يعرض 1 - 20 نتائج من 29 نتيجة بحث عن '"Vergel, Nadezdha"', وقت الاستعلام: 0.73s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Revista Colombiana de Ciencias Químico-Farmacéuticas; Vol. 38 Núm. 1 (2009) ; Revista Colombiana de Ciencias Químico-Farmacéuticas; v. 38 n. 1 (2009) ; Revista Colombiana de Ciencias Químico-Farmacéuticas; Vol. 38 No. 1 (2009) ; 1909-6356 ; 0034-7418

    وصف الملف: application/pdf; text/html

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    وصف الملف: application/pdf

    Relation: http://revistas.unal.edu.co/index.php/rccquifa/article/view/1614; Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Ciencias Químico Farmacéuticas; Revista Colombiana de Ciencias Químico Farmacéuticas; Revista Colombiana de Ciencias Químico Farmacéuticas; Vol. 34, núm. 1 (2005) 0034-7418 1909-6356; Rodriguez, Marisol and Vergel, Nadezdha and Ospina, Luis and Calle, Jairo and Pizón, Roberto (2005) Evaluación de actividades enzimáticas elastasa y mieloperoxidasa como marcadores de desgranulación leucocitaria en modelos de inflamación aguda. Revista Colombiana de Ciencias Químico Farmacéuticas; Vol. 34, núm. 1 (2005) 0034-7418 1909-6356 .; https://repositorio.unal.edu.co/handle/unal/22884; http://bdigital.unal.edu.co/13919/

  5. 5
  6. 6
    Academic Journal

    المصدر: Biomedica; Vol. 39 No. 3 (2019); 491-501 ; Biomédica; Vol. 39 Núm. 3 (2019); 491-501 ; 2590-7379 ; 0120-4157

