يعرض 1 - 20 نتائج من 70 نتيجة بحث عن '"Viens, Loïc"', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1
    Report
  2. 2
    Report
  3. 3
    Academic Journal

    المساهمون: Earthquake Research Institute Tokyo, The University of Tokyo (UTokyo), Sols, Roches et Ouvrages Géotechniques (GERS-SRO), Université Gustave Eiffel, Instituto de Geofisica Mexico, Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Japan Meteorological Agency (JMA)

    المصدر: ISSN: 0094-8276.

  4. 4
    Academic Journal

    المساهمون: Japan Society for the Promotion of Science London, National Science Foundation

    المصدر: Geophysical Journal International ; volume 230, issue 2, page 1080-1091 ; ISSN 0956-540X 1365-246X

  5. 5
    Academic Journal

    المؤلفون: Viens, Loïc1 (AUTHOR) lviens@lanl.gov, Delbridge, Brent G.1 (AUTHOR)

    المصدر: Journal of Geophysical Research. Solid Earth. Jul2024, Vol. 129 Issue 7, p1-22. 22p.

    مصطلحات موضوعية: *GROUND motion, *SEISMIC waves, *RELATIVE motion, *PHYSICS experiments, *GEOPHONE

  6. 6
    Electronic Resource
  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: Yin, Jiuxun; Zhu, Weiqiang; Li, Jiaxuan; Biondi, Ettore; Miao, Yaolin; Spica, Zack J.; Viens, Loïc; Shinohara, Masanao; Ide, Satoshi; Mochizuki, Kimihiro; Husker, Allen L.; Zhan, Zhongwen (2023). "Earthquake Magnitude With DAS: A Transferable Data- Based Scaling Relation." Geophysical Research Letters 50(10): n/a-n/a.; https://hdl.handle.net/2027.42/176853; Geophysical Research Letters; Spica, Z. J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M., & Yamada, T. ( 2020a ). Marine sediment characterized by ocean-bottom fiber-optic seismology. Geophysical Research Letters, 47 ( 16 ), e2020GL088360. https://doi.org/10.1029/2020GL088360; Lellouch, A., Lindsey, N. J., Ellsworth, W. L., & Biondi, B. L. ( 2020 ). Comparison between distributed acoustic sensing and geophones: Downhole microseismic monitoring of the forge geothermal experiment. Seismological Research Letters, 91 ( 6 ), 3256 – 3268. https://doi.org/10.1785/0220200149; Li, Z., Shen, Z., Yang, Y., Williams, E., Wang, X., & Zhan, Z. ( 2021 ). Rapid response to the 2019 Ridgecrest earthquake with distributed acoustic sensing. AGU Advances, 2 ( 2 ), e2021AV000395. https://doi.org/10.1029/2021AV000395; Li, Z., & Zhan, Z. ( 2018 ). Pushing the limit of earthquake detection with distributed acoustic sensing and template matching: A case study at the brady geothermal field. Geophysical Journal International, 215 ( 3 ), 1583 – 1593. https://doi.org/10.1093/gji/ggy359; Lindsey, N. J., & Martin, E. R. ( 2021 ). Fiber-optic seismology. Annual Review of Earth and Planetary Sciences, 49 ( 1 ), 309 – 336. https://doi.org/10.1146/annurev-earth-072420-065213; Lindsey, N. J., Martin, E. R., Dreger, D. S., Freifeld, B., Cole, S., James, S. R., et al. ( 2017 ). Fiber-optic network observations of earthquake wavefields. Geophysical Research Letters, 44 ( 23 ), 11792 – 11799. https://doi.org/10.1002/2017GL075722; Lindsey, N. J., Rademacher, H., & Ajo-Franklin, J. B. ( 2020 ). On the broadband instrument response of fiber-optic das arrays. Journal of Geophysical Research: Solid Earth, 125 ( 2 ), e2019JB018145. https://doi.org/10.1029/2019JB018145; Lior, I., Rivet, D., Ampuero, J.-P., Sladen, A., Barrientos, S., Sánchez-Olavarría, R., et al. ( 2023 ). Magnitude estimation and ground motion prediction to harness fiber optic distributed acoustic sensing for earthquake early warning. Scientific Reports, 13 ( 1 ), 424. https://doi.org/10.1038/s41598-023-27444-3; Lior, I., Sladen, A., Mercerat, D., Ampuero, J.-P., Rivet, D., & Sambolian, S. ( 2021 ). Strain to ground motion conversion of distributed acoustic sensing data for earthquake magnitude and stress drop determination. Solid Earth, 12 ( 6 ), 1421 – 1442. https://doi.org/10.5194/se-12-1421-2021; Muir, J. B., & Zhan, Z. ( 2022 ). Wavefield-based evaluation of DAS instrument response and array design. Geophysical Journal International, 229 ( 1 ), 21 – 34. https://doi.org/10.1093/gji/ggab439; Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., et al. ( 2020 ). Empirical investigations of the instrument response for distributed acoustic sensing (DAS) across 17 Octaves. Bulletin of the Seismological Society of America, 111 ( 1 ), 1 – 10. https://doi.org/10.1785/0120200185; Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. ( 2016 ). