-
1Academic Journal
المؤلفون: Vega Posada, Carlos Alberto, Teixeira Gonçalves, Paulo, González de León, Marco Antonio, Graciano Gallego, Carlos Alberto
مصطلحات موضوعية: Mecánica de suelos, Soil mechanics, Análisis comparativo, Comparative analysis, Submarine pipelines, Tuberías submarinas, Pandeo de levantamiento, Upheaval buckling, http://aims.fao.org/aos/agrovoc/c_ed80f2b8, http://aims.fao.org/aos/agrovoc/c_30b8b068
وصف الملف: application/pdf
Relation: Rev. Fac. Ing. Univ. Antioquia; https://hdl.handle.net/10495/32781; https://revistas.udea.edu.co/index.php/ingenieria/article/view/344509
-
2Dissertation/ Thesis
المؤلفون: Vega Posada, Carlos Alberto
مصطلحات موضوعية: Civil Engineering, Engineering, PCC pavement, AC pavement, pavement performance, FWD test
-
3Academic Journal
المؤلفون: Carvajal Muñoz, Juan Sebastián, Vega Posada, Carlos Alberto, Saldarriaga Molina, Julio César
مصطلحات موضوعية: Análisis matemático, Mathematical analysis, Suelos, Soils, Mecánica de suelos, Soil mechanics, Suelo no homogéneo
وصف الملف: application/pdf
Relation: Rev. Fac. Ing. Univ. Antioquia; https://hdl.handle.net/10495/32771; https://revistas.udea.edu.co/index.php/ingenieria/article/view/343176
-
4Academic Journal
المصدر: Revista Facultad de Ingeniería Universidad de Antioquia; No. 107 (2023): Revista Facultad de Ingeniería (Apr-Jun 2023); 39-52 ; Revista Facultad de Ingeniería Universidad de Antioquia; Núm. 107 (2023): Revista Facultad de Ingeniería (Apr-Jun 2023); 39-52 ; 2422-2844 ; 0120-6230
مصطلحات موضوعية: Ground improvement, liquefaction, soil desaturation, numerical analysis, Civil Engineering, Soil Mechanics, Civil, environmental, liqueafaction, Mejoramiento de suelo, licuefacción, desaturación del suelo, análisis númerico, medio ambiente, mejoramiento del suelo
وصف الملف: application/pdf; text/html; text/xml
Relation: https://revistas.udea.edu.co/index.php/ingenieria/article/view/345673/20808025; https://revistas.udea.edu.co/index.php/ingenieria/article/view/345673/20817068; https://revistas.udea.edu.co/index.php/ingenieria/article/view/345673/20817069; https://revistas.udea.edu.co/index.php/ingenieria/article/view/345673
-
5Academic Journal
المؤلفون: Montoya-Domínguez, Juan David, García-Aristizábal, Edwin Fabián, Vega-Posada, Carlos Alberto
المصدر: Revista Facultad de Ingeniería; Vol. 25 No. 43 (2016); 97-109 ; Revista Facultad de Ingeniería; Vol. 25 Núm. 43 (2016); 97-109 ; 2357-5328 ; 0121-1129
مصطلحات موضوعية: initial water content, laboratory testing, slope models, unsaturated soil, water infiltration, contenido inicial de agua, ensayos de laboratorio, infiltración de agua, modelos de talud, suelo parcialmente saturado
وصف الملف: application/pdf; text/html
Relation: https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5302/4430; https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5302/5065; https://revistas.uptc.edu.co/index.php/ingenieria/article/view/5302; https://repositorio.uptc.edu.co/handle/001/14158
-
6Academic Journal
المصدر: Tecnura Journal; Vol. 25 No. 68 (2021): April - June ; 140-164 ; Tecnura; Vol. 25 Núm. 68 (2021): Abril - Junio ; 2248-7638 ; 0123-921X
مصطلحات موضوعية: desaturación de suelo, licuefacción, mejoramiento de suelos, liquefaction, soil improvement, soil desaturation
وصف الملف: application/pdf; text/xml
Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/16282/16975; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/16282/17513; Bouferra, R., Benseddiq, N. y Shahrour, I. (2007). Saturation and preloading effects on the cyclic behavior of sand. International Journal of Geomechanics, 7(5), 396-401. DOI: https://doi.org/10.1061/(ASCE)1532-3641(2007)7:5(396) https://doi.org/10.1061/(ASCE)1532-3641(2007)7:5(396); Camp, W. M., Camp, H. C. y Andrus, R. D. (2010). Liquefaction mitigation using air injection. En International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Missouri University of Science and Technology.; Chaney, R. C. (1978). Saturation effects on the cyclic strength of sands. En Volume I of Earthquake Engineering and Soil Dynamics--Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference (pp. 342-358). Junio 19-21. Pasadena, California: Geotechnical Engineering Division of ASCE.; Chen, J., Hopmans, J. y Grismer, M. (1999). Parameter estimation of two-fluid capillary pressure–saturation and permeability functions. Advances in Water Resources, 22(5), 479-493. DOI: https://doi.org/10.1016/S0309-1708(98)00025-6; Darcy, H. (1983). Determination of the laws of flow of water through sand. En R. A. Freeze y W. Back (eds.), Physical hydrogeology. Benchmark Papers in Geology (vol. 72). Stroudsburg: Hutchinson Ross.; Eseller-bayat, E., Yegian, M. K. y Alshawabkeh, A. (2013). Liquefaction response of partially saturated sands. I : experimental results. