يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"V. Mochalnikova V."', وقت الاستعلام: 0.37s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The study was performed with the support of Russian Foundation for Basic Research (grant No. 18-29-09069)., Исследование выполнено при поддержке Российского фонда фундаментальных исследований (грант № 18-29-09069).

    المصدر: Advances in Molecular Oncology; Том 9, № 1 (2022); 8-19 ; Успехи молекулярной онкологии; Том 9, № 1 (2022); 8-19 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2022-9-1

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/412/249; Bahmad H.F., Jalloul M., Azar J. et al. Tumor microenvironment in prostate cancer: toward identification of novel molecular biomarkers for diagnosis, prognosis, and therapy development. Front Genet 2021;12:652747. DOI:10.3389/fgene.2021.652747.; Watson P.A., Arora V.K., Sawyers C.L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 2015;15(12): 701–11. DOI:10.1038/nrc4016.; Testa U., Castelli G., Pelosi E. Cellular and molecular mechanisms underlying prostate cancer development: therapeutic implications. Medicines (Basel) 2019;6(3):82. DOI:10.3390/medicines6030082.; Budnik J., Suri J., Bates J.E. et al. Prognostic significance of sites of visceral metastatic disease in prostate cancer: a population-based study of 12,180 patients. Clin Genitourin Cancer 2019;17(4):260–7. DOI:10.1016/j.clgc.2019.03.020.; Лаптева Т.О. Патоморфологическая оценка простаты после радикальной простатэктомии. Вестник урологии 2019;7(1):74–83. [Lapteva T.O. Pathomorphological evaluation of the prostate after radical prostatectomy. Vestnik urologii = Bulletin of Urology 2019;7(1):74–83. (In Russ.)]. DOI:10.21886/2308-6424-2019-7-1-74-83.; Welch H.G., Albertsen P.C. Reconsidering prostate cancer mortality – the future of PSA screening. N Engl J Med 2020;382(16):1557–63. DOI:10.1056/NEJMms1914228.; Nagpal K., Foote D., Liu Y. et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit Med 2019;2:48. DOI:10.1038/s41746-019-0112-2.; Lo C.H., Lynch C.C. Multifaceted roles for macrophages in prostate cancer skeletal metastasis. Front Endocrinol (Lausanne) 2018;9:247. DOI:10.3389/fendo.2018.00247.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011;144(5):646–74. DOI:10.1016/j.cell.2011.02.013.; Sfanos K.S., Yegnasubramanian S., Nelson W.G., De Marzo A.M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol 2018;15(1):11–24. DOI:10.1038/nrurol.2017.167.; Nair S.S., Weil R., Dovey Z. et al. The Tumor microenvironment and immunotherapy in prostate and bladder cancer. Urol Clin North Am 2020;47(4S):e17–54. DOI:10.1016/j.ucl.2020.10.005.; Kwon J.T.W., Bryant R.J., Parkes E.E. The tumor microenvironment and immune responses in prostate cancer patients. Endocr Relat Cancer 2021;28(8): T95–107. DOI:10.1530/ERC-21-0149.; Ye S.L., Li X.Y., Zhao K., Feng T. High expression of CD8 predicts favorable prognosis in patients with lung adenocarcinoma: a cohort study. Medicine (Baltimore) 2017;96(15):e6472. DOI:10.1097/MD.0000000000006472.; Guo M., Yuan F., Qi F., Sun J. et al. Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8+T cells in hepatocellular carcinoma using multiplex quantitative analysis. J Transl Med 2020;18(1):306. DOI:10.1186/s12967-020-02469-8.; Chang W.J., Du Y., Zhao X. et al. Inflammation-related factors predicting prognosis of gastric cancer. World J Gastroenterol 2014;20(16):4586–96. DOI:10.3748/wjg.v20.i16.4586.; Sugimoto T., Watanabe T. Follicular lymphoma: The role of the tumor microenvironment in prognosis. J Clin Exp Hematop 2016;56(1):1–19. DOI:10.3960/jslrt.56.1.; Petitprez F., Fossati N., Vano Y. et al. PD-L1 expression and CD8+ T-cell Infiltrate are associated with clinical progression in patients with node-positive prostate cancer. Eur Urol Focus 2019;5(2):192–6. DOI:10.1016/j.euf.2017.05.013.; Kaur H.B., Guedes L.B., Lu J. et al. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer. Mod Pathol 2018;31(10):1539–52. DOI:10.1038/s41379-018-0083-x.; Vicier C., Werner L., Huang Y. et al. Immune infiltrate with CD8 low or PDL1 high associated with metastatic prostate cancer after radical prostatectomy (RP). J Clin Oncol 2019;37(7):86. DOI:10.1200/JCO.2019.37.7_suppl.86.; Yang Y., Attwood K., Bshara W. et al. High intratumoral CD8+T-cell infiltration is associated with improved survival in prostate cancer patients undergoing radical prostatectomy. Prostate 2021;81(1):20–8. DOI:10.1002/pros.24068.; Flammiger A., Weisbach L., Huland H. et al. High tissue density of FOXP3+ T cells is associated with clinical outcome in prostate cancer. Eur J Cancer 2013;49(6):1273–9. DOI:10.1016/j.ejca.2012.11.035.; Kaczmarczyk-Sekuła K., Gałązka K., Glajcar A. et al. Prostate cancer with different ERG status may show different FOXP3-positive cell numbers. Pol J Pathol 2016;67(4):313–7. DOI:10.5114/pjp.2016.65861.; Kolijn K., Verhoef E.I., Smid M. et al. Epithelial-mesenchymal transition in human prostate cancer demonstrates enhanced immune evasion marked by IDO1 expression. Cancer Res 2018;78(16):4671–9. DOI:10.1158/0008-5472.CAN-17-3752.; Ковалева О.В., Ефремов Г.Д., Михайленко Д.С. и др. Роль макрофагов, ассоциированных с опухолью в патогенезе почечно-клеточного рака. Онкоурология 2017;13(1):20–6. [Kovaleva O.V., Efremov G.D., Mikhaylenko D.S., et al. Role of tumor-associated macrophages in renal cell carcinoma pathogenesis. Onkourologiya = Cancer Urology 2017;13(1):20–6. (In Russ.)]. DOI:10.17650/1726-9776-2017-13-1-20-26.; Lanciotti M., Masieri L., Raspollini M.R. et al. The role of M1 and M2 macrophages in prostate cancer in relation to extracapsular tumor extension and biochemical recurrence after radical prostatectomy. Biomed Res Int 2014;2014:486798. DOI:10.1155/2014/486798.; Hu W., Qian Y., Yu F. et al. Alternatively activated macrophages are associated with metastasis and poor prognosis in prostate adenocarcinoma. Oncol Lett 2015;10(3):1390–6. DOI:10.3892/ol.2015.3400.; Kovaleva O.V., Rashidova M.A., Samoilova D.V. et al. Immunosuppressive phenotype of esophagus tumors stroma. Anal Cell Pathol (Amst) 2020;2020:5424780. DOI:10.1155/2020/5424780.; Ковалева О.В., Рашидова М.А., Самойлова Д.В. и др. Иммуносупрессорные особенности фенотипа стромы опухолей почки различных гистологических типов. Онкоурология 2020;16(2):29–35. [Kovaleva O.V., Rashidova M.A., Samoilova D.V. et al. Immunosuppressive peculiarities of stromal cells of various kidney tumor types. Onkourologiya = Cancer Urology 2020;16(2):29–35. (In Russ.)]. DOI:10.17650/1726-9776-2020-16-2-29-35.; Ковалева О.В., Грачев А.Н., Подлесная П.