    وصف الملف: application/pdf; text/xml

    Relation: https://revistabiomedica.org/index.php/biomedica/article/view/4299/4139; https://revistabiomedica.org/index.php/biomedica/article/view/4299/4413; Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson’s disease. Rev Neurol (Paris). 2016;172:14-26. https://doi.org/10.1016/j.neurol.2015.09.012; Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68:384-6. https://doi.org/10.1212/01.wnl.0000247740.47667.03; Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: A review. JAMA. 2014; 311:1670-83. https://doi.org/10.1001/jama.2014.3654; Alexi T, Borlongan C, Faull R, Williams C, Clark R, Gluckman P, et al. Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog Neurobiol. 2000;60:409-70. https://doi.org/10.1016/S0301-0082(99)00032-5; Emborg M. Evaluation of animal models of Parkinson’s disease for neuroprotective strategies. J Neurosci Methods. 2004;139:121-43. https://doi.org/10.1016/j.jneumeth.2004.08.004; Gershanik OS. Improving L-dopa therapy: The development of enzyme inhibitors. Mov Disord. 2015;30:103-13. https://doi.org/10.1002/mds.26050; Finberg J. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B; focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther. 2014;143:133-52. https://doi.org/10.1016/j.pharmthera.2014.02.010; Ariza S, Rueda D, Rincón J, Linares E, Guerrero M. Efectos farmacológicos sobre el sistema nervioso central inducidos por cumarina aislada de Hygrophila tyttha Leonard. Vitae. 2007;14:51-8.; Vergel N, López J, Orallo F, Viña D, Buitrago D, Olmo E, et al. Antidepressant-like profile and MAO-A inhibitory activity of 4-propyl-2H-benzo[h]- chromen-2-one. Life Sci. 2010;86:819-24. https://doi.org/10.1016/j.lfs.2010.04.001; Matos M, Viña D, Picciau C, Orallo F, Santana L, Uriarte E. Synthesis and evaluation of 6-methyl-3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg Med Chem Lett. 2009;19:5053-5. https://doi.org/10.1016/j.bmcl.2009.07.039; Matos M, Viña D, Quezada E, Picciau C, Delogu G, Orallo F, et al. A new series of 3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg Med Chem Lett. 2009;19:3268-70. https://doi.org/10.1016/j.bmcl.2009.04.085; Matos M, Viña D, Janeiro P, Borges F, Santana L, Uriarte E. New halogenated 3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg Med Chem Lett. 2010;20:5157-60. https://doi.org/10.1016/j.bmcl.2010.07.013; Matos M, Viña D, Vázquez-Rodríguez S, Uriarte E, Santana L. Focusing on new monoamine oxidase inhibitors: Differently substituted coumarins as an interesting scaffold. Curr Top Med Chem. 2012;12:2210-39. https://doi.org/10.2174/1568026611212200008; Matos M, Vilar S, González-Franco R, Uriarte E, Santana L, Friedman C, et al. Novel (coumarin-3-yl) carbamates as selective MAO-B inhibitors: Synthesis, in vitro and in vivo assays, theoretical evaluation of ADME properties and docking study. Eur J Med Chem. 2013;63:151-61. https://doi.org/10.1016/j.ejmech.2013.02.009; Pisani L, Farina R, Nicolotti O, Gadaleta D, Soto-Otero R, Catto M, et al. In silico design of novel 2H-chromen-2-one derivatives as potent and selective MAO-B inhibitors. Eur J Med Chem. 2015;89:98-105. https://doi.org/10.1016/j.ejmech.2014.10.029; Epifano F, Molinaro G, Genovese S, Ngomba R, Nicoletti F, Curini M. Neuroprotective effect of prenyloxycoumarins from edible vegetables. Neurosci Lett. 2008;443:57-60. https://doi.org/10.1016/j.neulet.2008.07.062; Liu WB, Zhou J, Qu Y, Li X, Lu CT, Xie KL, et al. Neuroprotective effect of osthole on MPP+-induced cytotoxicity in PC12 cells via inhibition of mitochondrial dysfunction and ROS production. Neurochem Int. 2010;57:203-15. https://doi.org/10.1016/j.neuint.2010.05.011; Philippens I. Non-human primate models for Parkinson’s disease. Drug Discov Today Dis Models. 2008;5:105-11. https://doi.org/10.1016/j.ddmod.2008.06.004; Matos M, Rodríguez F, Borges F, Santana L, Uriarte E, Estrada M, et al. 3-Amidocoumarins as potential multifunctional agents against neurodegenerative diseases. Chem Med Chem. 2015;10:2071-9. https://doi.org/10.1002/cmdc.201500408; Aguirre P, García O, Tapia V, Muñoz Y, Cassels BK, Núñez MT. Neuroprotective effect of a new 7,8-dihydroxycoumarin-based Fe2+/Cu2+ chelator in cell and animal models of Parkinson’s disease. ACS Chem Neurosci. 2017;8:178-85. https://doi.org/10.1021/acschemneuro.6b00309; Reglodi D, Renaud J, Tamas A, Tizabi Y, Socías SB, Del-Bel E, et al. Novel tactics for neuroprotection in Parkinson’s disease: Role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol. 2017;155:120-48. https://doi.org/10.1016/j.pneurobio.2015.10.004; Garazd M, Garazd Y, Ogorodniichuk A, Khilya V. Modified coumarins. Synthesis of substituted 5-(4-methoxyphenyl)-7H-furo [3,2-g] chromen-7-ones. Chem Nat Compd. 2002;38:539-48. https://doi.org/10.1023/A:1022626402415; National Center for Biotechnology Information. PubChem Open Chemistry Database Compound Summary for CID 608273. Accessed on: January 20, 2018. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/608273; Tadaiesky M, Andreatini R, Vital M. Different effects of 7-nitroindazole in reserpine-induced hypolocomotion in two strains of mice. Eur J Pharmacol. 