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 863-871. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000815.; Gallagher, P. M., Pamuk, A. y Abdoun, T. (2007). Stabilization of liquefiable soils using colloidal silica grout. Journal of Materials in Civil Engineering, 19(1), 33-40. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33); Gao, Q., Liu, Z. y Yu, X. (2013). Computer simulations on the effects of desaturation on soil liquefaction resistance. En IACGE, 786-795. Reston, EE. UU.: American Society of Civil Engineers. DOI: https://doi.org/10.1061/9780784413128.091; Grozic, J. L. H., Nadim, F. y Kvalstad, T. J. (2005). On the undrained shear strength of gassy clays. Computers and Geotechnics, 32(7), 483-490. DOI: https://doi.org/10.1016/j.compgeo.2005.10.002; Grozic, J. L., Robertson, P. K. y Morgenstern, N. R. (1999). The behavior of loose gassy sand. Canadian Geotechnical Journal, 36(3), 482-492. DOI: https://doi.org/10.1139/t99-007; He, J., Chu, J. e Ivanov, V. (2013). Mitigation of liquefaction of saturated sand using biogas. Géotechnique, 63(4), 267-275. DOI: https://doi.org/10.1680/geot.SIP13.P.004; Holbrook, T. B., Bass, D., Boersma, P., DiGiulio, D. C., Eisenbeis, J., Hutzler, N. J. y Roberts E. (1998). Vapor extraction and air sparging design and application. wastech innovative site remediation technology series (vol. 7). Annapolis, EE. UU.; Horgue, P., Soulaine, C., Franc, J., Guibert, R. y Debenest, G. (2015). An open-source toolbox for multiphase flow in porous media. Computer Physics Communications, 187, 217-226. DOI: https://doi.org/10.1016/j.cpc.2014.10.005; Ishihara, K., Huang, Y. y Tsuchiya, H. (1998). Liquefaction resistance of nearly saturated sand as correlated with longitudinal wave velocity. En J. F. Thimus et al. (eds.), Poromechanics: a tribute to Maurice A. Biot (pp. 583-586). Boca Ratón: CRC Press. https://doi.org/10.1201/9781003078487-98; Ishihara, M., Okamura, M. y Oshita, T. (2003). Desaturating sand deposit by air injection for reducing liquefaction potential. En Proc. Pacific Conference on Earthquake Engineering. Tsukuba City, Japón.; Kohno, I. y Nishigaki, M. (1982). Some aspects of laboratory permeability test. Soils and Foundations, 22(4), 181-190. DOI: https://doi.org/10.3208/sandf1972.22.4_181; Lu, N. y Likos, W. J. (2004). Unsaturated soil mechanics. Hoboken, EE. UU.: Wiley. Recuperado de https://books.google.com.co/books?id=Rv1RAAAAMAAJ; Lundegard, P. D. y LaBrecque, D. (1995). Air sparging in a sandy aquifer (Florence, Oregon, U.S.A.): actual and apparent radius of influence. Journal of Contaminant Hydrology, 19(1), 1-27. DOI: https://doi.org/10.1016/0169-7722(95)00010-S; Marasini, N. P. y Okamura, M. (2015a). Air injection to mitigate liquefaction under light structures. International Journal of Physical Modelling in Geotechnics, 15(3), 129-140. DOI: https://doi.org/10.1680/jphmg.14.00005; Marasini, N. P. y Okamura, M. (2015b). Numerical simulation of centrifuge tests to evaluate the performance of desaturation by air injection on liquefiable foundation soil of light structures. Soils and Foundations, 55(6), 1388-1399. DOI: https://doi.org/10.1016/j.sandf.2015.10.005; Marulanda, C., Culligan, P. J. y Germaine, J. T. (2000). Centrifuge modeling of air sparging - a study of air flow through saturated porous media. Journal of Hazardous Materials, 72(2-3), 179-215. DOI: https://doi.org/10.1016/S0304-3894(99)00140-5; McCray, J. E. (2000). Mathematical modeling of air sparging for subsurface remediation: state of the art. Journal of Hazardous Materials, 72(2-3), 237-263. DOI: https://doi.org/10.1016/S0304-3894(99)00142-9; Mitsuji, K. (2008). Numerical simulations for development of liquefaction countermeasures by use of partially saturated sand. En Proceedings of the 14th World Conference on Earthquake Engineering October (pp. 12-17).; Ogata, H. y Okamura, M. (2006). Experimental study on air behaviour in saturated soil under air injection. En Proc. Symp. On Natural Disaster Prevention, JSCE (pp. 89-90). Tokushima, Japón.; Oka, F., Yashima, A., Shibata, T., Kato, M. y Uzuoka, R. (1994). FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model. Applied Scientific Research, 52(3), 209-245. DOI: https://doi.org/10.1007/BF00853951; Oka, F, Yashima, A., Tateishi, A., Taguchi, Y. y Yamashita, A. (1999). A cyclic elasto-plastic constitutive model for sand considering a plastic-strain dependence of the shear modulus. Géotechnique, 49(5), 661-680. DOI: https://doi.org/10.1680/geot.1999.49.5.661; Okamura, M. y Noguchi, K. (2009). Liquefaction resistances of unsaturated non-plastic silt. Soils and Foundations, 49(2), 221-229. DOI: https://doi.org/10.3208/sandf.49.221; Okamura, M. y Soga, Y. (2006). Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand. Soils and Foundations, 46(5), 695-700. DOI: https://doi.org/10.3208/sandf.46.695; Okamura, M. y Tamura, K. (2004). Prediction method for liquefaction-induced settlement of embankment with remedial measure by deep mixing method. Soils and Foundations, 44(4), 53-65. DOI: https://doi.org/10.3208/sandf.44.4_53; Okamura, M. y Teraoka, T. (2005a). Shaking table tests to investigate soil desaturation as a liquefaction countermeasure. En Seismic Performance and simulation of pile foundations in liquefied and laterally spreading ground (pp. 282-293). Reston, EE. UU.: American Society of Civil Engineers. DOI: https://doi.org/10.1061/40822(184)23; Okamura, M. y Teraoka, T. (2005b). Shaking Table Tests to Investigate Soil Desaturation as a Liquefaction Countermeasure. En Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground (pp. 282-293). Reston, EE. UU.: American Society of Civil Engineers. DOI: https://doi.org/10.1061/40822(184)23; Okamura, M. y Tomida, Y. (2015). Full scale test on cost effective liquefaction countermeasure for highway embankment. En Proceedings of Sixth Internal Geotechnical Symposium on Disaster Mitigation in Special Geoenvironment Conditions. IIT Madras Chennai, India.; Okamura, M., Ishihara, M. y Tamura, K. (2003). Liquefaction resistances and degree of saturation of sand improved with sand compaction piles. En 13th World Conference on Earthquake Engineering (vol. 43, pp. 175-187). DOI: https://doi.org/10.3208/sandf.43.5_175; Okamura, M., Ishihara, M. y Tamura, K. (2006). Degree of saturation and liquefaction resistances of sand improved with sand compaction pile. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 258-264. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(258); Okamura, Mitsu, Takebayashi, M., Nishida, K., Fujii, N., Jinguji, M., Imasato, T., …, Nakagawa, E. (2009). In-situ test on desaturation by air injection and its monitoring. Japanese.). Journal of Japan Society of Civil Engineers, 65, 756-766. https://doi.org/10.3850/GI100; Okamura, M., Takebayashi, M., Nishida, K., Fujii, N., Jinguji, M., Imasato, T., …, Nakagawa, E. (2011). In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 643-652. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000483; PDE Solutions Inc. (2005). FlexPDE Users Guide. Spokane Valley, EE. UU. Recuperado de http://www.pdesolutions.com; Pinder, G. F. y Gray, W. G. (2008). Essentials of multiphase flow in porous media. Hoboken, EE. UU.: Wiley. Recuperado de https://books.google.com.co/books?id=V3srAMAzw-EC https://doi.org/10.1002/9780470380802; Pruess, K. (1991). TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows. Berkeley, EE. UU. DOI: https://doi.org/10.2172/138333; Rad, N. S., Vianna, A. J. D. y Berre, T. (1994). Gas in soils. II: Effect of gas on undrained static and cyclic strength of sand. Journal of Geotechnical Engineering, 120(4), 716-736. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1994)120:4(716); Ramos, A. M. (2015). Influence of the void ratio and the confining on the static liquefaction in slopes in changi sand. Tecnura, 19(43). 57-67. DOI: https://doi.org/10.14483/udistrital.jour.tecnura.2015.1.a04; Ramos, A. M., Prada, L. F. y Vega, C. A. (2016). Análisis de elementos finitos con un continuo elástico lineal tipo Cosserat. Tecnura 20(50). 43-54. DOI: https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a03; Reddy, K. R. y Adams, J. A. (2001). Effects of soil heterogeneity on airflow patterns and hydrocarbon removal during in situ air sparging. Journal of Geotechnical and Geoenvironmental Engineering, 127(3), 234-247. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(234); Reddy, K. R., Kosgi, S. y Zhou, J. (1995). A review of in-situ air sparging for the remediation of VOC-contaminated saturated soils and groundwater. Hazardous Waste and Hazardous Materials, 12(2), 97-118. DOI: https://doi.org/10.1089/hwm.1995.12.97; Takemura, J., Igarashi, R., Izawa, J., Okamura, M. y Masuda, M. (2009). Centrifuge model tests on soil desaturation as a liquefaction countermeasure. En Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering (vol. 1, pp. 502-505). DOI: https://doi.org/10.3233/978-1-60750-031-5-502; Tomida, Y. (2014). A study on soil desaturation as a liquefactioncounter- measure for highway embankmens. Japón: Ehime University.; Tsukamoto, Y., Kawabe, S., Matsumoto, J. y Hagiwara, S. (2014). Cyclic resistance of two unsaturated silty sands against soil liquefaction. Soils and Foundations, 54(6), 1094-1103. DOI: https://doi.org/10.1016/j.sandf.2014.11.005; Tsukamoto, Y., Ishihara, K., Nakazawa, H., Kamada, K. y Huang, Y. (2002). Resistance of partly saturated sand to liquefaction with reference to longitudinal and shear wave velocities. Soils and Foundations, 42(6), 93-104. DOI: https://doi.org/10.3208/sandf.42.6_93; United States Environmental Protection Agency (US EPA) (1992). A technology assessment of soil vapor extraction and air sparging. EPA/600/R-92/173. Cincinnati, EE. UU.; Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892. DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x; Vega, C. A., Ramos, A. M. y García, E. F. (2017). Efecto del gas en la velocidad de onda de corte de suelos arenosos densificados con explosivos. Tecnura, 21(51), 67-80. DOI: https://doi.org/10.14483/udistrital.jour.tecnura.2017.1.a05; Wisconsin DNR (1995). Updated information and errata regarding guidance on design, installation and operation of in situ air sparging systems. File Ref. 4440. Madison, EE. UU.; Yang, J., Savidis, S. y Roemer, M. (2004). Evaluating liquefaction strength of partially saturated sand. Journal of Geotechnical and Geoenvironmental Engineering, 130(9), 975-979. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(975); Yang, J, Savidis, S., Sato, T. y Li, X. S. (2003). Influence of vertical acceleration on soil liquefaction: new findings and implications. Proceeding Soil and Rock America, 1.; Yashima, A., Oka, F., Taguchi, Y. y Tateishi, A. (1995). Three dimensional liquefaction analysis considering the compressibility of fluid phase. En Proceedings 40th JGS Symposium (pp. 257-264).; Yasuhara, H., Okamura, M. y Kochi, Y. (2008). Experiments and predictions of soil desaturation by air-injection technique and the implications mediated by multiphase flow simulation. Soils and Foundations, 48(6), 791-804. DOI: https://doi.org/10.3208/sandf.48.791; Yegian, M. K., Eseller-Bayat, E., Alshawabkeh, A. y Ali, S. (2007). Induced-partial saturation for liquefaction mitigation: experimental investigation. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 372-380. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(372); Yoshimi, Y., Tanaka, K. y Tokimatsu, K. (1989). Liquefaction resistance of a partially saturated sand. Soils and Foundations, 29(3), 157-162. DOI: https://doi.org/10.3208/sandf1972.29.3_157; Zeybek, A. y Madabhushi, G. S. P. (2017a). Centrifuge testing to evaluate the liquefaction response of air-injected partially saturated soils beneath shallow foundations. Bulletin of Earthquake Engineering, 15(1), 339-356. DOI: https://doi.org/10.1007/s10518-016-9968-6; Zeybek, A. y Madabhushi, G. S. P. (2017b). Influence of air injection on the liquefaction-induced deformation mechanisms beneath shallow foundations. Soil Dynamics and Earthquake Engineering, 97, 266-276. DOI: https://doi.org/10.1016/j.soildyn.2017.03.018; Zeybek, A. y Madabhushi, G. S. P. (2017c). Durability of partial saturation to counteract liquefaction. Proceedings of the Institution of Civil Engineers: Ground Improvement, 170(2), 102-111. DOI: https://doi.org/10.1680/jgrim.16.00025; Zeybek, A. y Madabhushi, G. S. P. (2018). Physical modelling of air injection to remediate liquefaction. International Journal of Physical Modelling in Geotechnics, 18(2), 68-80. DOI: https://doi.org/10.1680/jphmg.16.00049; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/16282
-
7Academic Journal
المؤلفون: Teixeira, Paulo, González de León, Marco A., Graciano, Carlos, Vega-Posada, Carlos Alberto
المصدر: Revista Facultad de Ingeniería Universidad de Antioquia; No. 106 (2023): Revista Facultad de Ingeniería (Jan-Mar 2023); 47-55 ; Revista Facultad de Ingeniería Universidad de Antioquia; Núm. 106 (2023): Revista Facultad de Ingeniería (Jan-Mar 2023); 47-55 ; 2422-2844 ; 0120-6230
