diameter distribution of particles in multi-phase flow based on trajectory imaging,” Flow Measurement and Instrumentation, vol. 59, pp. 103–113, 2018. https://doi.org/10.1016/j.flowmeasinst.2017.12.005; K. Matsuo and T. Yakoh, “Position and velocity measurement method from a single image using modulated illumination,” in 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), IEEE, 2018, pp. 353–359. https://doi.org/10.1109/AMC.2019.8371117; J. A. Dwicahya, N. Ramadijanti, and A. Basuki, “Moving object velocity detection based on motion blur on photos using gray level,” in 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), IEEE, 2018, pp. 192–198. https://doi.org/10.1109/KCIC.2018.8628598; J. A. Cortes-Osorio, J. B. Gomez-Mendoza, and J. C. Riano-Rojas, “Velocity estimation from a single linear motion blurred image using discrete cosine transform,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 10, pp. 4038–4050, 2019. https://doi.org/10.1109/TIM.2018.2882261; J. A. Cortes-Osorio, “A contribution to the estimation of kinematic quantities from linear motion blurred images,” Ph.D. disser-tation, Universidad Nacional de Colombia Sede Manizales, 2020.; Q. Guo et al., “Learning to Adversarially Blur Visual Object Tracking,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021. https://doi.org/10.1109/ICCV48922.2021.01066; M. Li, H. Du, Q. Zhang, and J. Wang, “Improved particle image velocimetry through cell segmentation and competitive surviv-al,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 6, pp. 1221–1229, 2008. https://doi.org/10.1109/TIM.2007.915443; X. Liu and J. Katz, “Instantaneous pressure and material acceleration measurements using a four-exposure piv system,” Experi-ments in Fluids, vol. 41, no. 2, p. 227, 2006. https://doi.org/10.1007/s00348-006-0152-7; H. Zhou, M. Chen, L. Zhang, N. Ye, and C. Tao, “Measuring shape and motion of a high-speed object with designed features from motion blurred images,” Measurement, vol. 145, pp. 559–567, 2019. https://doi.org/10.1016/j.measurement.2019.05.023; L. Li, T. Martin, and X. Xu, “A novel vision-based real-time method for evaluating postural risk factors associated with musculo-skeletal disorders,” Appl. Ergon., vol. 87, p. 103 138, 2020. https://doi.org/10.1016/j.apergo.2020.103138; C. Yu, X. Bi, and Y. Fan, “Deep learning for fluid velocity field estimation: A review,” Ocean Engineering, vol. 271, p. 113 693, 2023. https://doi.org/10.1016/j.oceaneng.2023.113693; P. Chu, B. T. Wolfe, and Z. Wang, “Measurement of incandescent microparticle acceleration using stereoscopic imaging,” Review of Scientific Instruments, vol. 89, no. 10, 2018. https://doi.org/10.1063/1.5034311; G. Chen, L. Li, C. Zhao, R. Huang, and F. Guo, “Acceleration characteristics of a rockslide using the particle image velocimetry technique,” Journal of Sensors, vol. 2016, 2016. https://doi.org/10.1155/2016/2650871; D. C. Luvizon, B. T. Nassu, and R. Minetto, “A video-based system for vehicle speed measurement in urban roadways,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1393–1404, 2017. https://doi.org/10.1109/TITS.2016.2600281; J. X. Wang, “Research of vehicle speed detection algorithm in video surveillance,” in Audio, Language and Image Processing (ICALIP), 2016 International Conference on, IEEE, 2016, pp. 349–352. https://doi.org/10.1109/ICALIP.2016.7846482; K. V. K. Kumar, P. Chandrakant, S. Kumar, and K. J. Kushal, “Vehicle speed detection using corner detection,” in 2014 Fifth International Conference on Signal and Image Processing, 2014, pp. 253–258. https://doi.org/10.1109/ICSIP.2014.46; J. Dong, Y. Song, H. Wang, J. Zeng, and Z. Wu, “Predicting flow velocity affected by seaweed resistance using svm regression,” in Computer Application and System Modeling (ICCASM), 2010 International Conference on, vol. 2, 2010, pp. V2–273. https://doi.org/10.1109/ICCASM.2010.5620588; O. Genç and A. Dag˘, “A machine learning-based approach to predict the velocity profiles in small streams,” Water Resources Management, vol. 30, no. 1, pp. 43–61, 2016. https://doi.org/10.1007/s11269-015-1123-7; M. Morimoto, K. Fukami, and K. Fukagata, “Experimental velocity data estimation for imperfect particle images using machine learning,” arXiv preprint