-
1Academic Journal
المؤلفون: V. S. Volcheck, V. R. Stempitsky
المصدر: Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki, Vol 22, Iss 3, Pp 69-75 (2024)
مصطلحات موضوعية: infrared radiation, quantum well, intersubband transition, simulation, capture-escape model, gallium nitride, optical gain, optoelectronics, absorption, photodetector, Electronics, TK7800-8360
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: V. S. Volcheck, V. R. Stempitsky
المصدر: Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki, Vol 20, Iss 1, Pp 40-47 (2022)
مصطلحات موضوعية: diamond, gallium nitride, graphene, heat-removal system, heterostructure field-effect transistor, large signal performance, power electronics, thermal conductivity, Electronics, TK7800-8360
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: V. S. Volcheck, V. R. Stempitsky
المصدر: Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki, Vol 19, Iss 6, Pp 74-82 (2021)
مصطلحات موضوعية: heterostructure field-effect transistor, grapheme, gallium nitride, self-heating simulation, power electronics, passivation layer, heat-removal system, thermal conductivity, temperature, Electronics, TK7800-8360
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: V. S. Volcheck, V. R. Stempitsky
المصدر: Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki, Vol 18, Iss 8, Pp 62-68 (2020)
مصطلحات موضوعية: nanoparticle, toxicity, functional material, gallium nitride, high electron mobility transistor, heterostructure, sensor, simulation, Electronics, TK7800-8360
وصف الملف: electronic resource
-
5Academic Journal
المؤلفون: V. S. Volcheck, I. Yu. Lovshenko, V. T. Shandarovich, Dao Dinh Ha
المصدر: Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki, Vol 18, Iss 3, Pp 72-80 (2020)
مصطلحات موضوعية: design, high-frequency transistor, heterostructure, semiconductor, Electronics, TK7800-8360
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: V. S. Volcheck, V. R. Stempitsky, В. С. Волчёк, В. Р. Стемпицкий
المصدر: Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series; Том 68, № 2 (2023); 156-166 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 68, № 2 (2023); 156-166 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2023-68-2
مصطلحات موضوعية: управление тепловым режимом, device simulation, GaN, heat dissipation, heat-spreading element, heterostructure field-effect transistor, high electron mobility transistor, power electronics, self-heating, thermal management, нитрид бора, нитрид галлия, приборное моделирование, рассеяние тепла, саморазогрев, силовая электроника, теплоотводящий элемент, транзистор с высокой подвижностью электронов
وصف الملف: application/pdf
Relation: https://vestift.belnauka.by/jour/article/view/800/633; https://vestift.belnauka.by/jour/article/view/800
-
7Academic Journal
المؤلفون: V. S. Volcheck, M. S. Baranava, V. R. Stempitsky, В. С. Волчёк, М. С. Баранова, В. Р. Стемпицкий
المصدر: Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series; Том 67, № 3 (2022); 285-297 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 67, № 3 (2022); 285-297 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2022-67-3
مصطلحات موضوعية: температурная зависимость, phonon, thermal conductivity, GaN, temperature dependence, теплопроводность, фонон
وصف الملف: application/pdf
Relation: https://vestift.belnauka.by/jour/article/view/753/605; Quay R. Gallium Nitride Electronics. Berlin; Heidelberg, Springer, 2008. 470 p.; Roccaforte F., Leszczynski M. (eds.). Nitride Semiconductor Technology: Power Electronics and Optoelectronic Devices. Weinheim, Wiley-VCH, 2020. 464 p. https://doi.org/10.1002/9783527825264; Bernardini F., Fiorentini V., Vanderbilt D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Physical Review B, 1997, vol. 56, no. 16, pp. 24–27. https://doi.org/10.1103/PhysRevB.56.R10024; Yan Z., Liu G., Khan J. M., Balandin A.A. Graphene quilts for thermal management of high-power GaN transistors. Nature Communications, 2012, vol. 3, 827. https://doi.org/10.1038/ncomms1828; Volcheck V. S., Lovshenko I. Yu., Shandarovich V. T., Dao D. H. Gallium nitride high electron mobility transistor with an effective graphene-based heat removal system. Doklady BGUIR, 2020, vol. 18, no. 3, pp. 72–80 (in Russian). https://doi. org/10.35596/1729-7648-2020-18-3-72-80; Wachutka G.K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Transactions on Computer-Aided Design, 1990, vol. 9, no. 11, pp. 1141–1149. https://doi.org/10.1109/43.62751; Asif Khan M., Yang J.W., Knap W., Frayssinet E., Hu X., Simin G., Prystawko P., Leszczynski M., Grzegory I., Porowski S., Gaska R., Shur M.S., Beaumont B., Teisseire M., Neu G. GaN-AlGaN heterostructure field-effect transistors over bulk GaN substrates. Applied Physics Letters, 2000, vol. 76, no. 25, pp. 3807–3809. https://doi.org/10.1063/1.126788; Irekti M.