-
1Academic Journal
المؤلفون: N. V. Burkova, O. P. Kirichuk, E. V. Romanchuk, V. A. Davankov, V. N. Postnov, S. I. Kuznetsov
المصدر: Alʹmanah Kliničeskoj Mediciny, Vol 46, Iss 8, Pp 772-777 (2018)
مصطلحات موضوعية: contact blood activation, carbon sorbent, hypercross-linked polystyrene, hemocompatibility, hemolysis, blood cell populations, plasma spectral characteristics, Medicine
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: G. A. Shulmeyster, Yu. V. Cheburkin, Yu. D. Chekmeneva, E. V. Edemskaya, A. B. Bondarenko, V. N. Postnov, D. V. Korolev, Г. А. Шульмейстер, Ю. В. Чебуркин, Ю. Д. Чекменева, Е. В. Едемская, А. Б. Бондаренко, В. Н. Постнов, Д. В. Королев
المساهمون: The work is performed within the State task of the Ministry of Health of the Russian Federation № 121031100284–7, Работа выполнена в рамках государственного задания Минздрава РФ № 121031100284–7
المصدر: Translational Medicine; Том 11, № 1 (2024); 28-44 ; Трансляционная медицина; Том 11, № 1 (2024); 28-44 ; 2410-5155 ; 2311-4495
مصطلحات موضوعية: SARS- CoV-2, protein immobilization, SARS-CoV-2, spacer synthesis, trap proteins, иммобилизация белка, синтез спейсера, энтеросорбент
وصف الملف: application/pdf
Relation: https://transmed.almazovcentre.ru/jour/article/view/834/555; Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat. Med. 2020; 26: 450–452. DOI:10.1038/s41591-020-0820-9.; Zheng YY, Ma YT, Zhang JY, et al. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020; 17: 259–260. DOI:10.1038/s41569-020-0360-5.; Raj VS, Mou H, Saskia L, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013; 495: 251–254. DOI:10.1038/nature12005.; Coutard B, Valle C, de Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020; 176: 104742. DOI:10.1016/j.antiviral.2020.104742.; Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci. Alliance. 2020; 3(9). DOI:10.26508/lsa.202000786.; Serfozo P, Wysocki J, Gulua G, et al. Ang II (angiotensin II) conversion to angiotensin-(1-7) in the circulation is pop (prolyloligopeptidase)-dependent and ACE2 (angiotensin-converting enzyme 2)-independent. Hypertension. 2020; 75: 173–182. DOI:10.1161/HYPERTENSIONAHA.119.14071.; Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004; 203: 631–637. DOI:10.1002/path.1570.; Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV–a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 2009; 7: 226–236. DOI:10.1038/nrmicro2090.; Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020; 395: 565–574. DOI:10.1016/S0140-6736(20)30251-8.; Menachery VD, Yount BL, Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 2015; 21: 1508–1513. DOI:10.1038/nm.3985.; Wysocki J, Ye M, Rodriguez E, et al. Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: Prevention of angiotensin II-dependent hypertension. Hypertension. 2010; 55: 90–98. DOI:10.1161/HYPERTENSIONAHA.109.138420.; Hofmann H, Geier M, Marzi A. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem. Biophys. Res. Commun. 2004; 319(4): 1216–1221. DOI:10.1016/j.bbrc.2004.05.114.; Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clin. Sci. (Lond.). 2020; 134(5): 543–545. DOI:10.1042/CS20200163.; Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426: 450–454. DOI:10.1038/nature02145.; Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003; 348: 1953–1966. DOI:10.1056/NEJMoa030781.; Lei C, Qian K, Li T, et al. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat. Commun. 2020; 11(1): 2070. DOI:10.1038/s41467-020-16048-4.; Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483): 1260–1263. DOI:10.1126/science.abb2507.; Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020; 94(7). DOI:10.1128/JVI.00127-20.; Vankadari N, Wilce JA. Emerging WuHan COVID-19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes. Infect. 2020; 9(1): 601–604. DOI:10.1080/22221751.2020.1739565.; Watanabe Y, Bowden TA, Wilson IA, et al. Exploitation of glycosylation in enveloped virus pathobiology. Biochim. Biophys. Acta. Gen. Subj. 2019; 1863(10): 1480–1497. DOI:10.1016/j.bbagen.2019.05.012.; Morimoto C, Schlossman SF. The structure and function of CD26 in the T-cell immune response. Immunol. Rev. 1998; 161: 55–70. DOI:10.1111/j.1600-065x.1998.tb01571.x.; Wang Q, Qi J, Yuan Y, et al. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host & Microbe. 2014; 16(3): 328–337. DOI:10.1016/j.chom.2014.08.009.; Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020; 63(3): 457–460. DOI:10.1007/s11427-020-1637-5.; Gohrbandt S, Veits J, Breithaupt A, et al. H9 avian influenza reassortant with engineered polybasic cleavage site displays a highly pathogenic phenotype in chicken. J. Gen. Virol. 2011; 92: 1843–1853. DOI:10.1099/vir.0.031591-0.; Rabaan AA, Al-Ahmed Shamsah H, Haque S, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview Infez Med. 2020; 28(2): 174–184.; Walls AC, Park YJ, Tortorici MA, et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 181(2): 281–292. DOI:10.1016/j.cell.2020.02.058.; Nao N, Yamagishi J, Miyamoto H, et al. Genetic predisposition to acquire a polybasic cleavage site for highly pathogenic avian influenza virus hemagglutinin. MBio. 2017; 8(1). DOI:10.1128/mBio.02298-16.; Jaimes JA, Millet JK, Whittaker GR. Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site. IScience. 2020; 23(6): 101212. DOI:10.1016/j.isci.2020.101212.; Follis KE, York J, Nunberg JH. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell–cell fusion but does not affect virion entry. Virology. 2006; 350(2): 358–69. DOI:10.1016/j.virol.2006.02.003.; Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020; 181(4): 905–913. DOI:10.1016/j.cell.2020.04.004.; Чебуркин Ю.В., Сонин Д.Л., Полозов А.С. и др. Роль мембранной и циркулирующей форм ACE 2 в развитии различных патологических процессов на фоне COVID-19. Артериальная гипертензия. 2021; 27(6):608–616. DOI:10.18705/1607-419X-2021-27-6-608-616; Zhang G, Pomplun S, Loftis A, et al. Investigation of ACE2 N-terminal fragments binding to SARS-CoV-2 Spike RBD. BioRxiv. 2020. [Preprint]. doi:10.1101/2020.03.19.999318.; Baum A, Fulton B, Wloga E, et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science. 2020; 369(6506): 1014–1018. DOI:10.1126/science.abd0831.; Clinical Trial NCT04335136. Recombinant Human Angiotensin-converting Enzyme 2 (rhACE2) as a Treatment for Patients with COVID-19 (APN01-COVID-19). https://clinicaltrials.gov/ct2/show/NCT04335136.; Zorin VN, Naumisheva EB, Postnov VN, et al. Magnetic nanoparticles for medical application with a coating deposited with various methods. J. Phys. Conf. Series. IOP Publishing, 2018; 1124(3). DOI:10.1088/1742-6596/1124/3/031009.; Ивановская А.