arXiv:2005.00756, 2020. https://doi.org/10.1063/5.0060760; P. J. Chun, T. Yamane, S. Izumi, and N. Kuramoto, “Development of a machine learning-based damage identification method using multipoint simultaneous acceleration measurement results,” Sensors, vol. 20, no. 10, p. 2780, 2020. https://doi.org/10.3390/s20102780; W. Kim, M. Tanaka, M. Okutomi, and Y. Sasaki, “Learning-based human segmentation and velocity estimation using automatic labeled lidar sequence for training,” IEEE Access, vol. 8, pp. 88 443–88 452, 2020. https://doi.org/10.1109/ACCESS.2020.2993299; B. Major, D. Fontijne, A. Ansari, et al., “Vehicle detection with automotive radar using deep learning on range-azimuth-doppler tensors,” in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019, pp. 924–932. https://doi.org/10.1109/ICCVW.2019.00121; C. Guo, Y. Fan, C. Yu, Y. Han, and X. Bi, “Time-resolved particle image velocimetry algorithm based on deep learning,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–13, 2022. https://doi.org/10.1109/TIM.2022.3141750; S. Cai, J. Liang, Q. Gao, C. Xu, and R. Wei, “Particle image velocimetry based on a deep learning motion estimator,” IEEE Trans-actions on Instrumentation and Measurement, vol. 69, no. 6, pp. 3538–3554, 2020. https://doi.org/10.1109/TIM.2019.2932649; A. Oppenheim, R. Schafer, and T. Stockham, “Nonlinear filtering of multiplied and convolved signals,” IEEE Transactions on Audio and Electroacoustics, vol. 16, no. 3, pp. 437–466, 1968. https://doi.org/10.1109/TAU.1968.1161990; I. Pitas and A. N. Venetsanopoulos, “Homomorphic Filters,” in Nonlinear Digital Filters: Principles and Applications, Springer US, 1990, pp. 217–243. https://doi.org/10.1007/978-1-4757-6017-0_7; T. M. Cannon, “Digital image deblurring by nonlinear homomorphic filtering,” Utah University, Salt Lake City School of Compu-ting, Tech. Rep., 1974. https://doi.org/10.21236/ADA002735; Y. Yitzhaky, R. Milberg, S. Yohaev, and N. S. Kopeika, “Comparison of direct blind deconvolution methods for motion-blurred images,” Applied Optics, vol. 38, no. 20, pp. 4325–4332, 1999. https://doi.org/10.1364/AO.38.004325; J. A. Cortes-Osorio, D. A. Muñoz-Acosta, and C. D. López-Robayo, “Design and construction of an electromechanical slider for the kinematic study of linear motion blurred images,” INGE CUC, vol. 16, no. 1, pp. 80–90, 2020. https://doi.org/10.17981/ingecuc.16.1.2020.06; Basler, aca2000-165um-baslerace, https://www.baslerweb.com/en/products/cameras/area- scan- cameras/ace/aca2000- 165um/, (Accessed on 06/11/2017), Nov. 2017.; Ricoh lens fl-cc0814a-2m, https://www.baslerweb.com/en/products/vision-components/lenses/ricoh-lens-fl-cc0814a-2m-f1-4-f8mm- 2-3/, (Accessed on 06/11/2017), Nov. 2017.; BT.601: Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios, http://www.itu.int/rec/rrec-bt.601 , 2017.; E. Izquierdo-Verdiguier, L. Gomez-Chova, L. Bruzzone, and G. Camps-Valls, “Semisupervised kernel feature extraction for re-mote sensing image analysis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 9, pp. 5567–5578, 2014. https://doi.org/10.1109/TGRS.2013.2290372; T. Bouwmans, S. Javed, H. Zhang, Z. Lin, and R. Otazo, “On the applications of robust PCA in image and video processing,” Proceedings of the IEEE, vol. 106, no. 8, pp. 1427–1457, 2018. https://doi.org/10.1109/JPROC.2018.2853589; P. S. GmbH, Cobra4 sensor unit 3D acceleration, https://repository.curriculab.net/files/bedanl.pdf/12650.00/1265000e.pdf, 2018.; L. Kirkup and R. B. Frenkel, An introduction to uncertainty in measurement: using the GUM (guide to the expression of uncer-tainty in measurement). Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511755538; R. H. Dieck, Measurement uncertainty: methods and applications. ISA, 2007.; A. J. Sederman, M. D. Mantle, C. Buckley, and L. F. Gladden, “MRI technique for measurement of velocity vectors, accelera-tion, and autocorrelation functions in turbulent flow,” Journal of Magnetic Resonance, vol. 166, no. 2, pp. 182–189, 2004. https://doi.org/10.1016/j.jmr.2003.10.016; K. Komiya, T. Kurihara, and S. Ando, “3D particle image velocimetry using correlation image sensor,” in Proc. SICE Annual Conf. 2011, Sep. 2011, pp. 2774–2778.; https://revistas.udistrital.edu.co/index.php/reving/article/view/20057