А. и др. PU.1 – ядерный фактор иммунокомпетентных клеток стромы опухоли при колоректальном раке. Клиническая и экспериментальная морфология 2021;10(2):32–9. [Kovaleva O.V., Gratchev A.N., Podlesnaya P.A. et al. PU.1 is a nuclear factor of immunocompetent cells of tumor stroma in colorectal cancer. Klinicheskaya i eksperimental’naya morfologiya = Clinical and Experimental Morphology 2021;10(2):32–39. (In Russ.)]. DOI:10.31088/CEM2021.10.2.32–39.; Cao J., Liu J., Xu R. et al. Prognostic role of tumour-associated macrophages and macrophage scavenger receptor 1 in prostate cancer: a systematic review and meta-analysis. Oncotarget 2017;8(47):83261–9. DOI:10.18632/oncotarget.18743.; Shimura S., Yang G., Ebara S. et al. Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res 2000;60(20):5857–61.; Nonomura N., Takayama H., Nakayama M. et al. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int 2011;107(12):1918–22. DOI:10.1111/j.1464-410X.2010.09804.x.; Yuan Y., Zhao Q., Zhao S. et al. Characterization of transcriptome profile and clinical features of a novel immunotherapy target CD204 in diffuse glioma. Cancer Med 2019;8(8):3811–21. DOI:10.1002/cam4.2312.; Erlandsson A., Carlsson J., Lundholm M. et al. M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate 2019;79(4):363–9. DOI:10.1002/pros.23742.; Ковалева О.В., Рашидова М.А., Самойлова Д.В. и др. Прогностическая значимость экспрессии CD204 и IDO1 в опухолях пищевода. Успехи молекулярной онкологии 2021;8(2):40–6. [Kovaleva O.V., Rashidova M.A., Samoilova D.V. et al. Prognostic significance of CD204 and IDO1 expression in esophageal tumors. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2021;8(2):40–6. (In Russ.)]. DOI:10.17650/2313-805X-2021-8-2-40-46.; Zhai L., Ladomersky E., Lenzen A. et al. IDO1 in cancer: a Gemini of immune checkpoints. Cell Mol Immunol 2018;15(5):447–57. DOI:10.1038/cmi.2017.143.; Munn D.H., Mellor A.L. Indoleamine 2,3-dioxygenase and metabolic control of immune responses. Trends Immunol 2013;34(3):137–43. DOI:10.1016/j.it.2012.10.001.; Feder-Mengus C., Wyler S., Hudolin T. et al. High expression of indoleamine 2,3-dioxygenase gene in prostate cancer. Eur J Cancer 2008;44(15):2266–75. DOI:10.1016/j.ejca.2008.05.023.; Thüring M., Knuchel R., Picchetta L. et al. The prognostic value of indoleamine- 2,3-dioxygenase gene expression in urine of prostate cancer patients undergoing radical prostatectomy as first treatment of choice. Front Immunol 2020;11:1244. DOI:10.3389/fimmu.2020.01244.; Banzola I., Mengus C., Wyler S. et al. Expression of indoleamine 2,3-dioxygenase induced by IFN-γ and TNF-α as potential biomarker of prostate cancer progression. Front Immunol 2018;9:1051. DOI:10.3389/fimmu.2018.01051.; Zahm C.D., Johnson L.E., McNeel D.G. Increased indoleamine 2,3-dioxygenase activity and expression in prostate cancer following targeted immunotherapy. Cancer Immunol Immunother 2019;68(10):1661–9. DOI:10.1007/s00262-019-02394-w.; Källberg E., Wikström P., Bergh A. et al. Indoleamine 2,3-dioxygenase (IDO) activity influence tumor growth in the TRAMP prostate cancer model. Prostate 2010;70(13):1461–70. DOI:10.1002/pros.21181.; Barber D.L., Wherry E.J., Masopust D. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006;439(7077):682–7. DOI:10.1038/nature04444.; Sharma M., Yang Z., Miyamoto H. Immunohistochemistry of immune checkpoint markers PD-1 and PD-L1 in prostate cancer. Medicine (Baltimore) 2019;98(38):e17257. DOI:10.1097/MD.0000000000017257.; https://umo.abvpress.ru/jour/article/view/412

