يعرض 1 - 20 نتائج من 457 نتيجة بحث عن '"Vargas, Édgar"', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1
    Book
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    وصف الملف: 11 páginas; application/pdf

    Relation: 11; 28; Molecules; 1. Yoon, H.; Jang, J. Conducting-Polymer Nanomaterials for High-Performance Sensor Applications: Issues and Challenges. Adv. Funct. Mater. 2009, 19, 1567–1576. [CrossRef] 2. Georgousis, G.; Pandis, C.; Kalamiotis, A.; Georgiopoulos, P.; Kyritsis, A.; Kontou, E.; Pissis, P.; Micusik, M.; Czanikova, K.; Kulicek, J.; et al. Strain Sensing in Polymer/Carbon Nanotube Composites by Electrical Resistance Measurement. Compos. Part B Eng. 2015, 68, 162–169. [CrossRef] 3. Liu, L.; Xiang, D.;Wu, Y.; Zhou, Z.; Li, H.; Zhao, C.; Li, Y. Conductive Polymer Composites Based Flexible Strain Sensors by 3D Printing: A Mini-Review. Front. Mater. 2021, 8, 1–8. [CrossRef] 4. Han, F.; Li, M.; Ye, H.; Zhang, G. Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors. Nanomaterials 2021, 11, 1220. [CrossRef] [PubMed] 5. Song, J.H.; Kim, Y.-T.; Cho, S.; Song, W.-J.; Moon, S.; Park, C.-G.; Park, S.; Myoung, J.M.; Jeong, U. Surface-Embedded Stretchable Electrodes by Direct Printing and Their Uses to Fabricate Ultrathin Vibration Sensors and Circuits for 3D Structures. Adv. Mater. 2017, 29, 1702625. [CrossRef] [PubMed] 6. Kumar, S.; Gupta, T.K.; Varadarajan, K.M. Strong, Stretchable and Ultrasensitive MWCNT/TPU Nanocomposites for Piezoresistive Strain Sensing. Compos. Part B Eng. 2019, 177, 107285. [CrossRef] 7. Zhang, S.; Liu, H.; Yang, S.; Shi, X.; Zhang, D.; Shan, C.; Mi, L.; Liu, C.; Shen, C.; Guo, Z. Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with a Cracked Cellulose Nanofibril/Silver Nanowire Layer. ACS Appl. Mater. Interfaces 2019, 11, 10922–10932. [CrossRef] 8. Feng, D.; Xu, D.;Wang, Q.; Liu, P. Highly Stretchable Electromagnetic Interference (EMI) Shielding Segregated Polyurethane/Carbon Nanotube Composites Fabricated by Microwave Selective Sintering. J. Mater. Chem. C 2019, 7, 7938–7946. [CrossRef] 9. Khalifa, M.; Anandhan, S.; Wuzella, G.; Lammer, H.; Mahendran, A.R. Thermoplastic Polyurethane Composites Reinforced with Renewable and Sustainable Fillers—A Review. Polym. Technol. Mater. 2020, 59, 1751–1769. [CrossRef] 10. Yao, Y.; Xiao, M.; Liu,W. A Short Review on Self-Healing Thermoplastic Polyurethanes. Macromol. Chem. Phys. 2021, 222, 2100002. [CrossRef] 11. Ahirwar, D.; Telang, A.; Purohit, R.; Namdev, A. A Short Review on Polyurethane Polymer Composite. Mater. Today Proc. 2022, 62, 3804–3810. [CrossRef] 12. Wölfel, B.; Seefried, A.; Allen, V.; Kaschta, J.; Holmes, C.; Schubert, D. Recycling and Reprocessing of Thermoplastic Polyurethane Materials towards Nonwoven Processing. Polymers 2020, 12, 1917. [CrossRef] [PubMed] 13. Calvo-Correas, T.; Benitez, M.; Larraza, I.; Ugarte, L.; Peña-Rodríguez, C.; Eceiza, A. Advanced and Traditional Processing of Thermoplastic Polyurethane Waste. Polym. Degrad. Stab. 2022, 198, 109880. [CrossRef] 14. Yan, Q.; Li, C.; Yan, T.; Shen, Y.; Li, Z. Chemically Recyclable Thermoplastic Polyurethane Elastomers via a Cascade Ring-Opening and Step-Growth Polymerization Strategy from Bio-Renewable -Caprolactone. Macromolecules 2022, 55, 3860–3868. [CrossRef] 15. Benedito, A.; Buezas, I.; Giménez, E.; Galindo, B.; D’Amore, A.; Acierno, D.; Grassia, L. Dispersion and characterization of thermoplastic polyurethane/multiwalled carbon nanotubes in co-rotative twin screw extruder. AIP Conf. Proc. 2010, 1255, 227. 