-
6Academic Journal
المؤلفون: Kwon, Jimmy, Kwon, Sungmin
المصدر: Journal of Applied Packaging Research
مصطلحات موضوعية: Box packaging, waste reduction, cuboid estimation, Otsu’s thresholding method, irregular shape products, vision-based measurement, LAFF algorithm, Environmental Engineering, Systems Engineering
وصف الملف: application/pdf
Relation: https://repository.rit.edu/japr/vol16/iss1/1; https://repository.rit.edu/context/japr/article/1225/viewcontent/Kwon_1225.pdf
-
7Academic Journal
المؤلفون: Eren Mehmet, Hoşbaş Ramazan Gürsel
المصدر: Measurement Science Review, Vol 23, Iss 1, Pp 32-39 (2023)
مصطلحات موضوعية: shm, vision-based measurement, vertical displacement, kinematic ppp, gnss, frequency, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/1335-8871
-
8Conference
المؤلفون: Rinaldi, C., Lepidi, M., Gattulli, V.
المساهمون: Rinaldi, C., Lepidi, M., Gattulli, V.
مصطلحات موضوعية: inclined suspended cable, modal analysi, point cloud model, vision-based measurement, cable tension estimation
Relation: info:eu-repo/semantics/altIdentifier/isbn/9781644902431; ispartofbook:Theoretical and Applied Mechanics – AIMETA 2022; XXV National Congress of the Italian Association of Theoretical and Applied Mechanics, AIMETA 2022; volume:26; firstpage:485; lastpage:491; numberofpages:7; https://hdl.handle.net/11573/1684286; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85152679811
-
9Academic Journal
المؤلفون: Binayak Bhandari, Prakash Manandhar
المصدر: Machines, Vol 11, Iss 12, p 1083 (2023)
مصطلحات موضوعية: vision-based measurement, automation, computer vision, 3D model regeneration, Computer-Aided Design, Internet of Things, Mechanical engineering and machinery, TJ1-1570
وصف الملف: electronic resource
-
10Academic Journal
المؤلفون: GUO Si-yu, WU Yan-dong
المصدر: Jisuanji kexue, Vol 49, Iss 4, Pp 188-194 (2022)
مصطلحات موضوعية: ellipse fitting, ellipse detection, least trimmed square, dual point removal, vision-based measurement, Computer software, QA76.75-76.765, Technology (General), T1-995
وصف الملف: electronic resource
-
11Academic Journal
المؤلفون: Ge, L, Koo, KY, Wang, M, Brownjohn, J, Dan, D
مصطلحات موضوعية: Bridge damage detection, Vision-based measurement, Vehicle-induced displacements, Influence line, Changeable load speed
Relation: ScopusID: 8934228700 (Koo, Ki Young); ScopusID: 57204495255 (Brownjohn, James); Vol. 288, article 116185; https://doi.org/10.1016/j.engstruct.2023.116185; http://hdl.handle.net/10871/133248; Engineering Structures
-
12Academic Journal
المؤلفون: Giulietti, Nicola, Chiariotti, Paolo, Revel, Gian Marco
المساهمون: Giulietti, Nicola, Chiariotti, Paolo, Revel, Gian Marco
مصطلحات موضوعية: geometric feature measurement, line width measurement, vision-based measurement
Relation: info:eu-repo/semantics/altIdentifier/pmid/37112364; info:eu-repo/semantics/altIdentifier/wos/WOS:000979294000001; volume:23; issue:8; firstpage:4023; lastpage:4047; numberofpages:25; journal:SENSORS; https://hdl.handle.net/11311/1238598; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85153967727
-
13Academic Journal
المؤلفون: Alessia Baleani, Nicola Paone, Jona Gladines, Steve Vanlanduit
المصدر: Sensors; Volume 23; Issue 3; Pages: 1584
مصطلحات موضوعية: surface roughness measurement, backlit vision-based measurement system, non-contact measurement system, uncertainty analysis
وصف الملف: application/pdf
Relation: Internet of Things; https://dx.doi.org/10.3390/s23031584
الاتاحة: https://doi.org/10.3390/s23031584
-
14Academic Journal
المؤلفون: Liang Chen, Yanfu Li, Ziji Ma, Hongli Liu, Weijie Mao
المصدر: IEEE Access, Vol 9, Pp 36207-36217 (2021)
مصطلحات موضوعية: Bi-linear laser assistance, chord-based method, vision-based measurement, position deviation, rail corrugation, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
وصف الملف: electronic resource
-
15Academic Journal
المؤلفون: Chanoknunt SANGSOBHON, Hidehiko SEKIYA, Masanobu NAGAI, Masayuki TAI, Mizuki HAYAMA, Shogo MORICHIKA
المصدر: Structural Safety and Reliability: Proceedings of the Japan Conference on Structural Safety and Reliability (JCOSSAR). 2023, :54
-
16Academic Journal
المؤلفون: Fedullo T., Cassanelli D., Gibertoni G., Tramarin F., Quaranta L., Riva I., Tanga L., Oddone F., Rovati L.