2006;535:199-207. https://doi.org/10.1016/j.ejphar.2006.02.004; Schmidt W, Mayerhofer A, Meyer A, Kovar K. Ecstasy counteracts catalepsy in rats, an antiparkinsonian effect? Neurosci Lett. 2002;330:251-4.; Wei L, Chen L. Effects of 5-HT in globus pallidus on haloperidol-induced catalepsy in rats. Neurosci Lett. 2009;454:49-52. https://doi.org/10.1016/j.neulet.2009.02.053; Hijova E, Nistiar F, Sipulova A. Changes in ascorbic acid and malondialdehyde in rats after exposure to mercury. Bratis Lek Listy. 2005;106:248-51.; Levine R, Garland D, Oliver C, Amici A, Climent I, Lenz A, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464-78. https://doi.org/10.1016/0076-6879(90)86141-H; Baltacioglu E, Akalin FA, Alver A, Deger O, Karabulut E. Protein carbonyl levels in serum and gingival crevicular fluid in patients with chronic periodontitis. Arch Oral Biol. 2008;53:716-22. https://doi.org/10.1016/j.archoralbio.2008.02.002; Yáñez M, Fraiz N, Cano E, Orallo F. Inhibitory effects of cis- and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem Biophys Res Commun. 2006;344:688-95. https://doi.org/10.1016/j.bbrc.2006.03.190; Colpaert F. Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rats. Neuropharmacology. 1987;26:1431-40.; Kaur S, Starr M. Antiparkinsonian action of dextramethorphan in the reserpine-treated mouse. Eur J Pharmacol. 1995;280:159-66.; Menzaghi F, Whelan K, Risbrough V, Rao T, Lloyd G. Interactions between a novel cholinergic ion channel agonist, SIB-1765F and L-DOPA in the reserpine model of Parkinson’s disease in rats. J. Pharmacol Exp Ther. 1997;280:393-401.; Foley P, Gerlach M, Youdim M, Riederer P. MAO-B inhibitors: Multiple roles in the therapy of neurodegenerative disorders? Parkinsonism Relat Disord. 2000;6;25-47. https://doi.org/10.1016/S1353-8020(99)00043-7; Fernández H, Chen J. Monoamine oxidase-B inhibition in the treatment of Parkinson’s disease. Pharmacotherapy. 2007;27:174S-85S. https://doi.org/10.1592/phco.27.12part2.174S; Fisher A, Biggs C, Eradiri O, Starr M. Dual effects of L-3,4-dihydroxyphenylalanine on aromatic L-amino acid decarboxylase, dopamine release and motor stimulation in the reserpine-treated rat: Evidence that behavior is dopamine independent. Neuroscience. 2000;95:97-111. https://doi.org/10.1016/S0306-4522(99)00406-6; Haleem DJ, Inam QU, Haleem MA. Effects of clinically relevant doses of methyphenidate on spatial memory, behavioral sensitization and open field habituation: A time related study. Behav Brain Res. 2015;281:208-14. https://doi.org/10.1016/j.bbr.2014.12.031; Deacon RM, Koros E, Bornemann KD, Rawlins JN. Aged Tg2576 mice are impaired on social memory and open field habituation tests. Behav Brain Res. 2009;197:466-8. https://doi.org/10.1016/j.bbr.2008.09.042; Wang X, Han C, Xu Y, Wu K, Chen S, Hu M, et al. Synthesis and evaluation of phenylxanthine derivatives as potential dual A2AR antagonists/MAO-B inhibitors for Parkinson’s disease. Molecules. 2017;22:1-13. https://doi.org/10.3390/molecules22061010; Duty S, Jenner P. Animal models of Parkinson´s disease: A source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164:1357-91. https://doi.org/10.1111/j.1476-5381.2011.01426.x; Bishnoi M, Chopra K, Kulkarni S. Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes. Eur J Pharmacol. 2006;552:55-66. https://doi.org/10.1016/j.ejphar.2006.09.010; Bishnoi M, Chopra K, Kulkarni S. Possible anti-oxidant and neuroprotective mechanisms of zolpidem in attenuating typical anti-psychotic-induced orofacial dyskinesia -A biochemical and neurochemical study. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:1130-8. https://doi.org/10.1016/j.pnpbp.2007.04.007; Martins M, Petronilho F, Gomes K, Dai-Pizzol F, Streck E, Quevedo J. Antipsychotic induced oxidative stress in rat brain. Neurotox Res. 2008;13:63-9. https://doi.org/10.1007/BF03033368; Naidu P, Singh A, Kulkarni S. Quercetin, a bioflavonoid attenuated haloperidol induced orofacial dyskinesia. Neuropharmacology. 2003;44:1100-6. https://doi.org/10.1016/S0028-3908(03)00101-1; Singh A, Naidu P, Kulkarni S. Possible antioxidant and neuroprotective mechanisms of FK506 in attenuating haloperidol-induced orofacial dyskinesia. Eur J Pharmacol. 2003;477:87-94. https://doi.org/10.1016/S0014-2999(03)02124-1; Pavshintsev VV, Podshivalova LS, Frolova OY, Belopolskaya OA, Averina OA, Kushnir EA, et al. Effects of mitochondrial antioxidant SkQ1 on biochemical and behavioural parameters in a Parkinsonism model in mice. Biochemistry (Mosc). 2003;82:1513-20. https://doi.org/10.1134/S0006297917120100; Molina-Jiménez M F, Sánchez-Reus M I, Benedi J. Effect of fraxetin and myricetin on rotenone-induced cytotoxicity in SH-SY5Y cells: Comparison with N-acetylcysteine. Eur J Pharmacol. 2003;472:81-7. https://doi.org/10.1016/S0014-2999(03)01902-2; Kong LD, Tan RX, Woo AY, Cheng CH. Inhibition of rat brain monoamine oxidase activities by psoralen and isopsoralen: Implications for the treatment of affective disorders. Pharmacol Toxicol. 2001;88:75-80.; https://revistabiomedica.org/index.php/biomedica/article/view/4299