  2. 2
    Academic Journal

    المساهمون: The work was supported by the Russian Foundation for Basic Research (grant No. 18-29-09069)., Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 18-29-09069).

    المصدر: Advances in Molecular Oncology; Том 8, № 4 (2021); 67-74 ; Успехи молекулярной онкологии; Том 8, № 4 (2021); 67-74 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2021-8-4

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/391/245; Li H., Fan X., Houghton J. Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 2007;101(4):805–15. DOI:10.1002/jcb.21159.; Al-Shibli K.I., Donnem T., Al-Saad S. et al. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 2008;14(16):5220–7. DOI:10.1158/1078-0432.CCR-08-0133.; Jakobsen J.N., Sorensen J.B. Clinical impact of Ki-67 labeling index in non-small cell lung cancer. Lung Cancer 2013;79(1):1–7. DOI:10.1016/j.lungcan.2012.10.008.; Yoo J., Jung J.H., Lee M.A. et al. Immunohistochemical analysis of non-small cell lung cancer: correlation with clinical parameters and prognosis. Journal of Korean medical science 2007;22(2):318–25. DOI:10.3346/jkms.2007.22.2.318.; Lertkiatmongkol P., Liao D., Mei H. et al. Endothelial functions of platelet/ endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol 2016;23(3):253–9. DOI:10.1097/MOH.0000000000000239.; Qian H., Yang L., Zhao W. et al. A comparison of CD105 and CD31 expression in tumor vessels of hepatocellular carcinoma by tissue microarray and flow cytometry. Exp Ther Med 2018;16(4):2881–8. DOI:10.3892/etm.2018.6553.; Bosmuller H., Pfefferle V., Bittar Z. et al. Microvessel density and angiogenesis in primary hepatic malignancies: differential expression of CD31 and VEGFR-2 in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Pathol Res Pract 2018;214(8):1136–41. DOI:10.1016/j.prp.2018.06.011.; Virman J., Bono P., Luukkaala T. et al. VEGFR3 and CD31 as prognostic factors in renal cell cancer. Anticancer Res 2015;35(2):921–7.; Emmert A.O., Oellerich A., Füzesi L. et al. Waldmann-Beushausen R. et al. Prognostic significance of CD31 Expression in patients with non-small-cell-lung cancer. Advances Lung Cancer 2016;5(3):21–9. DOI:10.4236/alc.2016.53003.; Mohamed S.Y., Mohammed H.L., Ibrahim H.M. et al. Role of VEGF, CD105, and CD31 in the prognosis of colorectal cancer cases. J Gastrointest Cancer 2019;50(1):23–34. DOI:10.1007/s12029-017-0014-y.; Rask L., Hogdall C.K., Kjaer S.K. et al. Association of CD31 and p53 with survival of ovarian cancer patients. Anticancer Res 2019;39(2):567–76. DOI:10.21873/anticanres.13149.; Gulubova M., Vlaykova T. Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol 2009;24(7):1265–75. DOI:10.1111/j.1440-1746.2007.05009.x.; Saad R.S., Liu Y.L., Nathan G. et al. Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in colorectal cancer. Mod Pathol 2004;17(2):197–203. DOI:10.1038/modpathol.3800034.; Cammarota R., Bertolini V., Pennesi G. et al. The tumor microenvironment of colorectal cancer: stromal TLR-4 expression as a potential prognostic marker. J Transl Med 2010;8:112. DOI:10.1186/1479-5876-8-112.; Coussens L.M., Werb Z. Inflammation and cancer. Nature 2002;420(6917):860–7. DOI:10.1038/nature01322.; Furman D., Campisi J., Verdin E. et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019;25(12):1822–32. DOI:10.1038/s41591-019-0675-0.; Taniguchi K., Karin M. NF-kB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018;18(5):309–24. DOI:10.1038/nri.2017.142.; Mercogliano M.F., Bruni S., Elizalde P.V., Schillaci R. Tumor necrosis factor alpha blockade: an opportunity to tackle breast cancer. Front Oncol 2020;10:584. DOI:10.3389/fonc.2020.00584.; https://umo.abvpress.ru/jour/article/view/391