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3 ( 5 ), 637 – 646. https://doi.org/10.1109/jiot.2016.2579198; Shinohara, M., Yamada, T., Akuhara, T., Mochizuki, K., & Sakai, S. ( 2022 ). Performance of seismic observation by distributed acoustic sensing technology using a seafloor cable off Sanriku, Japan. Frontiers in Marine Science, 9, 466. https://doi.org/10.3389/fmars.2022.844506; Spica, Z. J., Perton, M., Martin, E. R., Beroza, G. C., & Biondi, B. ( 2020b ). Urban seismic site characterization by fiber-optic seismology. Journal of Geophysical Research: Solid Earth, 125 ( 3 ), e2019JB018656. https://doi.org/10.1029/2019JB018656; Trainor-Guitton, W., Guitton, A., Jreij, S., Powers, H., & Sullivan, B. ( 2019 ). 3D imaging of geothermal faults from a vertical das fiber at Brady Hot Spring, NV USA. Energies, 12 ( 7 ), 1401. https://doi.org/10.3390/en12071401; Uhrhammer, R., Hellweg, M., Hutton, K., Lombard, P., Walters, A., Hauksson, E., & Oppenheimer, D. ( 2011 ). California integrated seismic network (CISN) local magnitude determination in California and vicinity. Bulletin of the Seismological Society of America, 101 ( 6 ), 2685 – 2693. https://doi.org/10.1785/0120100106; Viens, L., Bonilla, L. F., Spica, Z. J., Nishida, K., Yamada, T., & Shinohara, M. ( 2022a ). Nonlinear earthquake response of marine sediments with distributed acoustic sensing. Geophysical Research Letters, 49 ( 21 ), e2022GL100122. https://doi.org/10.1029/2022GL100122; Viens, L., Perton, M., Spica, Z. J., Nishida, K., Shinohara, M., & Yamada, T. ( 2022b ). Understanding surface-wave modal content for high-resolution imaging of submarine sediments with distributed acoustic sensing.; Wang, H. F., Zeng, X., Miller, D. E., Fratta, D., Feigl, K. L., Thurber, C. H., & Mellors, R. J. ( 2018 ). Ground motion response to an ml 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays. Geophysical Journal International, 213 ( 3 ), 2020 – 2036. https://doi.org/10.1093/gji/ggy102; Wang, X., Williams, E. F., Karrenbach, M., Herráez, M. G., Martins, H. F., & Zhan, Z. ( 2020 ). Rose parade seismology: Signatures of floats and bands on optical fiber. Seismological Research Letters, 91 ( 4 ), 2395 – 2398. https://doi.org/10.1785/0220200091; Williams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z., González-Herráez, M., & Martins, H. F. ( 2019 ). Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nature Communications, 10 ( 1 ), 5778. https://doi.org/10.1038/s41467-019-13262-7; Yang, Y., Atterholt, J. W., Shen, Z., Muir, J. B., Williams, E. F., & Zhan, Z. ( 2022 ). Sub-kilometer correlation between near-surface structure and ground motion measured with distributed acoustic sensing. Geophysical Research Letters, 49 ( 1 ), e2021GL096503. https://doi.org/10.1029/2021GL096503; Yu, C., Zhan, Z., Lindsey, N. J., Ajo-Franklin, J. B., & Robertson, M. ( 2019 ). The potential of das in teleseismic studies: Insights from the goldstone experiment. Geophysical Research Letters, 46 ( 3 ), 1320 – 1328. https://doi.org/10.1029/2018GL081195; Zhan, Z., Cantono, M., Kamalov, V., Mecozzi, A., Müller, R., Yin, S., & Castellanos, J. C. ( 2021 ). Optical polarization–based seismic and water wave sensing on transoceanic cables. Science, 371 ( 6532 ), 931 – 936. https://doi.org/10.1126/science.abe6648; Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., & Fukushima, Y. ( 2006 ). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96 ( 3 ), 898 – 913. https://doi.org/10.1785/0120050122; Zhu, W., Biondi, E., Li, J., Yin, J., Ross, Z. E., & Zhan, Z. ( 2023 ). Seismic arrival-time picking on distributed acoustic sensing data using semi-supervised learning. arXiv preprint.; Aoi, S., Asano, Y., Kunugi, T., Kimura, T., Uehira, K., Takahashi, N., et al. ( 2020 ). MOWLAS: NIED observation network for earthquake, tsunami and volcano. Earth Planets and Space, 72 ( 1 ), 126. https://doi.org/10.1186/s40623-020-01250-x; Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. ( 1981 ). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86 ( B4 ), 2825 – 2852. https://doi.org/10.1029/JB086iB04p02825; Shelly, D. R., Beroza, G. C., & Ide, S. ( 2007 ). Non-volcanic tremor and low-frequency earthquake swarms. Nature, 446 ( 7133 ), 305 – 307. https://doi.org/10.1038/nature05666; Zhu, W., & Beroza, G. C. ( 2019 ). PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216 ( 1 ), 261 – 273.; Ajo-Franklin, J., Rodríguez Tribaldos, V., Nayak, A., Cheng, F., Mellors, R., Chi, B., et al. ( 2022 ). The imperial valley dark fiber project: Toward seismic studies using das and telecom infrastructure for geothermal applications. Seismological Research Letters, 93 ( 5 ), 2906 – 2919. https://doi.org/10.1785/0220220072; Ajo-Franklin, J. B., Dou, S., Lindsey, N. J., Monga, I., Tracy, C., Robertson, M., et al. ( 2019 ). Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Scientific Reports, 9 ( 1 ), 1328. https://doi.org/10.1038/s41598-018-36675-8; Allen, R. M., & Melgar, D. ( 2019 ). Earthquake early warning: Advances, scientific challenges, and societal needs. Annual Review of Earth and Planetary Sciences, 47 ( 1 ), 361 – 388. https://doi.org/10.1146/annurev-earth-053018-060457; Astorga, A., Guéguen, P., & Kashima, T. ( 2018 ). Nonlinear elasticity observed in buildings during a long sequence of earthquakes. Bulletin of the Seismological Society of America, 108 ( 3A ), 1185 – 1198. https://doi.org/10.1785/0120170289; Atkinson, G. M., & Boore, D. M. ( 2006 ). Earthquake ground-motion prediction equations for eastern North America. Bulletin of the Seismological Society of America, 96 ( 6 ), 2181 – 2205. https://doi.org/10.1785/0120050245; Atterholt, J., Zhan, Z., Shen, Z., & Li, Z. ( 2022 ). A unified wavefield-partitioning approach for distributed acoustic sensing. Geophysical Journal International, 228 ( 2 ), 1410 – 1418. https://doi.org/10.1093/gji/ggab407; Barbour, A. J., & Crowell, B. W. ( 2017 ). Dynamic strains for earthquake source characterization. Seismological Research Letters, 88 ( 2 ), 354 – 370. https://doi.org/10.1785/0220160155; Barbour, A. J., Langbein, J. O., & Farghal, N. S. ( 2021 ). Earthquake magnitudes from dynamic strain. Bulletin of the Seismological Society of America, 111 ( 3 ), 1325 – 1346. https://doi.org/10.1785/0120200360; Benioff, H. ( 1935 ). A linear strain seismograph. Bulletin of the Seismological Society of America, 25 ( 4 ), 283 – 309. https://doi.org/10.1785/bssa0250040283; Bonilla, L. F., Tsuda, K., Pulido, N., Régnier, J., & Laurendeau, A. ( 2011 ). Nonlinear site response evidence of K-NET and KiK-net records from the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets and Space, 63 ( 7 ), 785 – 789. https://doi.org/10.5047/eps.2011.06.012; Boore, D. M., & Atkinson, G. M. ( 2008 ). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5 periods between 0.01 s and 10.0 s. Earthquake Spectra, 24 ( 1 ), 99 – 138. https://doi.org/10.1193/1.2830434; Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. ( 2014 ). NGA-West2 equations for predicting PGA, PGV, and 5 earthquakes. Earthquake Spectra, 30 ( 3 ), 1057 – 1085. https://doi.org/10.1193/070113EQS184M; Bozorgnia, Y., Abrahamson, N. A., Atik, L. A., Ancheta, T. D., Atkinson, G. M., Baker, J. W., et al. ( 2014 ). NGA-West2 research project. Earthquake Spectra, 30 ( 3 ), 973 – 987. https://doi.org/10.1193/072113EQS209M; Campbell, K. W., & Bozorgnia, Y. ( 2014 ). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30 ( 3 ), 1087 – 1115. https://doi.org/10.1193/062913EQS175M; Clinton, J. F., Hauksson, E., & Solanki, K. ( 2006 ). An evaluation of the SCSN moment tensor solutions: Robustness of the M w magnitude scale, style of faulting, and automation of the method. Bulletin of the Seismological Society of America, 96 ( 5 ), 1689 – 1705. https://doi.org/10.1785/0120050241; Daley, T. M., Miller, D. E., Dodds, K., Cook, P., & Freifeld, B. M. ( 2016 ). Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at citronelle, Alabama. Geophysical Prospecting, 64 ( 5 ), 1318 – 1334. https://doi.org/10.1111/1365-2478.12324; Douglas, J., & Edwards, B. ( 2016 ). Recent and future developments in earthquake ground motion estimation. Earth-Science Reviews, 160, 203 – 219. https://doi.org/10.1016/j.earscirev.2016.07.005; Farghal, N. S., Saunders, J. K., & Parker, G. A. ( 2022 ). The potential of using fiber optic distributed acoustic sensing (DAS) in earthquake early warning applications. Bulletin of the Seismological Society of America, 12 ( 3 ), 1416 – 1435. https://doi.org/10.1785/0120210214; Fernández-Ruiz, M. R., Soto, M. A., Williams, E. F., Martin-Lopez, S., Zhan, Z., Gonzalez-Herraez, M., & Martins, H. F. ( 2020 ). Distributed acoustic sensing for seismic activity monitoring. APL Photonics, 5 ( 3 ), 030901. https://doi.org/10.1063/1.5139602; Funasaki, J. ( 2004 ). Revision of the JMA velocity magnitude. Quarterly Journal of Seismology, 67, 11 – 20.; Kanno, T., Narita, A., Morikawa, N., Fujiwara, H., & Fukushima, Y. ( 2006 ). A new attenuation relation for strong ground motion in Japan based on recorded data. Bulletin of the Seismological Society of America, 96 ( 3 ), 879 – 897. https://doi.org/10.1785/0120050138; Katsumata, A. ( 1996 ). Comparison of magnitudes estimated by the Japan Meteorological Agency with moment magnitudes for intermediate and deep earthquakes. Bulletin of the Seismological Society of America, 86 ( 3 ), 832 – 842. https://doi.org/10.1785/bssa0860030832; Katsumata, A. ( 2004 ). Revision of the JMA displacement magnitude. Quarterly Journal of Seismology, 67, 1 – 10.