مصطلحات موضوعية: Comparative analysis, soil mechanics, submarine pipelines, upheaval buckling, Civil engineering, Mechanical engineering, Análisis comparativo, mecánica de suelos, tuberias submarinas, pandeo de levantamiento, Tuberías submarinas, Pandeo por levantamiento, Ingeniería Civil, Ingeniería Mecánica
وصف الملف: application/pdf
-
8Academic Journal
المؤلفون: Carvajal-Muñoz, Juan Sebastián, Vega-Posada, Carlos Alberto, Saldarriaga-Molina, Julio César
المصدر: Revista Facultad de Ingeniería Universidad de Antioquia; No. 103 (2022): Revista Facultad de Ingeniería (Apr-Jun 2022); 67-76 ; Revista Facultad de Ingeniería Universidad de Antioquia; Núm. 103 (2022): Revista Facultad de Ingeniería (Apr-Jun 2022); 67-76 ; 2422-2844 ; 0120-6230
مصطلحات موضوعية: Elemento viga-columna, análisis matemático, suelo no-homogéneo, mecánica de suelos, Resistencia de materiales, Vigas, Columnas, Ingeniería civil, Ingeniería de estructuras, Beam-column element, mathematical analysis, non-homogeneous soil, soil mechanics, Strength of materials, Girders, Columns, Civil engineering, Structural engineering
وصف الملف: application/pdf
-
9Academic Journal
المؤلفون: García Aristizabal, Edwin Fabián, Vega Posada, Carlos Alberto, Montoya, Juan, Noriega, Pablo, Alfonso, Jhon, Cajicá, Leonardo
مصطلحات موضوعية: Alteraciones hidrotermales, Clasificación geomecánica, Depósito tipo Pórfido, MRMR, RMR, Hidrotermals alterations, Porphyry deposit, Rock Mass Classification
وصف الملف: application/pdf
Relation: Bol. cienc. tierra; http://hdl.handle.net/10495/10745
-
10Academic Journal
المؤلفون: Perez Rodriguez, Manuel Santiago, Garcia-Aristizabal, Edwin Fabian, Vega-Posada, Carlos Alberto, Montoya-Dominguez, Juan, Noriega, Pablo, Alfonso, Jhon, Cajicáca, Leonardo
المصدر: Boletín de Ciencias de la Tierra; No. 43 (2018): August - January; 34-44 ; Boletín de Ciencias de la Tierra; Núm. 43 (2018): Agosto - Enero; 34-44 ; 2357-3740 ; 0120-3630
مصطلحات موضوعية: Rock Mass Classification, RMR, MRMR, Porphyry deposit, hidrotermals alterations, Clasificación geomecánica, depósito tipo Pórfido, alteraciones hidrotermales, Geomecanica, Mecanica de Rocas, Geotecnia
وصف الملف: application/pdf
-
11Academic Journal
المؤلفون: Perez Rodriguez, Manuel Santiago, Garcia-Aristizabal, Edwin Fabian, Vega-Posada, Carlos Alberto, Montoya-Dominguez, Juan, Noriega, Pablo, Alfonso, Jhon, Cajicáca, Leonardo
مصطلحات موضوعية: 55 Ciencias de la tierra / Earth sciences and geology, Rock Mass Classification, RMR, MRMR, Porphyry deposit, hidrotermals alterations, Clasificación geomecánica, depósito tipo Pórfido, alteraciones hidrotermales
وصف الملف: application/pdf
Relation: https://revistas.unal.edu.co/index.php/rbct/article/view/67217; Universidad Nacional de Colombia Revistas electrónicas UN Boletín Ciencias de la Tierra; Boletín Ciencias de la Tierra; Perez Rodriguez, Manuel Santiago and Garcia-Aristizabal, Edwin Fabian and Vega-Posada, Carlos Alberto and Montoya-Dominguez, Juan and Noriega, Pablo and Alfonso, Jhon and Cajicáca, Leonardo (2018) Estudio comparativo entre sistemas de clasificación geomecánica en un depósito tipo Pórfido. Boletín de Ciencias de la Tierra (43). pp. 34-44. ISSN 2357-3740; https://repositorio.unal.edu.co/handle/unal/68366; http://bdigital.unal.edu.co/69399/
-
12Academic Journal
المؤلفون: Vega-Posada, Carlos Alberto, Ramos-Cañón, Alfonso Mariano, García Aristizábal, Edwin Fabián
المصدر: Tecnura Journal; Vol. 21 No. 51 (2017): January - March; 67-80 ; Tecnura; Vol. 21 Núm. 51 (2017): Enero - Marzo; 67-80 ; 2248-7638 ; 0123-921X
مصطلحات موضوعية: arenas sueltas, densificación con explosivos, licuación, mejoramiento de suelos, velocidad de onda de corte, Loose sands, blast densification, liquefaction, soil improvement, shear wave velocity
وصف الملف: application/pdf; text/html
Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11969/12609; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11969/12819; Amaratunga, A. y Grozic, J.L.H. (2009). On the undrained unloading behaviour of gassy sands. Canadian Geotechnical Journal, 46, 1267-1276.; Been, K.; Jefferies, M.G. y Hachey, J. (1991). The critical state of sands. Géotechnique, 41(3), 365-381.; Castro, G.; Seed, R.B.; Keller, T.O. y Seed, H.B. (1992). Steady-state strength analysis of lower San Fernando Dam slide. Journal of Geotechnical Engineering, 118(3), 406-427.; Chaney, R. y Mulilis, J.P. (1978). Suggested method for soil specimen remolding by wet-raining. Geotechnical Testing Journal, 1(2), 107-108.; Chern, J.C. (1981). Effect of static shear on resistance to liquefaction. Tesis M.A.Sc. Vancouver, Canadá: The University of British Columbia.; Chern, J.C. (1985). Undrained response of saturated sands with emphasis on liquefaction and cyclic mobility. Tesis de doctorado. Vancouver, Canadá: The University of British Columbia.; Finno, R.J.: Gallant, A.P. y Sabatini, P.J. (2016). Evaluating Ground Improvement after Blast Densification: Performance at the Oakridge Landfill. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 10.1061/(ASCE)GT.1943-5606.0001365, 04015054.; Ghionna, V. y Porcino, D. (2006). Liquefaction Resistance of Undisturbed and Reconstituted Samples of a Natural Coarse Sand from Undrained Cyclic Triaxial Tests. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 194-202. DOI:10.1061/(ASCE)1090-0241(2006)132:2(194); Gohl, W.B.; Jefferies, M.G.; Howie, J.A. y Diggle, D. (2000). Explosive compaction: design, implementation and effectiveness. Géotechnique, 50(6), 657-665.; Grozic, J.L.H.; Imam, S.M.R.; Robertson, P.K. y Morgenstern, N.R. (2005). Constitutive modeling of gassy sand behaviour. Canadian Geotechnical Journal, 42(3), 812-829.; Hardin, B.O. y Black, W.L. (1968). Vibration modulus of normally consolidated clay. Journal of the Soil Mechanics and Foundations Division, 94(2), 353-370.; Hardin, B.O. y Richart, F.E.J. (1963). Elastic wave velocities in granular soils. Journal of the Soil Mechanics and Foundations Division, 89(1), 33-65.; Jung, Y.H., Cho, W. y Finno, R.J. (2007). Defining yield from bender element measurements in triaxial stress probe experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(7), 841-849.; Knai, H.B. (2011). Measuring the effect of occluded gas bubbles on stress-strain response of a loose to medium sand. Tesis de maestría. Evanston, IL: Northwestern University.; Kokusho, T.; Yoshida, Y. y Esashi, Y. (1982). Dynamic properties of soft clay for wide strain range. Soils Found., 22(4), 1-18.; Ladd, R.S. (1978). Preparing test speciments using undercompaction. Geotech Test J, GTJODJ., 1(1), 16-23.; Marcuson, W.F. y Wahls, H.E. (1972). Time effects on dynamicshear modulus of clays. Journal of the Soil Mechanics and Foundations Division, 98(12), 1359-1373.; Nageswaran, S. (1983). Effect of gas bubbles on the sea bed behaviour. Tesis de doctorado. Oxford University.; Narsilio, G.A. (2006). Spatial variability and terminal density: Implication in soil behavior. Tesis de doctorado. Atlanta, GA: Georgia Institute of Technology.; Narsilio, G.A.; Santamarina, J.C.; Hebeler, T. y Bachus, R. (2009). Blast Densification: Multi-Instrumented Case History. Journal of Geotechnical and Geoenvironmental Engineering, 135(6), 723-734.; Okamura, M.; Ishihara, M. y Tamura, K. (2006). Degree of saturation and liquefaction resistances of sand improved with sand compaction pile. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 258-264.; Okamura, M.; Takebayashi, M.; Nishida, K.; Fujii, N.; Jinguji, M.; Imasato, T.; .; Nakagawa, E. (2011). In-Situ Desaturation Test by Air Injection and Its Evaluation through Field Monitoring and Multiphase Flow Simulation. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 643-652. DOI:10.1061/(asce)gt.1943-5606.0000483; Poulos, S.J.; Castro, G. y France, J.W. (1985). Liquefaction evaluation procedure. Journal of Geotechnical Engineering, 111(6), 772-792.; Ramos C., A.M. (2015). Influence of the void ratio and the confining on the static liquefaction in slopes in changi sand. Revista Tecnura, 19(43), 63-73.; Ramos C., A.M.; Felipe, P.-S.L. y Vega-Posada, C.A. (2016). Análisis de elementos finitos con un continuo elástico lineal tipo Cosserat. Revista Tecnura, 20(50), 43-54.; Shibata, T. y Soelarno, D.S. (1978). Stress–strain characteristics of clays under cyclic loading. Paper presented at the Proc., Japanese Society of Civil Engineering.; Shibuya, S.; Hwang, S.C. y Mitachi, T. (1997). Elastic shear modulus of soft clays from shear wave velocity measurement. Géotechnique, 47(3), 593-601.; Shibuya, S. y Tanaka, H. (1996). Estimate of elastic shear modulus in Holocene soil deposits. Journal of the Japanese Geotechnical Society : soils and foundation, 36(4), 45-55.; Tomita, Y., Shima, A., & Ohno, T. (1984). Collapse of multiple gas bubbles by a shock wave and induced impulsive pressure. Journal of Applied