16. Gupta, T.K.; Singh, B.P.; Teotia, S.; Katyal, V.; Dhakate, S.R.; Mathur, R.B. Designing of Multiwalled Carbon Nanotubes Reinforced Polyurethane Composites as Electromagnetic Interference Shielding Materials. J. Polym. Res. 2013, 20, 169. [CrossRef] 17. Liu, H.; Gao, J.; Huang,W.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Strain Sensing Polyurethane Nanocomposites with Synergistic Carbon Nanotubes and Graphene Bifillers. Nanoscale 2016, 8, 12977–12989. [CrossRef] 18. Christ, J.F.; Aliheidari, N.; Ameli, A.; Pötschke, P. 3D Printed Highly Elastic Strain Sensors of Multiwalled Carbon Nanotube/ Thermoplastic Polyurethane Nanocomposites. Mater. Des. 2017, 131, 394–401. [CrossRef] 19. Zheng, Y.; Li, Y.; Dai, K.; Liu, M.; Zhou, K.; Zheng, G.; Liu, C.; Shen, C. Conductive Thermoplastic Polyurethane Composites with Tunable Piezoresistivity by Modulating the Filler Dimensionality for Flexible Strain Sensors. Compos. Part A Appl. Sci. Manuf. 2017, 101, 41–49. [CrossRef] 20. Jun, Y.-S.; Hyun, B.G.; Hamidinejad, M.; Habibpour, S.; Yu, A.; Park, C.B. Maintaining Electrical Conductivity of Microcellular MWCNT/TPU Composites after Deformation. Compos. Part B Eng. 2021, 223, 109113. [CrossRef] 21. Moheimani, R.; Aliahmad, N.; Aliheidari, N.; Agarwal, M.; Dalir, H. Thermoplastic Polyurethane Flexible Capacitive Proximity Sensor Reinforced by CNTs for Applications in the Creative Industries. Sci. Rep. 2021, 11, 1104. [CrossRef] [PubMed] 22. Digar, M.;Wen, T.-C. Ionic Conductivity and Morphological Study of a Thermoplastic Polyurethane Based Electrolyte Comprising of Mixed Soft Segments. Polym. J. 2000, 32, 921–931. [CrossRef] 23. Wen, T.-C.; Du, Y.-L.; Digar, M. Compositional Effect on the Morphology and Ionic Conductivity of Thermoplastic Polyurethane Based Electrolytes. Eur. Polym. J. 2002, 38, 1039–1048. [CrossRef] 24. Chen, W.-C.; Chen, H.-H.; Wen, T.-C.; Digar, M.; Gopalan, A. Morphology and Ionic Conductivity of Thermoplastic Polyurethane Electrolytes. J. Appl. Polym. Sci. 2004, 91, 1154–1167. [CrossRef] 25. Deng, Y.; Cao, Q.; He, Z.; Jing, B.; Wang, X.; Peng, X. A Novel High-Performance Electrospun Thermoplastic Polyurethane/Poly (Vinylidene Fluoride)/Polystyrene Gel Polymer Electrolyte for Lithium Batteries. Acta Chim. Slov. 2017, 64, 95–101. [CrossRef] [PubMed] 26. Park, M.; Woo, H.; Heo, J.; Kim, J.; Thangavel, R.; Lee, Y.; Kim, D. Thermoplastic Polyurethane Elastomer-Based Gel Polymer Electrolytes for Sodium-Metal Cells with Enhanced Cycling Performance. ChemSusChem 2019, 12, 4645–4654. [CrossRef] 27. Yan, T.;Wang, Z.; Pan, Z.-J. Flexible Strain Sensors Fabricated Using Carbon-Based Nanomaterials: A Review. Curr. Opin. Solid State Mater. Sci. 2018, 22, 213–228. [CrossRef] 28. Kanbur, Y.; Tayfun, U. Investigating Mechanical, Thermal, and Flammability Properties of Thermoplastic Polyurethane/Carbon Nanotube Composites. J. Thermoplast. Compos. Mater. 