  8. 8
  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: Xiao, Han; Tanimoto, Toshiro; Spica, Zack J.; Gaite, Beatriz; Ruiz-Barajas, Sandra; Pan, Mohan; Viens, Loïc (2022). "Locating the Precise Sources of High- Frequency Microseisms Using Distributed Acoustic Sensing." Geophysical Research Letters 49(17): n/a-n/a.; https://hdl.handle.net/2027.42/174919; Geophysical Research Letters; Sladen, A., Rivet, D., Ampuero, J. P., De Barros, L., Hello, Y., Calbris, G., & Lamare, P. ( 2019 ). Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nature Communications, 10 ( 1 ), 5777. https://doi.org/10.1038/s41467-019-13793-z; Koper, K. D., & Burlacu, R. ( 2015 ). The fine structure of double-frequency microseisms recorded by seismometers in North America. Journal of Geophysical Research: Solid Earth, 120 ( 3 ), 1677 – 1691. https://doi.org/10.1002/2014JB011820; Koper, K. D., Seats, K., & Benz, H. ( 2010 ). On the composition of Earth’s short-period seismic noise field. Bulletin of the Seismological Society of America, 100 ( 2 ), 606 – 617. https://doi.org/10.1785/0120090120; Le Pape, F., Craig, D., & Bean, C. J. ( 2021 ). How deep ocean-land coupling controls the generation of secondary microseism Love waves. Nature Communications, 12 ( 1 ), 2332. https://doi.org/10.1038/s41467-021-22591-5; Lindsey, N. J., Dawe, T. C., & Ajo-Franklin, J. B. ( 2019 ). Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science, 366 ( 6469 ), 1103 – 1107. https://doi.org/10.1126/science.aay5881; Longuet-Higgins, M. S. ( 1950 ). A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London A-Mathematical and Physical Sciences, 243 ( 857 ), 1 – 35. https://doi.org/10.1098/rsta.1950.0012; Muanenda, Y. ( 2018 ). Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry. Journal of Sensors, 3897873. https://doi.org/10.1155/2018/3897873; Nishida, K. ( 2017 ). Ambient seismic wave field. Proceedings of the Japan Academy, Series B, 93 ( 7 ), 423 – 448. https://doi.org/10.2183/pjab.93.026; Nishida, K., & Takagi, R. ( 2016 ). Teleseismic S wave microseisms. Science, 353 ( 6302 ), 919 – 921. https://doi.org/10.1126/science.aaf7573; Nolet, G., & Dorman, L. M. ( 1996 ). Waveform analysis of Scholte modes in ocean sediment layers. Geophysical Journal International, 125 ( 2 ), 385 – 396. https://doi.org/10.1111/j.1365-246X.1996.tb00006.x; Poli, P., Campillo, M., & Pedersen, H. ( 2012 ). Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise. Science, 338 ( 6110 ), 1063 – 1065. https://doi.org/10.1126/science.1228194; Posey, R., Johnson, G. A., & Vohra, S. T. ( 2000 ). Strain sensing based on coherent Rayleigh scattering in an optical fibre. Electronics Letters, 36 ( 20 ), 1688 – 1689. https://doi.org/10.1049/el:20001200; Pyle, M. L., Koper, K. D., Euler, G. G., & Burlacu, R. ( 2015 ). Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays. Geophysical Research Letters, 42 ( 8 ), 2700 – 2708. https://doi.org/10.1002/2015GL063530; Retailleau, L., & Gualtieri, L. ( 2021 ). Multi-phase seismic source imprint of tropical cyclones. Nature Communications, 12 ( 1 ), 2064. https://doi.org/10.1038/s41467-021-22231-y; Scholte, J. G. J. ( 1958 ). Rayleigh waves in isotropic and anisotropic elastic media, Staatsdr.- en Uitgeverijledrijf. Retrieved from https://books.google.com/books?id=ETNHGQAACAAJ; Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. ( 2005 ). High-resolution surface-wave tomography from ambient seismic noise. Science, 307 ( 5715 ), 1615 – 1618. https://doi.org/10.1126/science.1108339; Spica, Z. J., Gaite, B., & Ruiz-Barajas, S. ( 2020 ). The Valencia-Islalink Distributed Acoustic Sensing Experiment. [Data Set]. PubDAS. https://doi.org/10.7914/SN/ZH_2020; Spica, Z. J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M., & Yamada, T. ( 2020 ). Marine sediment characterized by ocean-bottom fiber-optic seismology. Geophysical Research Letters, 47 ( 16 ), e2020GL088360. https://doi.org/10.1029/2020GL088360; Tanimoto, T. ( 2007 ). Excitation of microseisms. Geophysical Research Letters, 34 ( 5 ). https://doi.org/10.1029/2006gl029046; Toksöz, M. N., & Lacoss, R. T. ( 1968 ). Microseisms: Mode structure and sources. Science, 159 ( 3817 ), 872 – 873. https://doi.org/10.1126/science.159.3817.872; Tolman, H. L. ( 2009 ). User manual and system documentation of WAVEWATCH III TM version 3.14. J Technical note, MMAB Contribution, 276, 220.; Wiechert, E. ( 1904 ). Discussion, Verhandlung der zweiten internationalen seismologischen Konferenz. Beitrage zur Geophysik, 2, 41 – 43.; Williams, E. F., Fernández-Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z., González-Herráez, M., & Martins, H. F. ( 2019 ). Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nature Communications, 10 ( 1 ), 5778. https://doi.org/10.1038/s41467-019-13262-7; Xiao, H., Tanimoto, T., & Xue, M. ( 2021 ). Study of S-wave microseisms generated by storms in the southeast Australia and north Atlantic. Geophysical Research Letters, 48 ( 15 ), e2021GL093728. https://doi.org/10.1029/2021GL093728; Xiao, H., Xue, M., Yang, T., Liu, C., Hua, Q., Xia, S., et al. ( 2018 ). The characteristics of microseisms in south China sea: Results from a combined data set of OBSs, broadband land seismic stations, and a global wave height model. Journal of Geophysical Research: Solid Earth, 123 ( 5 ), 3923 – 3942. https://doi.org/10.1029/2017JB015291; Zhang, J., Gerstoft, P., & Shearer, P. M. ( 2009 ). High-frequency P-wave seismic noise driven by ocean winds. Geophysical Research Letters, 36 ( 9 ), L09302. https://doi.org/10.1029/2009GL037761; Capon, J. ( 1969 ). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57 ( 8 ), 1408 – 1418. https://doi.org/10.1109/proc.1969.7278; Dahlen, F. A., & Tromp, J. ( 2021 ). Princeton University Press. https://doi.org/10.1515/9780691216157; Schweitzer, J., Fyen, J., Mykkeltveit, S., Kværna, T., & Bormann, P. ( 2002 ). Seismic arrays. In IASPEI new manual of seismological observatory practice (pp. 1 – 51 ).; Ardhuin, F., Gualtieri, L., & Stutzmann, E. ( 2015 ). How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s. Geophysical Research Letters, 42 ( 3 ), 765 – 772. https://doi.org/10.1002/2014GL062782; Ardhuin, F., & Herbers, T. H. C. ( 2013 ). Noise generation in the solid Earth, oceans and atmosphere, from nonlinear interacting surface gravity waves in finite depth. Journal of Fluid Mechanics, 716, 316 – 348. https://doi.org/10.1017/jfm.2012.548; Ardhuin, F., Stutzmann, E., Schimmel, M., & Mangeney, A. ( 2011 ). Ocean wave sources of seismic noise. Journal of Geophysical Research, 116 ( C9 ), C09004. https://doi.org/10.1029/2011JC006952; Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., & Larose, E. ( 2008 ). Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations. Science, 321 ( 5895 ), 1478 – 1481. https://doi.org/10.1126/science.1160943; Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., & Nercessian, A. ( 2008 ). Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1 ( 2 ), 126 – 130. https://doi.org/10.1038/ngeo104; Denolle, M. A., Dunham, E. M., Prieto, G. A., & Beroza, G. C. ( 2014 ). Strong ground motion prediction using virtual earthquakes. Science, 343 ( 6169 ), 399 – 403. https://doi.org/10.1126/science.1245678; Gal, M., Reading, A., Ellingsen, S., Koper, K., & Burlacu, R. ( 2017 ). Full wavefield decomposition of high-frequency secondary microseisms reveals distinct arrival azimuths for Rayleigh and Love waves. Journal of Geophysical Research: Solid Earth, 122 ( 6 ), 4660 – 4675. https://doi.org/10.1002/2017JB014141; Group, T. W. ( 1988 ). The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18 ( 12 ), 1775 – 1810. https://doi.org/10.1175/1520-0485(1988)0182.0.co;2; Guerin, G., Rivet, D., van den Ende, M. P. A., Stutzmann, E., Sladen, A., & Ampuero, J.-P. ( 2022 ). Quantifying microseismic noise generation from coastal reflection of gravity waves recorded by seafloor DAS. Geophysical Journal International, 231 ( 1 ), 394 – 407. https://doi.org/10.1093/gji/ggac200; Hartog, A. H. ( 2017 ). An introduction to distributed optical fibre sensors. CRC press.; Hasselmann, K. ( 1963 ). A statistical analysis of the generation of microseisms. Reviews of Geophysics, 1 ( 2 ), 177 – 210. https://doi.org/10.1029/RG001i002p00177; Kedar, S., Longuet-Higgins, M., Webb, F., Graham, N., Clayton, R., & Jones, C. ( 2008 ). The origin of deep ocean microseisms in the North Atlantic Ocean. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 464 ( 2091 ), 777 – 793. https://doi.org/10.1098/rspa.2007.0277