  3. 3
    Academic Journal

    المساهمون: The study was performed with the support of Russian Foundation for Basic Research (grant No. 18-29-09069), Исследование выполнено при поддержке Российского фонда фундаментальных исследований (грант № 18-29-09069)

    المصدر: Advances in Molecular Oncology; Том 8, № 2 (2021); 40‑46 ; Успехи молекулярной онкологии; Том 8, № 2 (2021); 40‑46 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2021-8-2

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/354/228; Grohmann U., Fallarino F., Puccetti P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 2003;24(5):242–8. DOI: 10. 1016/s1471-4906(03)00072-3.; King N.J., Thomas S.R. Molecules in focus: indoleamine 2,3-dioxygenase. Int J Biochem Cell Biol 2007;39(12):2167–72. DOI:10.1016/j.biocel.2007.01.004.; Takikawa O. Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism. Biochem Biophys Res Commun 2005;338(1):12–9. DOI:10.1016/j.bbrc.2005.09.032.; Chen J.Y., Li C.F., Kuo C.C. et al. Cancer/stroma interplay via cyclooxygenase-2 and indoleamine 2,3-dioxygenase promotes breast cancer progression. Breast Cancer Res 2014;16(4):410. DOI:10.1186/s13058-014-0410-1.; Heeren A.M., van Dijk I., Berry D. et al. Indoleamine 2,3-dioxygenase expression pattern in the tumor microenvironment predicts clinical outcome in early stage cervical cancer. Front Immunol 2018;9:1598. DOI:10.3389/fimmu.2018.01598.; Ino K., Yamamoto E., Shibata K. et al. Inverse correlation between tumoral indoleamine 2,3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer: its association with disease progression and survival. Clin Cancer Res 2008;14(8):2310–7. DOI:10.1158/1078-0432.CCR-07-4144.; Inaba T., Ino K., Kajiyama H. et al. Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol Oncol 2009;115(2):185–92. DOI:10.1016/j.ygyno.2009.07.015.; Wainwright D.A., Balyasnikova I.V., Chang A.L. et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 2012;18(22):6110–21. DOI:10.1158/1078-0432.CCR-12-2130.; Chevolet I., Speeckaert R., Schreuer M. et al. Characterization of the in vivo immune network of IDO, tryptophan metabolism, PD-L1, and CTLA-4 in circulating immune cells in melanoma. Oncoimmunology 2015;4(3):e982382. DOI:10.4161/2162402X.2014.982382.; Schalper K.A., Carvajal-Hausdorf D., McLaughlin J. et al. Differential expression and significance of PD-L1, IDO-1, and B7-H4 in human lung cancer. Clin Cancer Res 2017;23(2):370–8. DOI:10.1158/1078-0432.CCR-16-0150.; Ohnishi K., Komohara Y., Fujiwara Y. et al. Suppression of TLR4-mediated inflammatory response by macrophage class A scavenger receptor (CD204). Biochem Biophys Res Commun 2011;411(3):516–22. DOI:10.1016/j.bbrc.2011.06.161.; Sun Y., Xu S. Tumor-associated CD204- positive macrophage is a prognostic marker in clinical stage i lung adenocarcinoma. Biomed Res Int 2018;2018:8459193. DOI:10.1155/2018/8459193.; Qiu X., Chen D., Liu Y. et al. Relationship between stromal cells and tumor spread through air spaces in lung adenocarcinoma. Thorac Cancer 2019;10(2):256–67. DOI:10.1111/1759-7714.12945.; Rakaee M., Busund L.R., Jamaly S. et al. Prognostic value of macrophage phenotypes in resectable non-small cell lung cancer assessed by multiplex immunohistochemistry. Neoplasia 2019;21(3):282–93. DOI:10.1016/j.neo.2019.01.005.; Lu C.F., Huang C.S., Tjiu J.W. et al. Infiltrating macrophage count: a significant predictor for the progression and prognosis of oral squamous cell carcinomas in Taiwan. Head Neck 2010;32(1):18–25. DOI:10.1002/hed.21138.; Helm O., Held-Feindt J., Grage- Griebenow E. et al. Tumor-associated macrophages exhibit pro- and antiinflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer 2014;135(4):843–61. DOI:10.1002/ijc.28736.; Kovaleva O.V., Rashidova M.A., Samoilova D.V. et al. Immunosuppressive phenotype of esophagus tumors stroma. Anal Cell Pathol (Amst). 2020;2020:5424780. DOI:10.1155/2020/5424780.; Wu H., Gong J., Liu Y. Indoleamine 2,3-dioxygenase regulation of immune response (Review). Mol Med Rep 2018;17(4):4867–73. DOI:10.3892/mmr.2018.8537.; Astigiano S., Morandi B., Costa R. et al. Eosinophil granulocytes account for indoleamine 2,3-dioxygenasemediated immune escape in human nonsmall cell lung cancer. Neoplasia 2005;7(4):390–6. DOI:10.1593/neo.04658.; Zhang M.L., Kem M., Mooradian M.J. et al. Differential expression of PD-L1 and IDO1 in association with the immune microenvironment in resected lung adenocarcinomas. Mod Pathol 2019;32(4):511–23. DOI:10.1038/s41379-018-0160-1.; Zhao Q., Kuang D.M., Wu Y. et al. Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J Immunol 2012;188(3):1117–24. DOI:10.4049/jimmunol.1100164.; https://umo.abvpress.ru/jour/article/view/354