-R., Lesecq M., Defrance N., Okada E., Frayssinet E., Cordier Y., Tartarin J.-G., De-Jaeger J.-C. 2 W/mm power density of an AlGaN/GaN HEMT grown on free-standing GaN substrate at 40 GHz. Semiconductor Science and Technology, 2019, vol. 34, no. 12, 12LT01. https://doi.org/10.1088/1361-6641/ab4e74; Dong Y., Xie Z., Chen D., Lu H., Zhang R., Zheng Y. Effects of dissipative substrate on the performance of enhancement mode AlInN/GaN HEMTs. International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, 2019, vol. 32, no. 1, e2482. https://doi.org/10.1002/jnm.2482; Zou J., Kotchetkov D., Balandin A. A., Florescu D. I., Pollak F.H. Thermal conductivity of GaN films: Effects of impurities and dislocations. Journal of Applied Physics, 2002, vol. 92, no. 5, pp. 2534–2539. https://doi.org/10.1063/1.1497704; Bi W., Kuo H.-C., Ku P.-C., Chen B. (eds.). Handbook of GaN Semiconductor Materials and Devices. New York, CRC Press, 2018. 708 p. https://doi.org/10.1201/9781315152011; Vandersande J. W., Wood C. The thermal conductivity of insulators and semiconductors. Contemporary Physics, 1986, vol. 27, no. 2, pp. 117–144. https://doi.org/10.1080/00107518608211003; Slack G.A. Nonmetallic crystals with high thermal conductivity. Journal of Physics and Chemistry of Solids, 1973, vol. 34, no. 2, pp. 321–335. https://doi.org/10.1016/0022-3697(73)90092-9; Morelli D. T., Heremans J. P., Slack G.A. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Physical Review B, 2002, vol. 66, no. 19, 195304. https://doi.org/10.1103/ PhysRevB.66.195304; Florescu D. I., Asnin V. M., Pollak F. H., Molnar R. J., Wood C.E. C. High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapor phase epitaxy grown n-GaN/sapphire (0001): Doping dependence. Journal of Applied Physics, 2000, vol. 88, no. 6, pp. 3295–3300. https://doi.org/10.1063/1.1289072; Witek A. Some aspects of thermal conductivity of isotopically pure diamond – A comparison with nitrides. Diamond and Related Materials, 1998, vol. 7, no. 7, pp. 962–964. https://doi.org/10.1016/S0925-9635(97)00336-1; Dugdale J. S., MacDonald D.K. C. Lattice thermal conductivity. Physical Review, 1955, vol. 98, no. 6, pp. 1751–1752. https://doi.org/10.1103/PhysRev.98.1751; Callaway J. Model for lattice thermal conductivity at low temperatures. Physical Review, 1959, vol. 113, no. 4, pp. 1046–1051. https://doi.org/10.1103/PhysRev.113.1046; Ma J., Li W., Luo X. Examining the Callaway model for lattice thermal conductivity. Physical Review B, 2014, vol. 90, no. 3, 035203. https://doi.org/10.1103/PhysRevB.90.035203; Kotchetkov D., Zou J., Balandin A. A., Florescu D. I., Pollak F.H. Effect of dislocations on thermal conductivity of GaN layers. Applied Physics Letters, 2001, vol. 79, no. 26, pp. 4316–4318. https://doi.org/10.1063/1.1427153; Liu W., Balandin A.A. Thermal conduction in AlxG1-xN alloys and thin films. Journal of Applied Physics, 2005, vol. 97, no. 7, 073710. https://doi.org/10.1063/1.1868876; Lindsay L., Broido D.A., Reinecke T.L. Thermal conductivity and large isotope effect in GaN from first principles. Physical Review Letters, 2012, vol. 109, no. 9, 095901. https://doi.org/10.1103/PhysRevLett.109.095901; Broido D. A., Malorny M., Birner G., Mingo N., Stewart D.A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Applied Physics Letters, 2007, vol. 91, no. 23, 231922. https://doi.org/10.1063/1.2822891; Slack G. A., Schowalter L. J., Morelli D., Freitas Jr. J.A. Some effects of oxygen impurities on AlN and GaN. Journal of Crystal Growth, 2002, vol. 246, no. 3–4, pp. 287–298. https://doi.org/10.1016/S0022-0248 %2802 %2901753-0; Jezowski