Physics, 56(1), 125-131.; Vaid, Y.P y Sivathayalan, S. (2000). Fundamental factors affecting liquefaction susceptibility of sands. Canadian Geotechnical Journal, 37(3), 592–606.; Vaid, Y.P.; Sivathayalan, S. y Stedman, D. (1999). Influence of specimen-reconstituting method on the undrained response of sand. Geotechnical Testing Journal, 22(3), 187-195.; Vega-Posada, C.A. (2012). Evaluation of liquefaction susceptibility of clean sands after blast densification. Tesis de doctorado. Evanston, IL: Northwestern Univ.; Vega-Posada, C.A.; Finno, R.J. y Zapata-Medina, D.G. (2014). Effect of Gas on the Mechanical Behavior of Medium-Dense Sands. Journal of Geotechnical and Geoenvironmental Engineering, 140(11), http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001163, 04014063. doi:10.1061/(ASCE)GT.1943-5606.0001163; Vega-Posada, C.A.; Zapata-Medina, D.G. y García-Aristázabal, E.F. (2014). Ground surface settlement of loose sands densified with explosives. Revista Facultad de Ingeniería, (70), 9-17.; Verdugo, R. e Ishihara, K. (1996). The steady state of sandy soils. Soils and Foundation, 36(2), 81-91.; Yegian, M.K.; Eseller-Bayat, E.; Alshawabkeh, A. y Ali, S. (2007). Induced-Partial Saturation for Liquefaction Mitigation: Experimental Investigation. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 372-380. doi:10.1061/(asce)1090-0241(2007)133:4(372); https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11969
-
13Academic Journal
المصدر: Tecnura Journal; Vol. 20 No. 50 (2016): October - December; 43-54 ; Tecnura; Vol. 20 Núm. 50 (2016): Octubre - Diciembre; 43-54 ; 2248-7638 ; 0123-921X
مصطلحات موضوعية: Continuo de cosserat, elementos finitos, Cosserat continuum, finite element method
وصف الملف: application/pdf; text/html
Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11559/12308; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11559/12387; Arévalo, G.; Ramos-Cañón, A.; Prada, L. (2014). Análisis de confiabilidad en un modelo de descarga de silos de almacenamiento mediante el método de elementos discretos (DEM). Obras y proyectos 15, pp 21-30.; Azadeh, R.; Curran, J. (2008). Application of Cosserat Continuum approach in the finite element shear strength reduction analysis of jointed rock slopes. The 12th international conference of international association for computer methods and advances in geomechanics. Goa, India.; Bareither, C.; Benson, C.; Edil, T. (2008). Reproducibility of Direct Shear Tests Conducted on Granular Backfill Materials. Geotechnical Testing Journal, 31(1), pp. 1 -11.; Bazant, Z.; Xiang, Y. (1997). Size Effect in Compression Fracture: Splitting Crack Band Propagation. Journal of Engineering Mechanics. ASCE 123 (2), 162 - 172.; Belytschko, T.; Liu, W.; Moran, B. (2006). Nonlinear finite elements for continua and structures. John Wiley & Sons, Ltd. England.; Cerato, A.; Lutenegger, A. J. (2006). Specimen Size and Scale Effects of Direct Shear Box Test of Sands. Geotechnical Testing Journal, 29(6).; Correa, C.; Maldonado, M.; Prada, L.; Ramos, A. (2015). Aplicabilidad de la energía cinética en el inicio de la inestabilidad de materiales granulares en un tambor rotador mediante la técnica PIV. Revista ingeniería y región, 13 (1).pp 9-18. Cosserat, E.; Cosserat, F. (1909). Theorie des Corps Deformables. Hermann, Paris.; Eringen, A. (1968). Fracture, volume II – MathematicalFundamentals, Chapter Theory of Micropolar Elasticity. pp. 621-729. Academic Press. London.; Gao, J.; Haixue, Y.; Weibing, Z. (2000). Characteristic Study of Interface Between Soil and Concrete by Using Larger Size Single Shear Apparatus and Numerical Analysis. China Civil Engineering Journal, 33(4), pp. 42-46.; Neff, P.; Chelminski, K.; Muller, W.; Wieners, C.; (2007) A numerical solution method for an infinitesimal elasto-plastic –Cosserat model. Mathematical models and methods in applied sciences. 17 (8), pp 1211-1239.; Orlando, A.; Hanes, D.; Shen, H. (2009). Scaling Effects in Direct Shear Test. Powders and Grains 2009 . Proccedings of the 6th International Conference on Micromechanics of Granular Media. AIP Conference Proceedings Col 1145 Issue 1.; Palmeira, E.; Milligan, G. (1989). Scale Effects in Direct Shear Test on Sand. Proceedings of the 12th InternationalConference on Soil Mechanics and Foundation Engineering. 