يعرض 1 - 8 نتائج من 8 نتيجة بحث عن '"V. S. Volcheck"', وقت الاستعلام: 0.40s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki, Vol 18, Iss 3, Pp 72-80 (2020)

    وصف الملف: electronic resource

  6. 6
    Academic Journal

    المصدر: Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series; Том 68, № 2 (2023); 156-166 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 68, № 2 (2023); 156-166 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2023-68-2

    وصف الملف: application/pdf

  7. 7
    Academic Journal

    المصدر: Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series; Том 67, № 3 (2022); 285-297 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 67, № 3 (2022); 285-297 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2022-67-3

    وصف الملف: application/pdf

    Relation: https://vestift.belnauka.by/jour/article/view/753/605; Quay R. Gallium Nitride Electronics. Berlin; Heidelberg, Springer, 2008. 470 p.; Roccaforte F., Leszczynski M. (eds.). Nitride Semiconductor Technology: Power Electronics and Optoelectronic Devices. Weinheim, Wiley-VCH, 2020. 464 p. https://doi.org/10.1002/9783527825264; Bernardini F., Fiorentini V., Vanderbilt D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Physical Review B, 1997, vol. 56, no. 16, pp. 24–27. https://doi.org/10.1103/PhysRevB.56.R10024; Yan Z., Liu G., Khan J. M., Balandin A.A. Graphene quilts for thermal management of high-power GaN transistors. Nature Communications, 2012, vol. 3, 827. https://doi.org/10.1038/ncomms1828; Volcheck V. S., Lovshenko I. Yu., Shandarovich V. T., Dao D. H. Gallium nitride high electron mobility transistor with an effective graphene-based heat removal system. Doklady BGUIR, 2020, vol. 18, no. 3, pp. 72–80 (in Russian). https://doi. org/10.35596/1729-7648-2020-18-3-72-80; Wachutka G.K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Transactions on Computer-Aided Design, 1990, vol. 9, no. 11, pp. 1141–1149. https://doi.org/10.1109/43.62751; Asif Khan M., Yang J.W., Knap W., Frayssinet E., Hu X., Simin G., Prystawko P., Leszczynski M., Grzegory I., Porowski S., Gaska R., Shur M.S., Beaumont B., Teisseire M., Neu G. GaN-AlGaN heterostructure field-effect transistors over bulk GaN substrates. Applied Physics Letters, 2000, vol. 76, no. 25, pp. 3807–3809. https://doi.org/10.1063/1.126788; Irekti M.-R., Lesecq M., Defrance N., Okada E., Frayssinet E., Cordier Y., Tartarin J.-G., De-Jaeger J.-C. 2 W/mm power density of an AlGaN/GaN HEMT grown on free-standing GaN substrate at 40 GHz. Semiconductor Science and Technology, 2019, vol. 34, no. 12, 12LT01. https://doi.org/10.1088/1361-6641/ab4e74; Dong Y., Xie Z., Chen D., Lu H., Zhang R., Zheng Y. Effects of dissipative substrate on the performance of enhancement mode AlInN/GaN HEMTs. International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, 2019, vol. 32, no. 1, e2482. https://doi.org/10.1002/jnm.2482; Zou J., Kotchetkov D., Balandin A. A., Florescu D. I., Pollak F.H. Thermal conductivity of GaN films: Effects of impurities and dislocations. Journal of Applied Physics, 2002, vol. 92, no. 5, pp. 2534–2539. https://doi.org/10.1063/1.1497704; Bi W., Kuo H.-C., Ku P.-C., Chen B. (eds.). Handbook of GaN Semiconductor Materials and Devices. New York, CRC Press, 2018. 