М., Воронин А.В., Серякова А.Н. Количественный анализ лекарственных средств органической природы. Самара: Инсома-пресс, 2018. C. 88; Мурашова В.И., Тананаева А.Н., Ховякова Р.Ф. Качественный химический дробный анализ. М.: Химия, 1976. С. 279; Сиггиа С. Инструментальные методы анализа функциональных групп органических соединений. М.: Мир, 1974. С. 464; Mahler GR, Cordes JG. Fundamentals of biological chemistry. Transl. from Eng. M.: Mir, 1970. P. 568. In Russian [Малер Г.Р., Кордес Ю.Г. Основы биологической химии. Пер. с англ. М.: Мир, 1970. С. 568].; Doumas BT, Watson WA, Biggs HG. Albumin standards and the measurement of serum albumin with bromocresol green. Clin. Chim. Acta. 1971; 31: 87–96. DOI:10.1016/s0009-8981(96)06447-9.; Narang AS, Varia S. Role of tumor vascular architecture in drug delivery. Adv. Drug. Deliv. Rev. 2011; 63(8): 640–658. DOI:10.1016/j.addr.2011.04.002.; Kozlowski LP. Proteome-pI: proteome isoelectric point database. Nuc. Acids Res. 2017; 45(D1): D1112–D1116. DOI:10.1093/nar/gkw978.; Gareev KG, Babikova KY, Postnov VN, et al. Fluorescence imaging of the nanoparticles modified with indocyanine green. J. Phys. 2017: Conf. Series 917 042008. DOI:10.1088/1742-6596/917/4/042008.; Korolev DV, Evreinova NV, Zakharova EV, et al. Phosphocreatine immobilization of the surface of silicaand magnetite nanoparticles for targeted drug delivery. Russian Chemical Bulletin. 2019; 68(5): 1096–1101. DOI:10.1007/s11172-019-2525-0.; Korolev DV, Postnov VN, Evreinovaa NV, et al. Synthesis of Magnetic Nanoparticles with Radiopaque Marker. Rus. J. Gen. Chem.2018; 88(12): 2698–2701. DOI:10.1134/S1070363218120381.; Han H, Wang Q, Liu X, et al. Polymeric ionic liquid modified organic-silica hybrid monolithic column for capillary electrochromatography/ J. Chromatogr. A. 2012; 1246: 9–14. DOI:10.1016/j.chroma.2011.12.029.; Lee BY, Li Z, Clemens DL, et al. Redox-triggered release of moxifloxacin from mesoporous silica nanoparticles functionalized with disulfide snap-tops enhances efficacy against pneumonic tularemia in mice. Small. 2016; 12(27): 3690–3702. DOI:10.1002/smll.201600892.; Klesiewicz K, Karczewska E, Budak A, et al. Anti-Helicobacter pylori activity of some newly synthesized derivatives of xanthone. The Journal of antibiotics. 2016; 69(11): 825–834. DOI:10.1038/ja.2016.36.; Sahudin MA, Su’ait MS, Tan LL, et al. Schiff base complex/TiO2 chemosensor for visual detection of food freshness level. Spectrochimica Acta Part A: Mol. Biomolec. Spectr.2021; 248: 119129. DOI:10.1016/j.saa.2020.119129.; Kim J, Cho J, Seidler PM, et al. Investigations of chemical modifications of amino-terminated organic films on silicon substrates and controlled protein immobilization. Langmuir. 2010; 26(4): 2599–608. DOI:10.1021/la904027p.; Li H, Pan J, Gao C, et al. Mercapto-functionalized porous organosilica monoliths loaded with gold nanoparticles for catalytic application. Molecules. 2019; 24(23): 4366. DOI:10.3390/molecules24234366.; Senkevich JJ, Mitchell CJ, Yang GR, et al. Surface chemistry of mercaptan and growth of pyridine short-chain alkoxy silane molecular layers. Langmuir. 