  7. 7
    Electronic Resource

    Additional Titles: El análogo de cumarina 3-metil-7H-furo[3,2-g]cromen-7-ona, un posible agente antiparkinsoniano

    المصدر: Biomedica; Vol. 39 No. 3 (2019); 491-501; Biomédica; Vol. 39 Núm. 3 (2019); 491-501; 2590-7379; 0120-4157

    URL: https://revistabiomedica.org/index.php/biomedica/article/view/4299
    https://revistabiomedica.org/index.php/biomedica/article/view/4299/4139
    https://revistabiomedica.org/index.php/biomedica/article/view/4299/4413
    https://revistabiomedica.org/index.php/biomedica/article/view/4299/4139
    https://revistabiomedica.org/index.php/biomedica/article/view/4299/4413
    *ref*/Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson’s disease. Rev Neurol (Paris). 2016;172:14-26. https://doi.org/10.1016/j.neurol.2015.09.012
    *ref*/Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68:384-6. https://doi.org/10.1212/01.wnl.0000247740.47667.03
    *ref*/Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: A review. JAMA. 2014; 311:1670-83. https://doi.org/10.1001/jama.2014.3654
    *ref*/Alexi T, Borlongan C, Faull R, Williams C, Clark R, Gluckman P, et al. Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog Neurobiol. 2000;60:409-70. https://doi.org/10.1016/S0301-0082(99)00032-5
    *ref*/Emborg M. Evaluation of animal models of Parkinson’s disease for neuroprotective strategies. J Neurosci Methods. 2004;139:121-43. https://doi.org/10.1016/j.jneumeth.2004.08.004
    *ref*/Gershanik OS. Improving L-dopa therapy: The development of enzyme inhibitors. Mov Disord. 2015;30:103-13. https://doi.org/10.1002/mds.26050
    *ref*/Finberg J. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B; focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther. 2014;143:133-52. https://doi.org/10.1016/j.pharmthera.2014.02.010
    *ref*/Ariza S, Rueda D, Rincón J, Linares E, Guerrero M. Efectos farmacológicos sobre el sistema nervioso central inducidos por cumarina aislada de Hygrophila tyttha Leonard. Vitae. 2007;14:51-8.
    *ref*/Vergel N, López J, Orallo F, Viña D, Buitrago D, Olmo E, et al. Antidepressant-like profile and MAO-A inhibitory activity of 4-propyl-2H-benzo[h]- chromen-2-one. Life Sci. 2010;86:819-24. https://doi.org/10.1016/j.lfs.2010.04.001
    *ref*/Matos M, Viña D, Picciau C, Orallo F, Santana L, Uriarte E. Synthesis and evaluation of 6-methyl-3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg Med Chem Lett. 2009;19:5053-5. https://doi.org/10.1016/j.bmcl.2009.07.039
    *ref*/Matos M, Viña D, Quezada E, Picciau C, Delogu G, Orallo F, et al. A new series of 3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg Med Chem Lett. 2009;19:3268-70. https://doi.org/10.1016/j.bmcl.2009.04.085
    *ref*/Matos M, Viña D, Janeiro P, Borges F, Santana L, Uriarte E. New halogenated 3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg Med Chem Lett. 2010;20:5157-60. https://doi.org/10.1016/j.bmcl.2010.07.013
    *ref*/Matos M, Viña D, Vázquez-Rodríguez S, Uriarte E, Santana L. Focusing on new monoamine oxidase inhibitors: Differently substituted coumarins as an interesting scaffold. Curr Top Med Chem. 2012;12:2210-39. https://doi.org/10.2174/1568026611212200008
    *ref*/Matos M, Vilar S, González-Franco R, Uriarte E, Santana L, Friedman C, et al. Novel (coumarin-3-yl) carbamates as selective MAO-B inhibitors: Synthesis, in vitro and in vivo assays, theoretical evaluation of ADME properties and docking study. Eur J Med Chem. 2013;63:151-61. https://doi.org/10.1016/j.ejmech.2013.02.009
    *ref*/Pisani L, Farina R, Nicolotti O, Gadaleta D, Soto-Otero R, Catto M, et al. In silico design of novel 2H-chromen-2-one derivatives as potent and selective MAO-B inhibitors. Eur J Med Chem. 2015;89:98-105. https://doi.org/10.1016/j.ejmech.2014.10.029