A., Danilchenko B. A., Bockowski M., Grzegory I., Krukowski S., Suski T., Paszkiewicz T. Thermal conductivity of GaN crystals in 4.2–300 K range. Solid State Communications, 2003, vol. 128, no. 2–3, pp. 69–73. https://doi. org/10.1016/S0038-1098(03)00629-X; Ju W, Zhou Z., Wei Z. Anisotropic thermal transport property of defect-free GaN. AIP Advances, 2016, vol. 6, no. 6, 065328. https://doi.org/10.1063/1.4955185; Wu R., Hu R., Luo X. First-principles-based full-dispersion Monte Carlo simulation of the anisotropic phonon transport in the wurtzite GaN thin film. Journal of Applied Physics, 2016, vol. 119, no. 14, 145706. https://doi.org/10.1063/1.4945776; Qin Z., Qin G., Zuo X., Xiong Z., Hu M. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: A comparative study. Nanoscale, 2017, vol. 9, pp. 4295–4309. https://doi.org/10.1039/ C7NR01271C; Jiang Y., Cai S., Tao Y., Wei Z., Bi K., Chen Y. Phonon transport properties of bulk and monolayer GaN from first-principles calculations. Computational Materials Science, 2017, vol. 138, pp. 419–425. https://doi.org/10.1016/j.commatsci.2017.07.012; Li W., Carrete J., Katcho N.A., Mingo N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, vol. 185, no. 6, pp. 1747–1758. https://doi.org/10.1016/j.cpc.2014.02.015; Garg J., Luo T., Chen G. Spectral concentration of thermal conductivity in GaN – A first-principles study. Applied Physics Letters, 2018, vol. 112, no. 25, 252101. https://doi.org/10.1063/1.5026903; Behler J., Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical Review Letters, 2007, vol. 98, no. 14, 146401. https://doi.org/10.1103/PhysRevLett.98.146401; Minamitani E., Ogura M., Watanabe S. Simulating lattice thermal conductivity in semiconducting materials using high-dimensional neural network potential. Applied Physics Express, 2019, vol. 12, no. 9, 095001. https://doi.org/10.7567/1882- 0786/ab36bc; Simon R. B., Anaya J., Kuball M. Thermal conductivity of bulk GaN – Effects of oxygen, magnesium doping, and strain field compensation. Applied Physics Letters, 2014, vol. 105, no. 20, 202105. https://doi.org/10.1063/1.4901967; Sichel E. K., Pankove J.I. Thermal conductivity of GaN, 25–360 K. Journal of Physics and Chemistry of Solids, 1977, vol. 38, no. 3, p. 330. https://doi.org/10.1016/0022-3697(77)90112-3; Maruska H. P., Tietjen J.J. The preparation and properties of vapor-deposited single-crystal-line GaN. Applied Physics Letters, 1969, vol. 15, no. 10, pp. 327–329. https://doi.org/10.1063/1.1652845; Asnin V. M., Pollak F. H., Ramer J., Schurman M., Ferguson I. High spatial resolution thermal conductivity of lateral epitaxial overgrown GaN/sapphire (0001) using a scanning thermal microscope. Applied Physics Letters, 1999, vol. 75, no. 9, pp. 1240–1242. https://doi.org/10.1063/1.124654; Luo C.-Y., Marchand H., Clarke D.R., DenBaars S.P. Thermal conductivity of lateral epitaxial overgrown GaN films. Applied Physics Letters, 1999, vol. 75, no. 26, pp. 4151–4153. https://doi.org/10.1063/1.125566; Florescu D. I., Asnin V. M., Pollak F. H., Jones A. M., Ramer J. C., Schurman M. J., Ferguson I. Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy. Applied Physics Letters, 2000, vol. 77, no. 10, pp. 1461–1466. https://doi.org/10.1063/1.1308057; Shibata H., Waseda Y., Ohta H., Kiyomi K., Shimoyama K., Fujito K., Nagaoka H., Kagamitani Y., Simura R., Fukuda T. High thermal conductivity of gallium nitride (GaN) crystals grown by HVPE process. Materials Transactions, 2007, vol. 48, no. 10, pp. 2782–2786. https://doi.org/10.2320/matertrans.MRP2007109; Jagannadham K., Berkman E.A., Elmasry N. Thermal conductivity of semi-insulating, p-type, and n-type GaN films on sapphire. Journal of Vacuum Science & Technology A, 2008, vol. 26, no. 3, pp. 375–379. https://doi.org/10.1116/1.2899379; Richter E., Grunder M., Schineller B., Brunner F., Zeimer U., Netzel C., Weyers M., Trankle G. GaN boules grown by high rate HVPE. Physica Status Solidi C, 2011, vol. 8, no. 5, pp. 1450–1454. https://doi.org/10.1002/pssc.201000901; https://vestift.belnauka.by/jour/article/view/753
-
8Academic Journal
المؤلفون: V S Volcheck, V R Stempitsky
المصدر: Journal of Physics: Conference Series; 2017, Vol. 917 Issue 8, p1-1, 1p