2002; 18(5): 1587–1594. DOI:10.1021/la010970f.; Kocyigit A. Properties of silicon–ZnO hybrid nanoparticles. In: Silicon-Based Hybrid Nanoparticles: Fundamentals, Properties, and Applications. 2022: 65–88. DOI:10.1016/B978-0-12-824007-6.00001-0.; SpectraBase p-Toluenesulfonyl chloride 630–430 cm-1 wave number. https://spectrabase.com/spectrum/LNTt3QsvohK.; SpectraBase p-Toluenesulfonyl chloride 1260–1080 cm-1 wave number. https://spectrabase.com/spectrum/AODKWz6bA9P; Brunauer S, Deming LS, Deming WE, et al. On a theory of the van der Waals adsorption of gases. J.Americ. Chem. Soc. 1940; 62: 1723–1732. DOI:10.1021/ja01864a025.; Yu M, Wu J, Shi J, Farokhzad OC. Nanotechnology for protein delivery: Overview and perspectives. J Control Release. 2016; 240:24–37. DOI:10.1016/j.jconrel.2015.10.012.; Chen M, Rosenberg J, Cai X, et al. Nanotraps for the containment and clearance of SARS-CoV-2. Matter. 2021; 4(6):2059–2082. DOI:10.1016/j.matt.2021.04.005.; https://transmed.almazovcentre.ru/jour/article/view/834
-
3Academic Journal
المؤلفون: I. G. Grischuk, E. E. Sviridov, S. I. Kuznetsov, D. V. Sorokin, V. A. Znamensky, L. U. Abdullina, M. R. Chubarova, A. D. Kiseleva, S. M. Minasyan, V. N. Postnov, N. V. Burkova, И. В. Грищук, Э. Е. Свиридов, С. И. Кузнецов, Д. В. Сорокин, В. А. Знаменский, Л. У. Абдуллина, М. Р. Чубарова, А. Д. Киселева, С. М. Минасян, В. Н. Постнов, Н. В. Буркова
المصدر: Translational Medicine; Том 9, № 5 (2022); 87-95 ; Трансляционная медицина; Том 9, № 5 (2022); 87-95 ; 2410-5155 ; 2311-4495
مصطلحات موضوعية: углеродные нанотрубки, blood cell populations, carbon nanotubes, contact activation of blood, leukocytes, low-volume hemoperfusion, platelets, клеточные популяции крови, контактная активация клеток крови, лейкоциты, малообъемная гемоперфузия, тромбоциты
وصف الملف: application/pdf
Relation: https://transmed.almazovcentre.ru/jour/article/view/716/485; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/716/1500; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/716/1501; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/716/1502; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/716/1503; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/716/1504; Baimova YA, Mulyukov RR. Graphene, nanotubes and other carbon nanostructures. Russian Academy of sciences: Moscow. 2018; p.212. In Russian [Баимова Ю.А, Мулюков Р.Р. Графен, нанотрубки и другие углеродные наноструктуры. Российская академия наук: Москва. 2018; с. 212.] DOI:10.31857/S9785907036369000001.; Gmoshinsky IV, Khotimchenko SA, Riger NA, et al. Carbon nanotubes: mechanisms of the action, biological markers and evaluation of the (review of literature). Gig Sanit. 2017; 96(2):176–186. In Russian [Гмошинский И.В., Хотимченко С.А., Ригер Н.А. и др. Углеродные нанотрубки: механизмы действия, биологические маркеры и оценка токсичности in vivo (обзор литературы). Гигиена и санитария. 2017; 96(2):176–186]. DOI:10.18821/0016-9900-2017-96-2-176-186.; Kolesnikov OL, Makarenko ON, Trofimova NV, et al. Investigation of the action of nanotubes on the vitro viability indicators of lymphocytes and neutrophils in vitro. Bulletin of the Ural Medical Academic Science. 2011; 2(2):90–91. In Russian [Колесников О.Л., Макаренко О.Н., Трофимова Н.