المساهمون: Fedullo, T., Cassanelli, D., Gibertoni, G., Tramarin, F., Quaranta, L., Riva, I., Tanga, L., Oddone, F., Rovati, L.
مصطلحات موضوعية: Adaptive optic, Artificial Intelligence, Biomedical optical imaging, Camera, CNN, Computer Vision, Instrument, Machine Learning, Optical imaging, Optical sensor, Van Herick, Vision–Based Measurement
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000844142300016; volume:71; firstpage:1; lastpage:1; journal:IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT; https://hdl.handle.net/11380/1287177; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85135766113
-
17Academic Journal
المؤلفون: Dashan Zhang, Andong Zhu, Wenhui Hou, Lu Liu, Yuwei Wang
المصدر: Sensors; Volume 22; Issue 23; Pages: 9287
مصطلحات موضوعية: operational modal analysis, vision-based measurement, hybrid motion magnification, modal shapes visualization, temporal and spatial denoising
وصف الملف: application/pdf
Relation: Sensing and Imaging; https://dx.doi.org/10.3390/s22239287
الاتاحة: https://doi.org/10.3390/s22239287
-
18Academic Journal
المؤلفون: Rakshith Badarinath, Vittaldas Prabhu
المصدر: Materials, Vol 15, Iss 618, p 618 (2022)
مصطلحات موضوعية: fused filament fabrication, additive manufacturing, real-time sensing, melt temperature estimation, polymer flowrate, vision-based measurement, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, QC120-168.85
Relation: https://www.mdpi.com/1996-1944/15/2/618; https://doaj.org/toc/1996-1944; https://doaj.org/article/665d1848523d4c119cbc4c5557bb4270
-
19Academic Journal
المؤلفون: Rujika Tuladhar, Punchet Thammarak, Said Elias
المصدر: Buildings, Vol 12, Iss 1778, p 1778 (2022)
مصطلحات موضوعية: vision-based measurement, sampling moiré method, CCTV camera, image processing, displacement and strain, Building construction, TH1-9745
Relation: https://www.mdpi.com/2075-5309/12/11/1778; https://doaj.org/toc/2075-5309; https://doaj.org/article/73cba73999414e7ba6ea0d0fedc8458e
-
20Conference
المؤلفون: Fedullo, T, Cassanelli, D, Gibertoni, G, Tramarin, F, Quaranta, L, de Angelis, G, Rovati, L
المساهمون: Fedullo, T, Cassanelli, D, Gibertoni, G, Tramarin, F, Quaranta, L, de Angelis, G, Rovati, L
مصطلحات موضوعية: Artificial Intelligence, Machine Learning, CNN, Vision Based Measurement, Van Herick, Computer Vision
وصف الملف: ELETTRONICO
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-1-7281-9539-1; info:eu-repo/semantics/altIdentifier/wos/WOS:000825383600152; ispartofbook:2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC); 2021 IEEE International Instrumentation and Measurement Technology Conference, I2MTC 2021; firstpage:1; lastpage:6; numberofpages:6; serie:CONFERENCE PROCEEDINGS - IEEE INSTRUMENTATION/MEASUREMENT TECHNOLOGY CONFERENCE; https://hdl.handle.net/11585/922148; https://ieeexplore.ieee.org/document/9459946