    *ref*/Epifano F, Molinaro G, Genovese S, Ngomba R, Nicoletti F, Curini M. Neuroprotective effect of prenyloxycoumarins from edible vegetables. Neurosci Lett. 2008;443:57-60. https://doi.org/10.1016/j.neulet.2008.07.062
    *ref*/Liu WB, Zhou J, Qu Y, Li X, Lu CT, Xie KL, et al. Neuroprotective effect of osthole on MPP+-induced cytotoxicity in PC12 cells via inhibition of mitochondrial dysfunction and ROS production. Neurochem Int. 2010;57:203-15. https://doi.org/10.1016/j.neuint.2010.05.011
    *ref*/Philippens I. Non-human primate models for Parkinson’s disease. Drug Discov Today Dis Models. 2008;5:105-11. https://doi.org/10.1016/j.ddmod.2008.06.004
    *ref*/Matos M, Rodríguez F, Borges F, Santana L, Uriarte E, Estrada M, et al. 3-Amidocoumarins as potential multifunctional agents against neurodegenerative diseases. Chem Med Chem. 2015;10:2071-9. https://doi.org/10.1002/cmdc.201500408
    *ref*/Aguirre P, García O, Tapia V, Muñoz Y, Cassels BK, Núñez MT. Neuroprotective effect of a new 7,8-dihydroxycoumarin-based Fe2+/Cu2+ chelator in cell and animal models of Parkinson’s disease. ACS Chem Neurosci. 2017;8:178-85. https://doi.org/10.1021/acschemneuro.6b00309
    *ref*/Reglodi D, Renaud J, Tamas A, Tizabi Y, Socías SB, Del-Bel E, et al. Novel tactics for neuroprotection in Parkinson’s disease: Role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol. 2017;155:120-48. https://doi.org/10.1016/j.pneurobio.2015.10.004
    *ref*/Garazd M, Garazd Y, Ogorodniichuk A, Khilya V. Modified coumarins. Synthesis of substituted 5-(4-methoxyphenyl)-7H-furo [3,2-g] chromen-7-ones. Chem Nat Compd. 2002;38:539-48. https://doi.org/10.1023/A:1022626402415
    *ref*/National Center for Biotechnology Information. PubChem Open Chemistry Database Compound Summary for CID 608273. Accessed on: January 20, 2018. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/608273
    *ref*/Tadaiesky M, Andreatini R, Vital M. Different effects of 7-nitroindazole in reserpine-induced hypolocomotion in two strains of mice. Eur J Pharmacol. 2006;535:199-207. https://doi.org/10.1016/j.ejphar.2006.02.004
    *ref*/Schmidt W, Mayerhofer A, Meyer A, Kovar K. Ecstasy counteracts catalepsy in rats, an antiparkinsonian effect? Neurosci Lett. 2002;330:251-4.
    *ref*/Wei L, Chen L. Effects of 5-HT in globus pallidus on haloperidol-induced catalepsy in rats. Neurosci Lett. 2009;454:49-52. https://doi.org/10.1016/j.neulet.2009.02.053
    *ref*/Hijova E, Nistiar F, Sipulova A. Changes in ascorbic acid and malondialdehyde in rats after exposure to mercury. Bratis Lek Listy. 2005;106:248-51.
    *ref*/Levine R, Garland D, Oliver C, Amici A, Climent I, Lenz A, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464-78. https://doi.org/10.1016/0076-6879(90)86141-H
    *ref*/Baltacioglu E, Akalin FA, Alver A, Deger O, Karabulut E. Protein carbonyl levels in serum and gingival crevicular fluid in patients with chronic periodontitis. Arch Oral Biol. 2008;53:716-22. https://doi.org/10.1016/j.archoralbio.2008.02.002
    *ref*/Yáñez M, Fraiz N, Cano E, Orallo F. Inhibitory effects of cis- and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem Biophys Res Commun. 2006;344:688-95. https://doi.org/10.1016/j.bbrc.2006.03.190
    *ref*/Colpaert F. Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rats. Neuropharmacology. 1987;26:1431-40.
    *ref*/Kaur S, Starr M. Antiparkinsonian action of dextramethorphan in the reserpine-treated mouse. Eur J Pharmacol. 1995;280:159-66.