В. и др. Исследование действия нанотрубок на показатели жизнеспособности лимфоцитов и нейтрофилов in vitro. Вестник Уральской медицинской академической науки. 2011; 2(2):90–91.]; Schrand AM, Dai L, Schlager J, Hussain S, et al. Differential biocompatibility of carbon nanotubes and nanodiamonds. Diamond Relat. Mater. 2007; 16(12): 2118– 2123. DOI:10.1016/J.DIAMOND.2007.07.020.; Funahashi S, Okazaki Y, Ito D et al. Asbestos and multi-walled carbon nanotubes generate distinct oxidative responses in inflammatory cells. J Clin Biochem Nutr. 2015; 56(2):111–117. DOI:10.3164/jcbn.14-92.; Burkova NV, Kuznetsov SI, Tyukavin AI. Effects of low-volume perfusion of blood activated by hemosorbents. Journal of postgraduate medical education=”Vestnik SantPeterburgskoy Meditsinskoy Academii poslediplomnogo obrazovania”. 2011; 3(4):24–32. In Russian [Буркова Н.В., Кузнецов С.И., Тюкавин А.И. Эффекты малообъемной перфузии крови, активированной гемосорбентами. Вестник Санкт-Петербургской медицинской академии последипломного образования. 2011; 3(4):24–32.]; Kirichuk OP, Burkova NV, Romanchuk EV, et al. Valuation of Activation Capabilities of SolidPhase Surfaces by the Rate of Adhesion of Blood Cells. Translational Medicine. 2019; 6(3):53–60. In Russian [Киричук О.П., Буркова Н.В., Романчук Е.В. и др. Оценка активационных возможностей твердофазных поверхностей по скорости адгезии клеток крови. Трансляционная медицина. 2019; 6(3):53–60.] DOI:10.18705/2311-4495-2019-6-3- 53-60.; Kuznetsov SI, Kirichuk OP, Burkova NV, et al. Comparison of the activation capabilities of hemosorbents by adhesion rate of blood cells in vitro. Translational Medicine. 2021; 8(5):57–66. In Russian [Кузнецов С.И., Киричук Щ.П., Буркова Н.В. и др. Сравнение активационных возможностей гемосорбентов по скорости адгезии клеток крови in vitro. Трансляционная медицина. 2021; 8(5):57–66.] DOI:10.18705/2311-4495-2021-8-5.; Postnov VN, Novikov AG, Romanychev AI, et al. Synthesis of carbon nanotubes from a cobalt-containing aerosilogel. Russ J Gen Chem. 2014; 84(5): 962–963. DOI:10.1134/S1070363214050302.; https://transmed.almazovcentre.ru/jour/article/view/716
-
4
المؤلفون: V. N. Postnov, O. V. Rodinkov, L. I. Kildiyarova, O. A. Krokhina, G. O. Yuriev, I. V. Murin
المصدر: Russian Journal of General Chemistry. 92:281-285
مصطلحات موضوعية: General Chemistry
-
5
المؤلفون: S. I. Kuznetsov, O. P. Kirichuk, N. V. Burkova, G. O. Yuriev, V. A. Davankov, V. N. Postnov, E. V. Romanchuk, E. E. Sviridov, A. D. Kiseleva
المصدر: Translational Medicine. 8:57-66
-
6Academic Journal
المؤلفون: M. S. Istomina, D. V. Korolev, E. I. Pochkaeva, D. S. Mazing, V. A. Moshnikov, K. G. Gareev, K. Yu. Babikova, V. N. Postnov, М. С. Истомина, Д. В. Королев, Е. И. Почкаева, Д. С Мазинг, В. А. Мошников, К. Г. Гареев, К. Ю. Бабикова, В. Н. Постнов
المصدر: Translational Medicine; Том 4, № 4 (2017); 56-65 ; Трансляционная медицина; Том 4, № 4 (2017); 56-65 ; 2410-5155 ; 2311-4495 ; 10.18705/2311-4495-2017-4-4
مصطلحات موضوعية: fluorescence imaging, modification of nanoparticles by fluorophores, флуоресцентный имиджинг, модификация наночастиц флуорофорами
وصف الملف: application/pdf