  10. 10
    Academic Journal

    وصف الملف: application/pdf

    Relation: Spica, Zack J.; Castellanos, Jorge C.; Viens, Loïc; Nishida, Kiwamu; Akuhara, Takeshi; Shinohara, Masanao; Yamada, Tomoaki (2022). "Subsurface Imaging With Ocean‐Bottom Distributed Acoustic Sensing and Water Phases Reverberations." Geophysical Research Letters 49(2): n/a-n/a.; https://hdl.handle.net/2027.42/171579; Geophysical Research Letters; Shinohara, M., Yamada, T., Akuhara, T., Mochizuki, K., Sakai, S., Hamakawa, M., et al. ( 2019 ). Distributed acoustic sensing measurement by using seafloor optical fiber cable system off Sanriku for seismic observation. In Oceans 2019 MTS/IEEE Seattle (pp. 1 – 4 ). Institute of Electrical and Electronics Engineers. https://doi.org/10.23919/oceans40490.2019.8962757; Mordret, A., Landès, M., Shapiro, N., Singh, S., Roux, P., & Barkved, O. ( 2013 ). Near‐surface study at the valhall oil field from ambient noise surface wave tomography. Geophysical Journal International, 193 ( 3 ), 1627 – 1643. https://doi.org/10.1093/gji/ggt061; NOAA. ( 2009 ). NOAA national geophysical data center. ETOPO1 1 arc‐minute global relief model. NOAA National Centers for Environmental Information.; Okal, E. A. ( 2008 ). The generation of T waves by earthquakes. Advances in Geophysics, 49, 1 – 65. https://doi.org/10.1016/s0065-2687(07)49001-x; Posey, R., Jr., Johnson, G. A., & Vohra, S. T. ( 2000 ). Strain sensing based on coherent Rayleigh scattering in an optical fibre. Electronics Letters, 36 ( 20 ), 1688 – 1689. https://doi.org/10.1049/el:20001200; Ritzwoller, M. H., & Levshin, A. L. ( 2002 ). Estimating shallow shear velocities with marine multicomponent seismic data. Geophysics, 67 ( 6 ), 1991 – 2004. https://doi.org/10.1190/1.1527099; Rivet, D., de Cacqueray, B., Sladen, A., Roques, A., & Calbris, G. ( 2021 ). Preliminary assessment of ship detection and trajectory evaluation using distributed acoustic sensing on an optical fiber telecom cable. Journal of the Acoustical Society of America, 149 ( 4 ), 2615 – 2627. https://doi.org/10.1121/10.0004129; Sanchez‐Sesma, F. J. ( 1987 ). Site effects on strong ground motion. Soil Dynamics and Earthquake Engineering, 6 ( 2 ), 124 – 132. https://doi.org/10.1016/0267-7261(87)90022-4; Sato, H., Fehler, M. C., & Maeda, T. ( 2012 ). Seismic wave propagation and scattering in the heterogeneous Earth (Vol. 496 ). Springer.; Scholte, J. G. J. ( 1958 ). Rayleigh waves in isotropic and anistropic elastic media. Meded. Verhand. KNMI, 72, 9 – 43.; Shinohara, M., Yamada, T., Sakai, S., Shiobara, H., & Kanazawa, T. ( 2016 ). Development and installation of new seafloor cabled seismic and tsunami observation system using ICT. In Oceans 2016 MTS/IEEE Monterey (pp. 1 – 4 ). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/oceans.2016.7761350; Singh, S., Capdeville, Y., & Igel, H. ( 2020 ). Correcting wavefield gradients for the effects of local small‐scale heterogeneities. Geophysical Journal International, 220 ( 2 ), 996 – 1011.; Sladen, A., Rivet, D., Ampuero, J. P., De Barros, L., Hello, Y., Calbris, G., & Lamare, P. ( 2019 ). Distributed sensing of earthquakes and ocean‐solid earth interactions on seafloor telecom cables. Nature Communications, 10 ( 1 ), 1 – 8. https://doi.org/10.1038/s41467-019-13793-z; Spica, Z., Perton, M., Nakata, N., Liu, X., & Beroza, G. C. ( 2018 ). Shallow V s imaging of the Groningen area from joint inversion of multimode surface waves and H/V spectral ratios. Seismological Research Letters, 89 ( 5 ), 1720 – 1729. https://doi.org/10.1785/0220180060; Spica, Z. J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M., & Yamada, T. ( 2020 ). Marine sediment characterized by ocean‐bottom fiber‐optic seismology. Geophysical Research Letters, 47 ( 16 ), e2020GL088360. https://doi.org/10.1029/2020gl088360; Spica, Z. J., Perton, M., Martin, E. R., Beroza, G. C., & Biondi, B. ( 2020 ). Urban seismic site characterization by fiber‐optic seismology. Journal of Geophysical Research: Solid Earth, 125 ( 3 ), e2019JB018656. https://doi.org/10.1029/2019jb018656; Talandier, J., & Okal, E. A. ( 1998 ). On the mechanism of conversion of seismic waves to and from T waves in the vicinity of island shores. Bulletin of the Seismological Society of America, 88 ( 2 ), 621 – 632. https://doi.org/10.1785/BSSA0880020621; Taweesintananon, K., Landrø, M., Brenne, J. K., & Haukanes, A. ( 2021 ). Distributed acoustic sensing for near surface imaging from submarine telecommunication cable: Case study in the Trondheim Fjord.; Tonegawa, T., Fukao, Y., Takahashi, T., Obana, K., Kodaira, S., & Kaneda, Y. ( 2015 ). Ambient seafloor noise excited by earthquakes in the Nankai subduction zone. Nature Communications, 6 ( 1 ), 6132. https://doi.org/10.1038/ncomms7132; van den Ende, M., & Ampuero, J.