2018, 31, 1661–1675. [CrossRef] 29. Kim, N.P. 3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane. Polymers 2020, 12, 1224. [CrossRef] 30. Kanoun, O.; Bouhamed, A.; Ramalingame, R.; Bautista-Quijano, J.R.; Rajendran, D.; Al-Hamry, A. Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. Sensors 2021, 21, 341. [CrossRef] 31. Hoang, A.S. Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polyurethane Composite Films. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 025007. [CrossRef] 32. Lima, A.M.F.; de Castro, V.G.; Borges, R.S.; Silva, G.G. Electrical Conductivity and Thermal Properties of Functionalized Carbon Nanotubes/Polyurethane Composites. Polímeros 2012, 22, 117–124. [CrossRef] 33. Fu, X.; Al-Jumaily, A.M.; Ramos, M.; Chen, Y.-F. Comprehensive Analysis on the Electrical Behavior of Highly Stretchable Carbon Nanotubes/Polymer Composite through Numerical Simulation. J. Mater. Res. 2018, 33, 3398–3407. [CrossRef] 34. Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [CrossRef] [PubMed] 35. Vadhva, P.; Hu, J.; Johnson, M.J.; Stocker, R.; Braglia, M.; Brett, D.J.L.; Rettie, A.J.E. Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook. ChemElectroChem 2021, 8, 1930–1947. [CrossRef] 36. Fang, C.; Yang, R.; Zhang, Z.; Zhou, X.; Lei, W.; Cheng, Y.; Zhang, W.; Wang, D. Effect of Multi-Walled Carbon Nanotubes on the Physical Properties and Crystallisation of Recycled PET/TPU Composites. RSC Adv. 2018, 8, 8920–8928. [CrossRef] 37. Alamusi; Hu, N.; Fukunaga, H.; Atobe, S.; Liu, Y.; Li, J. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites. Sensors 2011, 11, 10691–10723. [CrossRef] 38. Saha, S.; Singh, J.P.; Saha, U.; Goswami, T.H.; Rao, K.U.B. Structure–Property Relationship of SELF-Sustained Homogeneous Ternary Nanocomposites: Key Issues to Evaluate Properties of RrP3HT Wrapped MWNT Dispersed in TPU. Compos. Sci. Technol. 2011, 71, 397–405. [CrossRef] 39. Kwon, S.J.; Ryu, S.H.; Han, Y.K.; Lee, J.; Kim, T.; Lee, S.-B.; Park, B. Electromagnetic Interference Shielding Films with Enhanced Absorption Using Double Percolation of Poly (Methyl Methacrylate) Beads and CIP/MWCNT/TPU Composite Channel. Mater. Today Commun. 2022, 31, 103401. [CrossRef] 40. Liu, L.-C.; Liang,W.-C.; Chen, C.-M. Manufacture of Recyclable Thermoplastic Polyurethane (TPU)/Silicone Blends and Their Mechanical Properties. Manuf. Lett. 2022, 31, 1–5. [CrossRef] 41. Wang, Y.; Chen, X.; Zhu,W.; Huang, X.; Tang, X.; Yang, J. A Comparison of Thermoplastic Polyurethane Incorporated with Graphene Oxide and Thermally Reduced Graphene Oxide: Reduction Is Not Always Necessary. J. Appl. Polym. Sci. 2019, 136, 47745. [CrossRef] 42. Atchudan, R.; Pandurangan, A.; Joo, J. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites. J. Nanosci. Nanotechnol. 2015, 15, 4255–4267. [CrossRef] [PubMed] 43. Gao, Y.; Zhang, Y.; Williams, G.R.; O’Hare, D.; Wang, Q. Layered Double Hydroxide-Oxidized Carbon Nanotube Hybrids as Highly Efficient Flame Retardant Nanofillers for Polypropylene. Sci. Rep. 2016, 6, 35502. [CrossRef] 44. Vadim, F.L. Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena; Wiley: Hoboken, NJ, USA, 2012; ISBN 9780470627785. 