Relation: https://transmed.almazovcentre.ru/jour/article/view/297/272; Kobayashi H, Ogawa M, Alford R, et al. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem Rev. 2010; 110(5): 2620–2640.; Vasiliev RB, Dirin DN. Quantum points: synthesis, properties, application. Moscow: MGU, 2007. 50. In Russian [Васильев Р. Б, Дирин Д. Н. Квантовые точки: синтез, свойства, применение. М.: МГУ, 2007. 50.]; Brongersma ML, Halas NJ, Nordlander Plasmoninduced hot carrier science and technology. Nature nanotechnology. 2015; 10(1): 25-34.; Gao W, Thamphiwatana S, Angsantikul P, Zhang, L. Nanoparticle approaches against bacterial infections. WIREs Nanomed Nanobiotechnol. 2014; 6: 532–547.; Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology. 2013; 11(6): 371-384.; Yezhelyev MV, Gao X, Xing Y, et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006;7(8):657-67.; Moshnikov VA, Aleksandrova O.A., Drobintseva (Durnova) A.O. From laser optical microscopy to highresolution fluorescence microscopy. Colloidal quantum dots-biomarkers in exploratory scientific research. Biotekhnospera. 2014; 6(36): 16-30. In Russian [Мошников В.А., Александрова О.А., Дробинцева А.О. От лазерной оптической микроскопии до флуоресцентной микроскопии высокого разрешения. Коллоидные квантовые точки-биомаркеры в поисковых научных исследованиях. Биотехносфера. 2014; 6(36): 16-30]; Shi J, Chan C, Pang Y, Ye W, Tian F, Lyu J, Zhang Y, Yang M. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron. 2015;67:595-600.; Efros AL, Nesbitt DJ. Origin and control of blinking in quantum dots. Nat Nanotechnol. 2016;11(8):661-671.; Moshnikov VA, Alexandrova OA. Nanoparticles, nanosystems and their application. Part 1. Colloidal quantum dots. Ufa: Aetherna, 2015. p. 236. In Russian [Мошников В.А., Александрова О.А. Наночастицы, наносистемы и их применение. Ч.1. Коллоидные квантовые точки. Уфа: Аэтерна, 2015. c. 236].; Larson DR, Zipfel WR, Williams RM, et al. Watersoluble quantum dots for multiphoton fluorescence imaging in vivo. Science. 2003; 300(5624):1434-1436.; Ballou B, Lagerholm BC, Ernst LA, et al. Noninvasive imaging of quantum dots in mice. Bioconjug Chem. 2004; 15(1):79-86.; Mashford BS, Stevenson M, Popovic Z, et al. Highefficiency quantum-dot light-emitting devices with enhanced charge injection. Nature photonics. 2013; 7(5): 407-412.; Toropova YG, Golovkin AS, Malashicheva AB, et al. In vitro toxicity of Fe(m)O(n), Fe(m)O(n)-SiO(2) composite, and SiO(2)-Fe(m)O(n) core-shell magnetic nanoparticles. Int J Nanomedicine. 2017;12:593-603.; Korolev DV, Babikova KYu, Postnov VN. Gasphase synthesis of aminated silica nanoparticles for medical applications. Biotekhnospera. 2016; 5(47): 42-47. In Russian [Королев Д.В., Бабикова К.Ю., Постнов В.Н. Газофазное аминирование наночастиц аэросила для медицинского применения. Биотехносфера. 2016; 5(47): 42-47.]; Mao B, Chuang C-H, Wang J, Clemens B. Synthesis and photophysical properties of ternary I–III–VI AgInS2 nanocrystals: intrinsic versus surface states. J. Phys. Chem. 2011; 115 (18): 8945–8954.; Zhong H, Bai Z, Zou B. Tuning the Luminescence Properties of Colloidal I-III-VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications. J Phys Chem Lett. 2012;3(21):3167-75.; Leach AD, Macdonald JE. Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. J Phys Chem Lett. 2016;7(3):572-583.; Zang H, Li H, Makarov NS, Velizhanin KA, Wu K, Park YS, Klimov VI. Thick-Shell CuInS(2)/ZnS Quantum Dots with Suppressed “Blinking” and Narrow Single-Particle Emission Line Widths. Nano Lett. 2017;17(3):1787-1795.; Raevskaya A, Lesnyak V, Haubold D, et al. A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots. J. Phys. Chem. 2017; 121(16): 9032-9042.; Korolev DV, Aleksandrov IV, Galagudza MM, et al. Automation of data acquisition and processing in physiological experiments. Regional Haemodynamics and Microcirculation. 2008; 7(2): 79-84. In Russian [Королев Д.В, Александров И.В, Галагудза М.М. и др. Автоматизация получения и обработки данных физиологического эксперимента. Регионарное кровообращение и микроциркуляция. 2008; 7(2): 79-84].; Butner RW, McPherson AR. Adverse reactions in intravenous fluorescein angiography. Ann Ophthalmol. 1983; 15(11):1084-1086.; https://transmed.almazovcentre.ru/jour/article/view/297
-
7
المؤلفون: A. G. Novikov, M. S. Lobanova, Igor V. Murin, N. A. Mel’nikova, V. N. Postnov
المصدر: Moscow University Chemistry Bulletin. 75:121-124
مصطلحات موضوعية: Membrane, Nanostructure, Chemical engineering, Dopant, Chemistry, Detonation, chemistry.chemical_element, General Chemistry, Composite membrane, Conductivity, Carbon, Dielectric spectroscopy
-
8
المؤلفون: V N Zorin, V. N. Postnov, E. B. Naumysheva, Igor V. Murin, D. V. Korolev, G. A. Shulmeyster, T. N. Romanova, N. V. Evreinova
المصدر: Russian Journal of General Chemistry. 90:398-403
مصطلحات موضوعية: chemistry.chemical_compound, chemistry, 010405 organic chemistry, Chemisorption, Albumin, Magnetic nanoparticles, Human albumin, General Chemistry, 010402 general chemistry, Photochemistry, Benzene, 01 natural sciences, 0104 chemical sciences
-
9
المؤلفون: A. A. Ganeev, Victoria Chuchina, N. B. Ivanenko, Anna Gubal, V. N. Postnov, A. D. Titova, S. S. Savinov, N. V. Stolyarova
المصدر: Аналитика и контроль. 24:96-106
مصطلحات موضوعية: Detection limit, Pollution, Glow discharge, Materials science, Sorbent, media_common.quotation_subject, Inorganic chemistry, chemistry.chemical_element, Sorption, Carbon nanotube, Uranium, Analytical Chemistry, law.invention, chemistry, law, media_common, Fumed silica
-
10
المؤلفون: Marina L. Vasyutina, V. N. Postnov, Anna Malashicheva, D. V. Korolev, Sergei G. Zhuravskii, Daria Mukhametdinova, Michael M. Galagudza, E. B. Naumysheva, Natalia Rubanova, Maria Istomina, Pavel A. Somov, Dmitry Sonin, Lyubov V. Vasina, Ilia Aleksandrov, Daria Kostina, Evgeniia Pochkaeva, Irina Zelinskaya, Yury A. Skorik
المصدر: Nanomaterials
Volume 10
Issue 4
Nanomaterials, Vol 10, Iss 810, p 810 (2020)مصطلحات موضوعية: Biodistribution, General Chemical Engineering, blood compatibility, Hemodynamics, safety evaluation, Chitosan nanoparticles, Pharmacology, medicine.disease, Hemolysis, Article, Chitosan, lcsh:Chemistry, chemistry.chemical_compound, Biological safety, chemistry, lcsh:QD1-999, polymer nanoparticles, Toxicity, medicine, in vivo treatment, General Materials Science, Leukocytosis, medicine.symptom, chitosan, biodistribution
وصف الملف: application/pdf
-
11
المؤلفون: N. V. Burkova, E. V. Litvinenko, V. N. Postnov, S. I. Kuznetsov, O. P. Kirichuk, A. A. Topko, Vadim A. Davankov
المصدر: Regional blood circulation and microcirculation. 17:50-60