‐P. ( 2021 ). Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays. Solid Earth, 12 ( 4 ), 915 – 934. https://doi.org/10.5194/se-12-915-2021; Wessel, P., Luis, J., Uieda, L., Scharroo, R., Wobbe, F., Smith, W., & Tian, D. ( 2019 ). The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20 ( 11 ), 5556 – 5564. https://doi.org/10.1029/2019gc008515; Williams, E. F., Fernández‐Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z., González‐Herráez, M., & Martins, H. F. ( 2019 ). Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nature Communications, 10 ( 1 ), 1 – 11. https://doi.org/10.1038/s41467-019-13262-7; Williams, E. F., Fernández‐Ruiz, M. R., Magalhaes, R., Vanthillo, R., Zhan, Z., González‐Herráez, M., & Martins, H. F. ( 2021 ). Scholte wave inversion and passive source imaging with ocean‐bottom DAS. The Leading Edge, 40 ( 8 ), 576 – 583. https://doi.org/10.1190/tle40080576.1; Yuan, S., Lellouch, A., Clapp, R. G., & Biondi, B. ( 2020 ). Near‐surface characterization using a roadside distributed acoustic sensing array. The Leading Edge, 39 ( 9 ), 646 – 653. https://doi.org/10.1190/tle39090646.1; Yue, H., Castellanos, J. C., Yu, C., Meng, L., & Zhan, Z. ( 2017 ). Localized water reverberation phases and its impact on backprojection images. Geophysical Research Letters, 44 ( 19 ), 9573 – 9580. https://doi.org/10.1002/2017gl073254; Zhan, Z. ( 2020 ). Distributed acoustic sensing turns fiber‐optic cables into sensitive seismic antennas. Seismological Research Letters, 91 ( 1 ), 1 – 15. https://doi.org/10.1785/0220190112; Zheng, Y., Fang, X., Liu, J., & Fehler, M. C. ( 2013 ). Scholte waves generated by seafloor topography. arXiv preprint arXiv:1306.4383.; Zhu, J., & Popovics, J. S. ( 2006 ). Analytical study of excitation and measurement of fluid‐solid interface waves. Geophysical Research Letters, 33 ( 9 ). https://doi.org/10.1029/2006gl026068; Hayes, G., Moore, G., Portner, D., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. ( 2014 ). Slab2, a comprehensive subduction zone geometry model. Science, 6410 ( 362 ), 58 – 61.; Afanasiev, M., Boehm, C., van Driel, M., Krischer, L., Rietmann, M., May, D. A., et al. ( 2019 ). Modular and flexible spectral‐element waveform modelling in two and three dimensions. Geophysical Journal International, 216 ( 3 ), 1675 – 1692. https://doi.org/10.1093/gji/ggy469; Akal, T., & Berkson, J. M. ( 2013 ). Ocean seismo‐acoustics: Low‐frequency underwater acoustics (Vol. 16 ). Springer Science & Business Media.; Aki, K., & Richards, P. ( 2002 ). Quantitative seismology. University Science Book.; Ayres, A., & Theilen, F. ( 2001 ). Relationship between P‐and S‐wave velocities and geological properties of near‐surface sediments of the continental slope of the Barents Sea. Geophysical Prospecting, 47 ( 4 ), 431 – 441. https://doi.org/10.1046/j.1365-2478.1999.00129.x; Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. ( 2010 ). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81 ( 3 ), 530 – 533. https://doi.org/10.1785/gssrl.81.3.530; Bohlen, T., Kugler, S., Klein, G., & Theilen, F. ( 2004 ). 1.5 D inversion of lateral variation of Scholte‐wave dispersion. Geophysics, 69 ( 2 ), 330 – 344. https://doi.org/10.1190/1.1707052; Butler, R., & Lomnitz, C. ( 2002 ). Coupled seismoacoustic modes on the seafloor. Geophysical Research Letters, 29 ( 10 ), 57 – 61. https://doi.org/10.1029/2002gl014722; Cedilnik, G., Lees, G., Schmidt, P., Herstrøm, S., & Geisler, T. ( 2019 ). Ultra‐long reach fiber distributed acoustic sensing for power cable monitoring. In Proceedings of the JICABLE.; Chai, H. Y., Phoon, K. K., Goh, S. H., & Wei, C. F. ( 2012 ). Some theoretical and numerical observations on scattering of Rayleigh waves in media containing shallow rectangular cavities. Journal of Applied Geophysics, 83, 107 – 119. https://doi.org/10.1016/j.jappgeo.2012.05.005; Cheng, F., Chi, B., Lindsey, N. J., Dawe, T. C., & Ajo‐Franklin, J. B. ( 2021 ). Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization. Scientific Reports, 11 ( 1 ), 1 – 14. https://doi.org/10.1038/s41598-021-84845-y; Cleveland, W. ( 1979 ). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 368 ( 74 ), 829 – 836. Taylor & Francis. https://doi.org/10.1080/01621459.1979.10481038; Grattan, K., & Sun, T. ( 2000 ). Fiber optic sensor technology: An overview. Sensors and Actuators A: Physical, 82 ( 1–3 ), 40 – 61. https://doi.org/10.1016/s0924-4247(99)00368-4; Hamilton, E. L. ( 1976 ). Shear‐wave velocity versus depth in marine sediments: A review. Geophysics, 41 ( 5 ), 985 – 996. https://doi.org/10.1190/1.1440676; Heimann, S., Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F., et al. ( 2017 ). Pyrocko ‐ An open‐source seismology toolbox and library. GFZ Data Services.; Hirt, C., & Rexer, M. ( 2015 ). Earth2014: 1 arc‐min shape, topography, bedrock and ice‐sheet models–available as gridded data and degree‐10,800 spherical harmonics. International Journal of Applied Earth Observation and Geoinformation, 39, 103 – 112. https://doi.org/10.1016/j.jag.2015.03.001; Hunter, J. D. ( 2007 ). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9 ( 3 ), 90 – 95. https://doi.org/10.1109/mcse.2007.55; Ide, S., Araki, E., & Matsumoto, H. ( 2021 ). Very broadband strain‐rate measurements along a submarine fiber‐optic cable off cape muroto, nankai subduction zone, Japan. Earth, Planets and Space, 73 ( 1 ), 1 – 10. https://doi.org/10.1186/s40623-021-01385-5; Kanazawa, T., & Hasegawa, A. ( 1997 ). Ocean‐bottom observatory for earthquakes and tsunami off Sanriku, north‐east Japan using submarine cable, paper presented at international workshop on scientific use of submarine cables, comm. for sci. Use of Submarine Cables.; Koketsu, K., Miyake, H., & Suzuki, H. ( 2012 ). Japan integrated velocity structure model version 1. In Proceedings of the 15th World conference on earthquake engineering (p. 1773).; Kosuga, M. ( 2011 ). Localization of t‐wave energy on land revealed by a dense seismic network in Japan. Geophysical Journal International, 187 ( 1 ), 338 – 354. https://doi.org/10.1111/j.1365-246x.2011.05143.x; Kugler, S., Bohlen, T., Forbriger, T., Bussat, S., & Klein, G. ( 2007 ). Scholte‐wave tomography for shallow‐water marine sediments. Geophysical Journal International, 168 ( 2 ), 551 – 570. https://doi.org/10.1111/j.1365-246x.2006.03233.x; Lamb, H. ( 1904 ). I. on the propagation of tremors over the surface of an elastic solid. Philosophical Transactions of the Royal Society of London ‐ Series A: Containing Papers of a Mathematical or Physical Character, 203 ( 359–371 ), 1 – 42.; Laske, G., Masters, G., Ma, Z., & Pasyanos, M. ( 2013 ). Update on CRUST1. 0‐A 1‐degree global model of Earth’s crust. Geophysical Research Abstracts, 15, 2658.; Lellouch, A., Yuan, S., Spica, Z., Biondi, B., & Ellsworth, W. L. ( 2019 ). Seismic velocity estimation using passive downhole distributed acoustic sensing records: Examples from the San Andreas fault observatory at depth. Journal of Geophysical Research: Solid Earth, 124 ( 7 ), 6931 – 6948. https://doi.org/10.1029/2019JB017533; Li, D., Helmberger, D., Clayton, R. W., & Sun, D. ( 2014 ). Global synthetic seismograms using a 2‐D finite‐difference method. Geophysical Journal International, 197 ( 2 ), 1166 – 1183. https://doi.org/10.1093/gji/ggu050; Lindsey, N. J., Dawe, T. C., & Ajo‐Franklin, J. B. ( 2019 ). Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science, 366 ( 6469 ), 1103 – 1107. https://doi.org/10.1126/science.aay5881; Lindsey, N. J., & Martin, E. R. ( 2021 ). Fiber‐Optic Seismology. Annual Review of Earth and Planetary Sciences, 49, 309 – 336. https://doi.org/10.1146/annurev-earth-072420-065213; Lior, I., Sladen, A., Rivet, D., Ampuero, J. P., Hello, Y., Becerril, C., et al. ( 2021 ). On the detection capabilities of underwater distributed acoustic sensing. Journal of Geophysical Research: Solid Earth, 126 ( 3 ), e2020JB020925. https://doi.org/10.1029/2020jb020925; Martin, E. R., Lindsey, N., Ajo‐Franklin, J., & Biondi, B. ( 2018 ). Introduction to interferometry of fiber optic strain measurements. EarthArXiv.; Matsumoto, H., Araki, E., Kimura, T., Fujie, G., Shiraishi, K., Tonegawa, T., et al. ( 2021 ). Detection of hydroacoustic signals on a fiber‐optic submarine cable. Scientific Reports, 11 ( 1 ), 1 – 12. https://doi.org/10.1038/s41598-021-82093-8; McMechan, G. A., & Yedlin, M. J. ( 1981 ). Analysis of dispersive waves by wave field transformation. Geophysics, 46 ( 6 ), 869 – 874. https://doi.org/10.1190/1.1441225