1(1), pp. 739-742.; Prada, L.; Ramos, A.; Solaque, B.; Caicedo, B. (2011). Confiabilidad aplicada al diseño geotécnico de un muro de contención. Revista Obras y Proyectos, 9, pp 49-58. http://dx.doi.org/10.4067/S0718-28132011000100006; Ramos-Cañón, A.; Prada, L. (2015). Desempeño del continuo de Cosserat para tener en cuenta efectos de escala en un ensayo de corte directo. Revista EIA, 12 (23), pp 51-59.; Riahi, A.; Curran, J. (2009). Full finite element Cosserat formulation with application in layered structures. Applied mathematical modelling, 33 (8), pp 3450-3464; Riahi, A.; Curran, J. (2010). Comparison of the Cosserat Continuum approach with finite element interface models in a simulation of layered materials. Transactions A: Civil Engineering, 17 (1), pp. 39-52.; Sharbati, E.; Naghdabadi, R. (2006). Computational aspects of the Cosserat finite element analysis of localization phenomena. Computational material science, 38 (2), pp 303-315.; Tejchman, J. (2007). FE Analysis of contract shear zones in loose granular materials. Granular Matter, 9:pp49-67.; Vega-Posada, C.; Zapata-Medina, D.; Ramos-Cañón, A. (2016). Blast densification: A proposed methodology to quantify the amount of densification required to prevent liquefaction and flow in sandy soils. Revista Facultad de Ingeniería Universidad de Antioquia, 80 , pp 4-8; Wu, P.; Matsushima, K.; Tatsuoka F. (2008). Effects of Specimen Size and Some other Factors on the Strength and Deformation of Granular Soil in Direct Shear Tests. Geotechnical Testing Journal, 31 (1), pp. 1-20.; Zhou, Q.; Helenbrook, B.; Shen, H. (2009). A Computational Study of the Micromechanics Under Pre and Post-Failure in a 2-D Direct Shear Test, Chinese Science Bulletin. Disponible en Doi:10.1007/s11434-009-0516-5.; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11559
-
14Academic Journal
مصطلحات موضوعية: Experimentos, Infiltración, Lluvia, Suelos, Medidores volumétricos
وصف الملف: application/pdf
Relation: Rev. Fac. Ing. Univ. Antioquia; http://hdl.handle.net/10495/7610
-
15Academic Journal
المؤلفون: Montoya-Dominguez, Juan David, García-Aristizábal, Edwin Fabián, Vega-Posada, Carlos Alberto
المصدر: Revista Facultad de Ingeniería Universidad de Antioquia; No. 82 (2017): Revista Facultad de Ingeniería (Jan-Mar 2017); 74-81 ; Revista Facultad de Ingeniería Universidad de Antioquia; Núm. 82 (2017): Revista Facultad de Ingeniería (Ene-Mar 2017); 74-81 ; 2422-2844 ; 0120-6230
مصطلحات موضوعية: unsaturated soil, initial water content, water infiltration, laboratory testing, one-dimensional infiltration, suelo parcialmente saturado, contenido inicial de agua, infiltración de agua, ensayos de laboratorio, infiltración unidimensional
وصف الملف: application/pdf
-
16Academic Journal
مصطلحات موضوعية: Análisis numérico, Infiltración del suelo, Percolación de suelos, Numerical analysis, Soil infiltration, Soil percolation
وصف الملف: application/pdf
Relation: http://hdl.handle.net/10495/9995
-
17Academic Journal
مصطلحات موضوعية: Experimentos, Infiltración, Geosintéticos, Técnicas de drenaje
وصف الملف: application/pdf
Relation: Rev. Fac. Ing. Univ. Antioquia; http://hdl.handle.net/10495/5973
-
18Academic Journal
مصطلحات موضوعية: Análisis de elementos finitos, Continuo Cosserat, Métodos de elementos finitos, Finite element analysis, Finite element method, Medio continuo y elasticidad
وصف الملف: application/pdf
Relation: http://hdl.handle.net/10495/9992
-
19Academic Journal
المصدر: Revista Facultad de Ingeniería Universidad de Antioquia; No. 80 (2016): Revista Facultad de Ingeniería (Jul-Sep 2016); 56-62 ; Revista Facultad de Ingeniería Universidad de Antioquia; Núm. 80 (2016): Revista Facultad de Ingeniería (Jul-Sep 2016); 56-62 ; 2422-2844 ; 0120-6230
مصطلحات موضوعية: blast densification, densification, loose sands, liquefaction, soil improvement, densificación con explosivos, densificación, arenas sueltas, licuación, mejoramiento de suelos
وصف الملف: application/pdf
-
20Academic Journal
المؤلفون: García-Aristizábal, Edwin Fabián, Vega-Posada, Carlos Alberto, Gallego-Hernández, Alba Nury
المصدر: Revista Facultad de Ingeniería Universidad de Antioquia; No. 78 (2016): Revista Facultad de Ingeniería (Jan-Mar 2016); 112-118 ; Revista Facultad de Ingeniería Universidad de Antioquia; Núm. 78 (2016): Revista Facultad de Ingeniería (Ene-Mar 2016); 112-118 ; 2422-2844 ; 0120-6230
مصطلحات موضوعية: soil-geosynthetic, column-test, unsaturated soil, experimental study, infiltration, suelo-geosintético, ensayo de columna, suelo parcialmente saturado, estudio experimental, infiltración
وصف الملف: application/pdf