  4. 4
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 19 (2018); 130-135 ; Медицинский Совет; № 19 (2018); 130-135 ; 2658-5790 ; 2079-701X ; 10.21518/2079-701X-2018-19

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/2761/2713; Rosell R, Carcereny E, Gervais R et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive nonsmall-cell lung cancer (EU_ RTAC): a multicentre, open-label, randomized phase 3 trial. Lancet Oncol, 2012, 13(3): 239-246.; Sequist LV, Yang JC, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol, 2013, 31: 3327-3334.; Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol, 2012, 13: 239-246.; Nishino M, Cardarella S, Jackman DM et al. RECIST 1.1 in NSLC patients with EGFR mutations treated with EGFR tyrosine kinase inhibitors: comparison with RECIST 1.0. AJR Am J Roentgenol, 2013, 201: W64-71.; Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatinpaclitaxel in pulmonary adenocarcinoma. N Engl J Med, 2009, 361: 947-957.; Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or platinumpemetrexed in EGFR T790M-positive lung cancer. N Engl J Med, 2017, 376: 629-640.; Riely GJ, Yu HA. EGFR: the paradigm of an oncogene-driven lung cancer. Clin Cancer Res, 2015, 21: 2221-2226.; Yu PP, Vose JM, Hayes DF. Genetic cancer susceptibility testing: increased technology, increased complexity. J Clin Oncol, 2015, 33: 3533-3534.; Yu HA, Arcila ME, Rekhtman N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res, 2013, 19: 2240-2247.; Finlay MR, Anderton M, Ashton S, et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J Med Chem, 2014, 57: 8249-8267.; Gainor JF, Shaw AT. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J Clin Oncol, 2013, 31: 3987-3996.; Onitsuka T, Uramoto H, Nose N, et al. Acquired resistance to gefitinib: the contribution of mechanisms other than the T790M, MET, and HGF status. Lung Cancer, 2010, 68: 198-203.; Lfnger CJ. Epidermal growth factor receptor inhibition in mutation-positive non-small-cell lung cancer: is afatinib better or simply newer? J Clin Oncol, 2013, 31: 3303-3306.; Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med, 2011 Mar 23, 3(75): 75ra26.; Thomson S, Buck E, Petti F, Griffin G et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res, 2005 Oct 15, 65(20): 9455-62.; Qiuxiang Ou, Xue Wu, Hua Bao et al. Investigating novel resistance mechanisms to third generation EGFR TKI osimertinib in non-small cell lung cancer patients using next generation sequencing. J Clin Oncol, 2017, suppl 2572.; https://www.med-sovet.pro/jour/article/view/2761