    *ref*/Menzaghi F, Whelan K, Risbrough V, Rao T, Lloyd G. Interactions between a novel cholinergic ion channel agonist, SIB-1765F and L-DOPA in the reserpine model of Parkinson’s disease in rats. J. Pharmacol Exp Ther. 1997;280:393-401.
    *ref*/Foley P, Gerlach M, Youdim M, Riederer P. MAO-B inhibitors: Multiple roles in the therapy of neurodegenerative disorders? Parkinsonism Relat Disord. 2000;6;25-47. https://doi.org/10.1016/S1353-8020(99)00043-7
    *ref*/Fernández H, Chen J. Monoamine oxidase-B inhibition in the treatment of Parkinson’s disease. Pharmacotherapy. 2007;27:174S-85S. https://doi.org/10.1592/phco.27.12part2.174S
    *ref*/Fisher A, Biggs C, Eradiri O, Starr M. Dual effects of L-3,4-dihydroxyphenylalanine on aromatic L-amino acid decarboxylase, dopamine release and motor stimulation in the reserpine-treated rat: Evidence that behavior is dopamine independent. Neuroscience. 2000;95:97-111. https://doi.org/10.1016/S0306-4522(99)00406-6
    *ref*/Haleem DJ, Inam QU, Haleem MA. Effects of clinically relevant doses of methyphenidate on spatial memory, behavioral sensitization and open field habituation: A time related study. Behav Brain Res. 2015;281:208-14. https://doi.org/10.1016/j.bbr.2014.12.031
    *ref*/Deacon RM, Koros E, Bornemann KD, Rawlins JN. Aged Tg2576 mice are impaired on social memory and open field habituation tests. Behav Brain Res. 2009;197:466-8. https://doi.org/10.1016/j.bbr.2008.09.042
    *ref*/Wang X, Han C, Xu Y, Wu K, Chen S, Hu M, et al. Synthesis and evaluation of phenylxanthine derivatives as potential dual A2AR antagonists/MAO-B inhibitors for Parkinson’s disease. Molecules. 2017;22:1-13. https://doi.org/10.3390/molecules22061010
    *ref*/Duty S, Jenner P. Animal models of Parkinson´s disease: A source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164:1357-91. https://doi.org/10.1111/j.1476-5381.2011.01426.x
    *ref*/Bishnoi M, Chopra K, Kulkarni S. Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes. Eur J Pharmacol. 2006;552:55-66. https://doi.org/10.1016/j.ejphar.2006.09.010
    *ref*/Bishnoi M, Chopra K, Kulkarni S. Possible anti-oxidant and neuroprotective mechanisms of zolpidem in attenuating typical anti-psychotic-induced orofacial dyskinesia -A biochemical and neurochemical study. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:1130-8. https://doi.org/10.1016/j.pnpbp.2007.04.007
    *ref*/Martins M, Petronilho F, Gomes K, Dai-Pizzol F, Streck E, Quevedo J. Antipsychotic induced oxidative stress in rat brain. Neurotox Res. 2008;13:63-9. https://doi.org/10.1007/BF03033368
    *ref*/Naidu P, Singh A, Kulkarni S. Quercetin, a bioflavonoid attenuated haloperidol induced orofacial dyskinesia. Neuropharmacology. 2003;44:1100-6. https://doi.org/10.1016/S0028-3908(03)00101-1
    *ref*/Singh A, Naidu P, Kulkarni S. Possible antioxidant and neuroprotective mechanisms of FK506 in attenuating haloperidol-induced orofacial dyskinesia. Eur J Pharmacol. 2003;477:87-94. https://doi.org/10.1016/S0014-2999(03)02124-1
    *ref*/Pavshintsev VV, Podshivalova LS, Frolova OY, Belopolskaya OA, Averina OA, Kushnir EA, et al. Effects of mitochondrial antioxidant SkQ1 on biochemical and behavioural parameters in a Parkinsonism model in mice. Biochemistry (Mosc). 2003;82:1513-20. https://doi.org/10.1134/S0006297917120100
    *ref*/Molina-Jiménez M F, Sánchez-Reus M I, Benedi J. Effect of fraxetin and myricetin on rotenone-induced cytotoxicity in SH-SY5Y cells: Comparison with N-acetylcysteine. Eur J Pharmacol. 2003;472:81-7. https://doi.org/10.1016/S0014-2999(03)01902-2
    *ref*/Kong LD, Tan RX, Woo AY, Cheng CH. Inhibition of rat brain monoamine oxidase activities by psoralen and isopsoralen: Implications for the treatment of affective disorders. Pharmacol Toxicol. 2001;88:75-80.