45. Huggins, R.A. Simple Method to Determine Electronic and Ionic Components of the Conductivity in Mixed Conductors a Review. Ionics 2002, 8, 300–313. [CrossRef] 46. Wang, S.; Yan, M.; Li, Y.; Vinado, C.; Yang, J. Separating Electronic and Ionic Conductivity in Mix-Conducting Layered Lithium Transition-Metal Oxides. J. Power Sources 2018, 393, 75–82. [CrossRef] 47. Romero, M.; Mombrú, D.; Pignanelli, F.; Faccio, R.; Mombrú, A.W. Mini-Review: Mixed Ionic–Electronic Charge Carrier Localization and Transport in Hybrid Organic–Inorganic Nanomaterials. Front. Chem. 2020, 8, 1–11. [CrossRef] 48. Liu, H.; Li, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Thermoplastic Elastomer Nanocomposites at Ultralow Graphene Loading Levels for Strain Sensor Applications. J. Mater. Chem. C 2016, 4, 157–166. [CrossRef] 49. Jonscher, A.K. Universal Relaxation Law: A Sequel to Dielectric Relaxation in Solids; Chelsea Dielectrics Press: London, UK, 1996; ISBN 9780950871127. 50. Zare, Y.; Rhee, K.Y. A Simple Methodology to Predict the Tunneling Conductivity of Polymer/CNT Nanocomposites by the Roles of Tunneling Distance, Interphase and CNT Waviness. RSC Adv. 2017, 7, 34912–34921. [CrossRef] 51. Khromov, K.Y.; Knizhnik, A.A.; Potapkin, B.V.; Kenny, J.M. Multiscale Modeling of Electrical Conductivity of Carbon Nanotubes Based Polymer Nanocomposites. J. Appl. Phys. 2017, 121, 225102. [CrossRef] 52. Bocharov, G.S.; Eletskii, A.V. Percolation Conduction of Carbon Nanocomposites. Int. J. Mol. Sci. 2020, 21, 7634. [CrossRef] 53. Sanli, A.; Müller, C.; Kanoun, O.; Elibol, C.;Wagner, M.F.X. Piezoresistive Characterization of Multi-Walled Carbon Nanotube- Epoxy Based Flexible Strain Sensitive Films by Impedance Spectroscopy. Compos. Sci. Technol. 2016, 122, 18–26. [CrossRef] 54. Chua, C.; Ang, Y.S.; Ang, L.K. Tunneling Injection to Trap-Limited Space-Charge Conduction for Metal-Insulator Junction. Appl. Phys. Lett. 2022, 121, 192109. [CrossRef] 55. Buhl, J.; Lüder, H.; Gerken, M. Injection-Limited and Space Charge-Limited Currents in Organic Semiconductor Devices with Nanopatterned Metal Electrodes. Nanotechnology 2023, 34, 035202. [CrossRef] [PubMed] 56. Naveen, B.S.; Jose, N.T.; Krishnan, P.; Mohapatra, S.; Pendharkar, V.; Koh, N.Y.H.; Lim,W.Y.; Huang,W.M. Evolution of Shore Hardness under Uniaxial Tension/Compression in Body-Temperature Programmable Elastic Shape Memory Hybrids. Polymers 2022, 14, 4872. [CrossRef] 57. Lee, J.; Koo, J.; Ezekoye, O. Thermoplastic polyurethane elastomer nanocomposites: Density and hardness correlations with flammability performance. In Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, CO, USA, 2–5 August 2009; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2009; pp. 1–9. 58. Mansour, G.; Tsongas, K.; Tzetzis, D.; Tzikas, K. Dynamic Mechanical Characterization of Polyurethane/Multiwalled Carbon Nanotube Composite Thermoplastic Elastomers. Polym. Plast. Technol. Eng. 2017, 56, 1505–1515. [CrossRef] 59. Tayfun, U.; Kanbur, Y.; Abacı, U.; Güney, H.Y.; Bayramlı, E. Mechanical, Electrical, and Melt Flow Properties of Polyurethane Elastomer/Surface-Modified Carbon Nanotube Composites. J. Compos. Mater. 2017, 51, 1987–1996. [CrossRef] 60. Waletzko, R.S.; Korley, L.T.J.; Pate, B.D.; Thomas, E.L.; Hammond, P.T. Role of Increased Crystallinity in Deformation-Induced Structure of Segmented Thermoplastic Polyurethane Elastomers with PEO and PEO􀀀PPO􀀀PEO Soft Segments and HDI Hard Segments. Macromolecules 2009, 42, 2041–2053. [CrossRef]; Muñoz-Chilito, José, et. al. (2023). Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates. Molecules. 28(8). 11 p. https://doi.org/10.3390/molecules28083598; https://hdl.handle.net/10614/15814; Universidad Autónoma de Occidente; Respositorio Educativo Digital UAO; https://red.uao.edu.co/