مصطلحات موضوعية: 03 medical and health sciences, 0302 clinical medicine, Human blood, business.industry, General Engineering, Medicine, 030204 cardiovascular system & hematology, Pharmacology, business, 030217 neurology & neurosurgery, In vitro
-
12
المؤلفون: David Cabaleiro, Nikita E. Podolsky, Konstantin N. Semenov, Sergei V. Ageev, Marco A. Marcos, V. N. Postnov, Luis Lugo
المصدر: Journal of Molecular Liquids. 318:113965
مصطلحات موضوعية: Materials science, 02 engineering and technology, Carbon nanotube, 010402 general chemistry, 01 natural sciences, Viscoelasticity, law.invention, chemistry.chemical_compound, Nanofluid, Rheology, law, Materials Chemistry, Physical and Theoretical Chemistry, Spectroscopy, Shear thinning, 021001 nanoscience & nanotechnology, Condensed Matter Physics, Atomic and Molecular Physics, and Optics, 0104 chemical sciences, Electronic, Optical and Magnetic Materials, Shear rate, chemistry, Chemical engineering, Agglomerate, 0210 nano-technology, Ethylene glycol
-
13
المؤلفون: Leonid A. Aslanov, Elena I. Klimova, V. N. Postnov, V.V. Rybakov, N. N. Meleshonkova, M. Martinez Garcia
المصدر: Journal of Organometallic Chemistry. 476:189-195
مصطلحات موضوعية: Allylic rearrangement, Diene, Bicyclic molecule, Stereochemistry, Organic Chemistry, Crystal structure, Carbon-13 NMR, Biochemistry, Inorganic Chemistry, chemistry.chemical_compound, chemistry, Polymer chemistry, Materials Chemistry, Molecule, Physical and Theoretical Chemistry, Methylene, Metallocene
-
14
المؤلفون: A. S. Zaks, V. V. Yushkov, V. N. Postnov, Elena I. Klimova, M. Martines Garcia, N. N. Meleshonkova
المصدر: Pharmaceutical Chemistry Journal. 28:401-405
مصطلحات موضوعية: Pharmacology, Chemistry, Drug Discovery, Pharmacology toxicology, Organic chemistry, Biological activity
-
15
المصدر: Journal of Organometallic Chemistry. 453:121-125
مصطلحات موضوعية: Aryl, Cyclohexenes, Organic Chemistry, Dimethylaniline, Alkylation, Biochemistry, Medicinal chemistry, Inorganic Chemistry, chemistry.chemical_compound, chemistry, Fragmentation (mass spectrometry), Electrophile, Materials Chemistry, Molecule, Organic chemistry, Physical and Theoretical Chemistry, Metallocene
-
16
المؤلفون: Elena I. Klimova, N. N. Meleshonkova, V. N. Postnov
المصدر: ChemInform. 22
مصطلحات موضوعية: Chemistry, Nanotechnology, General Medicine
-
17
المؤلفون: Štefan Toma, Monika Puciová, V. N. Postnov, Marta Sališová
المصدر: ChemInform. 22
مصطلحات موضوعية: Chemistry, Phase (matter), Nanotechnology, General Medicine, Combinatorial chemistry, Catalysis
-
18
المؤلفون: A. N. Pushin, V. N. Postnov, N. N. Meleshonkova, Elena I. Klimova
المصدر: ChemInform. 23
مصطلحات موضوعية: Chemistry, Nanotechnology, General Medicine, Combinatorial chemistry
-
19
المؤلفون: Elena I. Klimova, M. Martinez‐Garcia, V. V. Yushkov, N. N. Meleshonkova, A. S. Zaks, V. N. Postnov
المصدر: ChemInform. 25
مصطلحات موضوعية: chemistry.chemical_classification, Enzyme, Chemistry, Organic chemistry, Biological activity, General Medicine
-
20
المصدر: Pharmaceutical Chemistry Journal. 26:582-584
مصطلحات موضوعية: Pharmacology, business.industry, medicine.drug_class, Analgesic, Pharmacology toxicology, Cyclohexene, Pharmacy, Anti-inflammatory, chemistry.chemical_compound, chemistry, Drug Discovery, medicine, business