708 p. https://doi.org/10.1201/9781315152011; Vandersande J. W., Wood C. The thermal conductivity of insulators and semiconductors. Contemporary Physics, 1986, vol. 27, no. 2, pp. 117–144. https://doi.org/10.1080/00107518608211003; Slack G.A. Nonmetallic crystals with high thermal conductivity. Journal of Physics and Chemistry of Solids, 1973, vol. 34, no. 2, pp. 321–335. https://doi.org/10.1016/0022-3697(73)90092-9; Morelli D. T., Heremans J. P., Slack G.A. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Physical Review B, 2002, vol. 66, no. 19, 195304. https://doi.org/10.1103/ PhysRevB.66.195304; Florescu D. I., Asnin V. M., Pollak F. H., Molnar R. J., Wood C.E. C. High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapor phase epitaxy grown n-GaN/sapphire (0001): Doping dependence. Journal of Applied Physics, 2000, vol. 88, no. 6, pp. 3295–3300. https://doi.org/10.1063/1.1289072; Witek A. Some aspects of thermal conductivity of isotopically pure diamond – A comparison with nitrides. Diamond and Related Materials, 1998, vol. 7, no. 7, pp. 962–964. https://doi.org/10.1016/S0925-9635(97)00336-1; Dugdale J. S., MacDonald D.K. C. Lattice thermal conductivity. Physical Review, 1955, vol. 98, no. 6, pp. 1751–1752. https://doi.org/10.1103/PhysRev.98.1751; Callaway J. Model for lattice thermal conductivity at low temperatures. Physical Review, 1959, vol. 113, no. 4, pp. 1046–1051. https://doi.org/10.1103/PhysRev.113.1046; Ma J., Li W., Luo X. Examining the Callaway model for lattice thermal conductivity. Physical Review B, 2014, vol. 90, no. 3, 035203. https://doi.org/10.1103/PhysRevB.90.035203; Kotchetkov D., Zou J., Balandin A. A., Florescu D. I., Pollak F.H. Effect of dislocations on thermal conductivity of GaN layers. Applied Physics Letters, 2001, vol. 79, no. 26, pp. 4316–4318. https://doi.org/10.1063/1.1427153; Liu W., Balandin A.A. Thermal conduction in AlxG1-xN alloys and thin films. Journal of Applied Physics, 2005, vol. 97, no. 7, 073710. https://doi.org/10.1063/1.1868876; Lindsay L., Broido D.A., Reinecke T.L. Thermal conductivity and large isotope effect in GaN from first principles. Physical Review Letters, 2012, vol. 109, no. 9, 095901. https://doi.org/10.1103/PhysRevLett.109.095901; Broido D. A., Malorny M., Birner G., Mingo N., Stewart D.A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Applied Physics Letters, 2007, vol. 91, no. 23, 231922. https://doi.org/10.1063/1.2822891; Slack G. A., Schowalter L. J., Morelli D., Freitas Jr. J.A. Some effects of oxygen impurities on AlN and GaN. Journal of Crystal Growth, 2002, vol. 246, no. 3–4, pp. 287–298. https://doi.org/10.1016/S0022-0248 %2802 %2901753-0; Jezowski A., Danilchenko B. A., Bockowski M., Grzegory I., Krukowski S., Suski T., Paszkiewicz T. Thermal conductivity of GaN crystals in 4.2–300 K range. Solid State Communications, 2003, vol. 128, no. 2–3, pp. 69–73. https://doi. org/10.1016/S0038-1098(03)00629-X; Ju W, Zhou Z., Wei Z. Anisotropic thermal transport property of defect-free GaN. AIP Advances, 2016, vol. 6, no. 6, 065328. https://doi.org/10.1063/1.4955185; Wu R., Hu R., Luo X. First-principles-based full-dispersion Monte Carlo simulation of the anisotropic phonon transport in the wurtzite GaN thin film. Journal of Applied Physics, 2016, vol. 119, no. 14, 145706. https://doi.org/10.1063/1.4945776; Qin Z., Qin G., Zuo X., Xiong Z., Hu M. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: A comparative study. Nanoscale, 2017, vol. 9, pp. 4295–4309. https://doi.org/10.1039/ C7NR01271C; Jiang Y., Cai S., Tao Y., Wei Z., Bi K., Chen Y. Phonon transport properties of bulk and monolayer GaN from first-principles calculations. Computational Materials Science, 2017, vol. 138, pp. 419–425. https://doi.org/10.1016/j.commatsci.2017.07.012; Li W., Carrete J., Katcho N.A., Mingo N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, vol. 185, no. 6, pp. 1747–1758. https://doi.org/10.1016/j.cpc.2014.02.015; Garg J., Luo T., Chen G. Spectral concentration of thermal conductivity in GaN – A first-principles study. Applied Physics Letters, 2018, vol. 112, no. 25, 252101. https://doi.org/10.1063/1.5026903; Behler J., Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical Review Letters, 2007, vol. 98, no. 14, 146401. https://doi.org/10.1103/PhysRevLett.98.146401; Minamitani E., Ogura M., Watanabe S. Simulating lattice thermal conductivity in semiconducting materials using high-dimensional neural network potential. Applied Physics Express, 2019, vol. 12, no. 9, 095001. https://doi.org/10.7567/1882- 0786/ab36bc; Simon R. B., Anaya J., Kuball M. Thermal conductivity of bulk GaN – Effects of oxygen, magnesium doping, and strain field compensation. Applied Physics Letters, 2014, vol. 105, no. 20, 202105. https://doi.org/10.1063/1.4901967; Sichel E. K., Pankove J.I. Thermal conductivity of GaN, 25–360 K. Journal of Physics and Chemistry of Solids, 1977, vol. 38, no. 3, p. 330. https://doi.org/10.1016/0022-3697(77)90112-3; Maruska H. P., Tietjen J.J. The preparation and properties of vapor-deposited single-crystal-line GaN. Applied Physics Letters, 1969, vol. 15, no. 10, pp. 327–329. https://doi.org/10.1063/1.1652845; Asnin V. M., Pollak F. H., Ramer J., Schurman M., Ferguson I. High spatial resolution thermal conductivity of lateral epitaxial overgrown GaN/sapphire (0001) using a scanning thermal microscope. Applied Physics Letters, 1999, vol. 75, no. 9, pp. 1240–1242. https://doi.org/10.1063/1.124654; Luo C.-Y., Marchand H., Clarke D.R., DenBaars S.P. Thermal conductivity of lateral epitaxial overgrown GaN films. Applied Physics Letters, 1999, vol. 75, no. 26, pp. 4151–4153. https://doi.org/10.1063/1.125566; Florescu D. I., Asnin V. M., Pollak F. H., Jones A. M., Ramer J. C., Schurman M. J., Ferguson I. Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy. Applied Physics Letters, 2000, vol. 77, no. 10, pp. 1461–1466. https://doi.org/10.1063/1.1308057; Shibata H., Waseda Y., Ohta H., Kiyomi K., Shimoyama K., Fujito K., Nagaoka H., Kagamitani Y., Simura R., Fukuda T. High thermal conductivity of gallium nitride (GaN) crystals grown by HVPE process. Materials Transactions, 2007, vol. 48, no. 10, pp. 2782–2786. https://doi.org/10.2320/matertrans.MRP2007109; Jagannadham K., Berkman E.A., Elmasry N. Thermal conductivity of semi-insulating, p-type, and n-type GaN films on sapphire. Journal of Vacuum Science & Technology A, 2008, vol. 26, no. 3, pp. 375–379. https://doi.org/10.1116/1.2899379; Richter E., Grunder M., Schineller B., Brunner F., Zeimer U., Netzel C., Weyers M., Trankle G. GaN boules grown by high rate HVPE. Physica Status Solidi C, 2011, vol. 8, no. 5, pp. 1450–1454. https://doi.org/10.1002/pssc.201000901; https://vestift.belnauka.by/jour/article/view/753

  8. 8
    Academic Journal

    المؤلفون: V S Volcheck, V R Stempitsky

    المصدر: Journal of Physics: Conference Series; 2017, Vol. 917 Issue 8, p1-1, 1p