  8. 8
    Academic Journal

    Alternate Title: Análogo de cumarina 3-metil-7H-furo[3,2-g]cromen-7-ona, un posible agente antiparquinsoniano.

    المصدر: Revista Biomedica. 2019, Vol. 39 Issue 3, p2-30. 29p. 6 Graphs.

  9. 9
    Academic Journal

    Alternate Title: El análogo de cumarina 3-metil-7H-furo[3,2-g]cromen-7-ona, un posible agent antiparkinsoniano. (Spanish)

    المصدر: Biomédica: Revista del Instituto Nacional de Salud; sep2019, Vol. 39 Issue 3, p491-501, 11p

  10. 10
  11. 11
    Academic Journal

    المصدر: Biomedica; Vol. 30 No. 2 (2010); 245-50 ; Biomédica; Vol. 30 Núm. 2 (2010); 245-50 ; 2590-7379 ; 0120-4157 ; 10.7705/biomedica.v30i2

    وصف الملف: application/pdf

    Relation: https://revistabiomedica.org/index.php/biomedica/article/view/187/178; https://revistabiomedica.org/index.php/biomedica/article/view/187/368; Eadie MJ. Could Valerian have been the first anticonvulsant? Epilepsia. 2004;45:1338-43. 2. Houghton PJ. The scientific basis for the reputed activity of Valerian. J Pharm Pharmacol.1999;51:505-12. 3. Fernández S, Wasowski C, Paladini AC, Marder M. Sedative and sleep-enhancing properties of linarin, a flavonoid-isolated from Valeriana officinalis. Pharmacol Biochem Behav. 2004;77:399-04. 4. García H. Flora medicinal de Colombia, Botánica Médica. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá: Mundo Editores; 1992. Tomo 3. p. 254-62. 5. Arévalo D, Martínez C, Rincón J, Guerrero MF. Fracción alcaloidal obtenida de Valeriana pavonii Poepp con actividad anticonvulsivante. Rev Colomb Ciencias Quím Farm. 2006;35:168-76. 6. Célis CT, Rincón J, Guerrero MF. Actividad farmacológica sobre el sistema nervioso central del extracto etanólico y de la fracción alcaloidal de Valeriana pavonii. Rev Colomb Ciencias Quím Farm. 2007;36:11-22. 7. Pradilla G, Vesga B, León-Sarmiento F, Grupo Geneco. Estudio neuroepidemiológico nacional (EPINEURO) colombiano. Rev Panam Salud Pública. 2003;14:104-11. 8. Burneo J, Tellez-Zenteno J, Wiebe S. Understanding the burden of epilepsy in Latin America: a systematic review of its prevalence and incidence. Epilepsy Res. 2005; 66:63-74. 9. Löscher W. Current status and future directions in the pharmacotherapy of epilepsy. Trends Pharmacol Sci. 2002;23:113-8. 10. Schachter SC. Botanicals and herbs: a traditional approach to treating epilepsy. Neurotherapeutics. 2009;6:415-20. 11. Giardina WJ. Models of epilepsy: Electroshock and chemical induced convulsions in the mouse. En: Current Protocols in Pharmacology. New York: John Wiley & Sons; 2000. Volume 5. p. 1-22. 12. Wolf P. Basic principles of the ILAE syndrome classification. Epilepsy Res. 2006;70(Suppl.1):S20-6. 13. Swinyard EA, Woodhead JH. Experimental detection, quantification, and evaluation of anticonvulsants. En: Woodbury DM, Penry JK, Pippenger CE. Antiepileptic Drugs. 2nd edition. New York: Raven Press; 1982. p. 111-26. 14. Bialer M, Johannessenb SI, Kupferbergc HJ, Levyd RH, Perucca E, Tomson T. Progress report on new antiepileptic drugs: a summary of the seventh EILAT conference (EILAT VII). Epilepsy Res. 2004;61:1-48. 15. Pollard JR, French J. Antiepileptic drugs in development. Lancet Neurol. 2006;5:1064-7. 16. America´s Pharmaceutical Research Companies. Pharmaceutical companies researching and developing more than 500 medicines for neurological disorders. En: Report, medicines in development for neurological disorders. Washington, D.C.: Pharma, New Medicines, New Hope; 2008. p. 37. 17. Bialer M, Yagen B. Valproic acid: second generation. Neurotherapeutics. 2007;4:130-7. 18. Isoherranen N, Yagen B, Bialer M. New CNS-active drugs which are second-generation valproic acid: can they lead to the development of a magic bullet? Curr Opin Neurol. 2003;16:203-11. 19. Nau H, Siemens H. Differentiation between valproate-induced antiepileptic effect, teratogenicity and hepatotoxicity. Pharm Weekbl Sci. 1992;14:101-5. 20. Bucková A, Grznár K, Haladová M, Eisenreichová E. Active principles in Valeriana officinalis L. Cesk Farm. 1977;26:308-9.; https://revistabiomedica.org/index.php/biomedica/article/view/187

  12. 12
    Academic Journal
  13. 13
  14. 14
  15. 15
  16. 16
    Electronic Resource

    Additional Titles: Isovaleramida, principio anticonvulsivo aislado de Valeriana pavonii

    المصدر: Biomedica; Vol. 30 No. 2 (2010); 245-50; Biomédica; Vol. 30 Núm. 2 (2010); 245-50; 2590-7379; 0120-4157; 10.7705/biomedica.v30i2

    URL: https://revistabiomedica.org/index.php/biomedica/article/view/187
    https://revistabiomedica.org/index.php/biomedica/article/view/187/178
    https://revistabiomedica.org/index.php/biomedica/article/view/187/368
    https://revistabiomedica.org/index.php/biomedica/article/view/187/178
    https://revistabiomedica.org/index.php/biomedica/article/view/187/368
    *ref*/Eadie MJ. Could Valerian have been the first anticonvulsant? Epilepsia. 2004;45:1338-43.2. Houghton PJ. The scientific basis for the reputed activity of Valerian. J Pharm Pharmacol.1999;51:505-12.3. Fernández S, Wasowski C, Paladini AC, Marder M. Sedative and sleep-enhancing properties of linarin, a flavonoid-isolated from Valeriana officinalis. Pharmacol Biochem Behav. 2004;77:399-04.4. García H. Flora medicinal de Colombia, Botánica Médica. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá: Mundo Editores; 1992. Tomo 3. p. 254-62.5. Arévalo D, Martínez C, Rincón J, Guerrero MF. Fracción alcaloidal obtenida de Valeriana pavonii Poepp con actividad anticonvulsivante. Rev Colomb Ciencias Quím Farm. 2006;35:168-76.6. Célis CT, Rincón J, Guerrero MF. Actividad farmacológica sobre el sistema nervioso central del extracto etanólico y de la fracción alcaloidal de Valeriana pavonii. Rev Colomb Ciencias Quím Farm. 2007;36:11-22.7. Pradilla G, Vesga B, León-Sarmiento F, Grupo Geneco. Estudio neuroepidemiológico nacional (EPINEURO) colombiano. Rev Panam Salud Pública. 2003;14:104-11.8. Burneo J, Tellez-Zenteno J, Wiebe S. Understanding the burden of epilepsy in Latin America: a systematic review of its prevalence and incidence. Epilepsy Res. 2005; 66:63-74.9. Löscher W. Current status and future directions in the pharmacotherapy of epilepsy. Trends Pharmacol Sci. 2002;23:113-8.10. Schachter SC. Botanicals and herbs: a traditional approach to treating epilepsy. Neurotherapeutics. 2009;6:415-20.11. Giardina WJ. Models of epilepsy: Electroshock and chemical induced convulsions in the mouse. En: Current Protocols in Pharmacology. New York: John Wiley & Sons; 2000. Volume 5. p. 1-22.12. Wolf P. Basic principles of the ILAE syndrome classification. Epilepsy Res. 2006;70(Suppl.1):S20-6.13. Swinyard EA, Woodhead JH. Experimental detection, quantification, and evaluation of

  17. 17
    Academic Journal

    المساهمون: Universidade de Santiago de Compostela. Centro de Investigación en Medicina Molecular e Enfermidades Crónicas, Universidade de Santiago de Compostela. Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica

    وصف الملف: application/pdf

    Relation: https://doi.org/10.1590/s2175-97902019000317609; OLAYA, María del Pilar et al. 8-Propyl-6H-[1,3]dioxolo[4,5-g]chromen-6-one: A new coumarin with monoamine oxidase B inhibitory activity and possible anti-parkinsonian effects. Braz. J. Pharm. Sci. [online]. 2020, vol.56 [cited 2020-04-23], e17609. Available from: . Epub Mar 16, 2020. ISSN 2175-9790. https://doi.org/10.1590/s2175-97902019000317609; http://hdl.handle.net/10347/21693

  18. 18
    Academic Journal

    وصف الملف: application/pdf

    Relation: info:eu-repo/semantics/altIdentifier/url/http://www.latamjpharm.org/previous_issue.php?vol=32&num=8; http://hdl.handle.net/11336/8514; Giraldo, Sara E.; Rincón, Javier; Guerrero, Mario F.; López, Isabel; Jiménez, Ignacio; et al.; Valepotriate Hydrines Isolated from an Anticonvulsant Fraction of Valeriana pavonii Poepp. & Endl; Colegio Farmaceuticos Provincia de Buenos Aires; Latin American Journal of Pharmacy; 32; 8-2013; 1224-1230

  19. 19
    Academic Journal

    وصف الملف: application/pdf

    Relation: info:eu-repo/semantics/altIdentifier/url/https://jppres.com/jppres/iridoid-esters-from-valeriana-pavonii-as-gabaa-modulators/; http://hdl.handle.net/11336/227836; Giraldo, Sara Emilia; Bedoya, Mauricio; Peña Varas, Carlos; Santana, Paula A.; Bazzocchi, Isabel L.; et al.; Iridoid esters from Valeriana pavonii Poepp. & Endl. as GABAA modulators: Structural insights in their binding mode and structure-activity relationship; Asociación Académica de Ciencias Farmacéuticas de Antofagasta; Journal of Pharmacy and Pharmacognosy Research; 11; 3; 5-2023; 367-380; CONICET Digital; CONICET

  20. 20
    Academic Journal

    وصف الملف: application/pdf

    Relation: info:eu-repo/semantics/altIdentifier/url/http://www.revistabiomedica.org/index.php/biomedica/article/view/187; info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/d39vnv; http://hdl.handle.net/11336/18247; Giraldo, Sara Emilia; Rincón, Javier; Puebla, Pilar; Marder, Nora Mariel; Wasowski, Cristina Lucia N.; et al.; Isovaleramida, principio anticonvulsivo aislado de Valeriana pavonii; Instituto Nacional de Salud; Biomédica; 30; 2; 4-2010; 245-250; CONICET Digital; CONICET