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المساهمون: Earthquake Research Institute Tokyo, The University of Tokyo (UTokyo), Institut des Sciences de la Terre (ISTerre), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Séismes et Vibrations (IFSTTAR/GERS/SV), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Communauté Université Paris-Est, Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: ISSN: 0956-540X.

  14. 14
  15. 15
    Academic Journal

    المؤلفون: Viens, Loïc, Iwata, Tomotaka

    المساهمون: 岩田, 知孝

    وصف الملف: application/pdf

    Relation: http://hdl.handle.net/2433/255595; Journal of Geophysical Research: Solid Earth; 125; e2020JB019730

  16. 16
    Academic Journal

    المؤلفون: Viens, Loïc, Van Houtte, Chris

    المساهمون: National Research Institute for Earth Science and Disaster Prevention, Japan Society for the Promotion of Science

    المصدر: Geophysical Journal International ; volume 220, issue 3, page 1521-1535 ; ISSN 0956-540X 1365-246X

  17. 17
  18. 18
    Academic Journal
  19. 19
    Academic Journal

    وصف الملف: application/pdf

    Relation: Geophysical Journal International; Viens, Lo ̈ıc, Marine Denolle, Hiroe Miyake, Shin’ichi Sakai, and Shigeki Nakagawa. 2017. Retrieving Impulse Response Function Amplitudes From the Ambient Seismic Field. Geophysical Journal International 210: 210-222.; http://nrs.harvard.edu/urn-3:HUL.InstRepos:40998541

  20. 20