  4. 4
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; UID/QUI/UI0313/2020; Faculty of Science and Vicerrectoria de Investigaciones at the Universidad de los Andes, Colombia, through the project INV-2020-99-2009; Faculty of Sciences and Humanities and the Comité de Ciencia y Tecnología at the Fundación Universidad de América through the project “IHU-007-2022”; Minciencias by the doctoral fellowship (Doctorado Nacional-6172); https://hdl.handle.net/10316/107436

  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Report
  13. 13
    Book

    المؤلفون: Castañeda Requejo, Jhon Dany, Huangal Scheineder, Sebastián, Pineda Morán, Carmen Selene, Castillo Huamaní, Soledad Marleny, Cuadros Ríos, Rosario Eleana, Pérez Marroquín, Roberto Danilo, Madueño Portilla, Roxana, Tairo Huamán, Ruth Nancy, Lloccallasi Zamata, Eduardo, Rodríguez Barreda, Edward Alex, Sichez Muñoz, Víctor Alejandro, Clemente Calisaya, Zenon Bernardo, Mamani Condori, José Marcial, Siguas Flores, Carlos Javier, Lugo Villegas, Ido, Rodríguez Arteaga, Maruja Agripina, Sotil Cortavarría, Wilfredo Antonio, Gil Quevedo, Walter Stalin, Cornelio Vicuña, Moisés Luis, García Chapoñan, Abraham William, Tufino Ramírez, Yesela Melisa, Cari Checa, Nery Consuelo, Bardales Taculi, Víctor Homero, Chuquilín Herrera, Humbelina, Atapaucar Condori, Jorge Washington, Rivera Guillen, Blanca Beatriz, Gutiérrez García, Erik Arthur, Chucos Calixto, Walter Luis, Paima Rios de Huayta, Ericka Carol, Gomez Villacrez, Beatriz, Huachaca Urbina, Antonio Roberto, León Espinoza, Lessner Augusto, Rojas Apaza, Raúl, Quispe Lino, Carmen Nievez, Cámara Acero, Andrés Avelino, Angulo Chavez, Alember, Martel Tolentino, Wilder Javier, Escobedo Bailón, Christian Michael, Hinostroza Conchucos, Geraldine Junet, Landeo Julcarima, Víctor Alfonso, Cerrón León, Wild Franz, Aguirre Morales, Anita Kori, Padilla Zuñiga, Angel Anibal, Flores Vilcarano, Esther Isabel, Becerra Infanta, Gustavo Adolfo, Peralta Peña, Eliana Ross, Bonilla Cairo, Pablo Santiago, Jesus Balbin, Evelyn Jeannet, Zavala Figueroa, Nataly Johana, Quinto Allca, Edit Nilba, Álvarez Gamarra, Lizbeth Karina, García Chaiña, Esther Elisa, Solano Tacza, Jim Kelvin, Aliaga Salguero, Javier Juan, Calderón Monge, Lessli Beatriz, Pisconte Hernández, Marisa Laura, Jove Baldárrago, Yesenia María, Yangua Cunya, María Flor, Navarro Daviran, John Fisher, Galvan Maldonado, Carlos Abel, Quispe Carrion, Lucio, Quispe Vargas, Edgar, Chaccara Huachaca, Hermenegildo, Falcon Martinez, Katy Guillermina, Gomez Méndez, Julio, Falla Carrillo, Ricardo Lenin Alfredo

    مصطلحات موضوعية: inteligencia artificial, educación, sociedad, economía

  14. 14
    Book
  15. 15
    Book

    المصدر: 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices ; page 253-266 ; ISBN 9781003439448

  16. 16
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal