يعرض 1 - 20 نتائج من 20 نتيجة بحث عن '"V. Chereshnev"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The work was carried out within the framework of the state assignment for Institute of Immunology and Physiology (topic № АААА-А18-118020590108-7)., Работа выполнена в рамках госзадания ФГБУН ИИФ УрО РАН (тема № АААА-А18-118020590108-7).

    المصدر: Obstetrics, Gynecology and Reproduction; Vol 15, No 6 (2021); 715-725 ; Акушерство, Гинекология и Репродукция; Vol 15, No 6 (2021); 715-725 ; 2500-3194 ; 2313-7347

    وصف الملف: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1184/974; Barati E., Nikzad H., Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci. 2020;77(1):93–113. https://doi.org/10.1007/s00018-019-03253-8.; Shiraishi K., Matsuyama H. Effects of medical comorbidity on male infertility and comorbidity treatment on spermatogenesis. Fertil Steril. 2018;110(6):1006–11.e2. https://doi.org/10.1016/j.fertnstert.2018.07.002.; Потехина Е.С., Михайлюк Е.В., Непомнящих А.С. Спермограмма как инструмент оценки мужской фертильности. Научное обозрение. 2020;(1):11–4. https://doi.org/10.17513/srms.1093.; Жуков О.Б., Евдокимов В.В., Брагина Е.Е. Улучшение качества жизни и морфофункциональных характеристик сперматозоидов у мужчин с хроническим абактериальным простатитом и программы прегравидарной подготовки к отцовству. Андрология и генитальная хирургия. 2017;18(1):102–8. https://doi.org/10.17650/2070-9781-2017-18-1-102-108.; Авадиева Н.Э. Применение ДНК фрагментации спермы в андрологической практике. Вестник урологии. 2019;7(1):7–11. https://doi.org/10.21886/2308-6424-2019-7-1-7-11.; Barratt C.L.R., Björndahl L., De Jonge C.J. et al. The diagnosis of male infertility: an analysis of the evidence to support the development of global WHO guidance-challenges and future research opportunities. Hum Reprod Update. 2017;23(6):660–80. https://doi.org/10.1093/humupd/dmx021.; Busetto G.M., Del Giudice F., Virmani A. et al. Body mass index and age correlate with antioxidant supplementation effects on sperm quality: Post hoc analyses from a double-blind placebo-controlled trial. Andrologia. 2020;52(3):e13523. https://doi.org/10.1111/and.13523.; Agarwal A., Rana M., Qiu E. et al. Role of oxidative stress, infection and inflammation in male infertility. Andrologia. 2018;50(11):e13126. https://doi.org/10.1111/and.13126.; Кузнецова Н.Н., Шамин М.В., Фарбирович В.Я. и др. Оценка репродуктивного потенциала молодых мужчин Кузбасса и роль хронического воспаления органов репродуктивного тракта как фактора снижения фертильности эякулята. Омский научный вестник. 2015;(1):71–3.; Овчинников Р.И. Гамидов С.И., Попова А.Ю. и др. Причины репродуктивных потерь у мужчин – фрагментация ДНК сперматозоидов. РМЖ. 2015;23(11):634–8.; Esteves S.C., Agarwal A. Afterword to varicocele and male infertility: current concepts and future perspectives. Asian J Androl. 2016;18(2):319–22. https://doi.org/10.4103/1008-682X.172820.; Alsaikhan B., Alrabeeah K., Delouya G., Zini A. Epidemiology of varicocele. Asian J Androl. 2016;18(2):179–81. https://doi.org/10.4103/1008-682X.172640.; Jensen C.F.S., Østergren P., Dupree J.M. et al. Varicocele and male infertility. Nat Rev Urol. 2017;14(9):523–33. https://doi.org/10.1038/nrurol.2017.98.; Majzoub A., Esteves S.C., Gosálvez J., Agarwal A. Specialized sperm function tests in varicocele and the future of andrology laboratory. Asian J Androl. 2016;18(2):205–12. https://doi.org/10.4103/1008-682X.172642.; Kathrins M. Historical investigations into varicocele pathophysiology and sperm migration. Fertil Steril. 2018;109(1):75–6. https://doi.org/10.1016/j.fertnstert.2017.11.00.; Kruger T. Critical appraisal of conventional semen analysis in the context of varicocele. Asian J Androl. 2016;18(2):202–4. https://doi.org/10.4103/1008-682X.168691.; Santana V.P., Miranda-Furtado C.L., de Oliveira-Gennaro F.G., Dos Reis R.M. Genetics and epigenetics of varicocele pathophysiology: an overview. J Assist Reprod Genet. 2017;34(7):839–47. https://doi.org/10.1007/s10815-017-0931-5.; Brannigan R.E. Introduction: Varicoceles: a contemporary perspective. Fertil Steril. 2017;108(3):361–3. https://doi.org/10.1016/j.fertnstert.2017.07.1161.; Ефремов Е.А., Касатонова Е.В., Мельник Я.И., Симаков В.В. Позднее отцовство: обзор повреждающих эякулят механизмов, рисков и стратегий их преодоления. Эффективная фармакотерапия. 2016;(11):16–33.; Сулима А.Н., Литвинов В.В., Клименко П.М. и др. Особенности мужской инфертильности как единственного фактора бесплодия супружеской пары в клинике ВРТ. Экспериментальная и клиническая урология. 2019;(4):68–73. https://doi.org/10.29188/2222-8543-2019-11-4-68-73.; Кириленко Е.А., Онопко В.Ф. Окислительный стресс и мужская фертильность: современный взгляд на проблему. Бюллетень ВСНЦ СО РАМН. 2017;2(2):102–8.; Осадчук Л.В., Клещев М.А., Типисова Е.В., Осадчук А.В. Показатели сперматогенеза, гормонального и метаболического статуса у мужчин разных возрастных групп на Европейском севере России. Физиология человека. 2019;45(3):107–14. https://doi.org/10.1134/S0131164619020073.; Shridharani A., Owen R.C., Elkelany O.O., Kim E.D. The significance of clinical practice guidelines on adult varicocele detection and management. Asian J Androl. 2016;18(2):269–75. https://doi.org/10.4103/1008-682X.172641.; Kumar M., Selvam P., Agarwal A. Sperm and seminal plasma proteomics: molecular changes associated with varicocele-mediated male infertility. World J Mens Health. 2020;38(4):472–83. https://doi.org/10.5534/wjmh.190018.; Oliva A., Multigner L. Chronic epididymitis and grade III varicocele and their associations with semen characteristics in men consulting for couple infertility. Asian J Androl. 2018;20(4):360–5. https://doi.org/10.4103/aja.aja_78_17.; Руководство ВОЗ по исследованию и обработке эякулята человека. 5-е издание. Пер. с англ. Н.П. Макарова, под ред. Л.Ф. Курило. М.: Изд-во Капитал принт, 2012. 305 с.; Шмидт А.А., Замятин С.А., Гончар И.С., Коровин А.Е. Факторы риска развития мужской инфертильности. Клиническая патофизиология. 2019;25(4):56–60.; Belardin L.B., Del Giudice P.T., Camargo M. et al. Alterations in the proliferative/apoptotic equilibrium in semen of adolescents with varicocele. J Assist Reprod Genet. 2016;33(12):1657–64. https://doi.org/10.1007/s10815-016-0808-z.; Glassberg K.I. My indications for treatment of the adolescent varicocele (and why?). Transl Androl Urol. 2014;3(4):402–12. https://doi.org/10.3978/j.issn.2223-4683.2014.12.09.; Cho C.L., Esteves S.C., Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186–93. https://doi.org/10.4103/1008-682X.170441.; Zhang Y., Ma T., Su Z. et al. Varicoceles affect semen quality of infertile men in Southern China: A cross-sectional study of 5447 cases. Medicine (Baltimore). 2017;96(31):e7707. https://doi.org/10.1097/MD.0000000000007707.; Santana V.P., Miranda-Furtado C.L., Pedroso D.C.C. et al. The relationship among sperm global DNA methylation, telomere length, and DNA fragmentation in varicocele: a cross-sectional study of 20 cases. Syst Biol Reprod Med. 2019;65(2):95–104. https://doi.org/10.1080/19396368.2018.1557762.; Андреев Р.Ю., Раснер П.И., Малхасян В.А. и др. Варикоцеле – что нам о нем известно? Московский хирургический журнал. 2019;(5):24–31. https://doi.org/10.17238/issn2072-3180.2019.5.24-31.; Esteves S.C. Novel concepts in male factor infertility: clinical and laboratory perspectives. J Assist Reprod Genet. 2016;33(10):1319–35.; Martins A.D., Agarwal A. Oxidation reduction potential: a new biomarker of male infertility. Panminerva Med. 2019;61(2):108–17. https://doi.org/10.23736/S0031-0808.18.03529-2.; Tahamtan S., Tavalaee M., Izadi T. et al. Reduced sperm telomere length in individuals with varicocele is associated with reduced genomic integrity. Sci Rep. 2019;9(1):4336. https://doi.org/10.1038/s41598-019-40707-2.; Pallotti F., Paoli D., Carlini T. et al. Varicocele and semen quality: a retrospective case-control study of 4230 patients from a single centre. J Endocrinol Invest. 2018;41(2):185–92. https://doi.org/10.1007/s40618-017-0713-z.; Баженов И.В., Филиппова Е.С. Роль окислительного стресса в патогенезе мужского бесплодия. Эффективная фармакотерапия. 2018;(29):50–8.; Калинченко С.Ю., Тюзиков И.А. Окислительный стресс и мужское бесплодие – взаимосвязанные пандемии XXI в. Современные фармакотерапевтические возможности патогенетической коррекции нарушений сперматогенеза препаратами L-карнитина/ацетил-L-карнитина. Эффективная фармакотерапия. 2017;(22):6–19.; Корнеев И.А. Терапия мужского бесплодия: анализ исследований. Медицинский совет. 2019;(13):99–104. https://doi.org/10.21518/2079-701Х-2019-13-99-104.; https://www.gynecology.su/jour/article/view/1184

  2. 2
    Academic Journal

    المساهمون: This work was financially supported by the Russian Science Foundation, grant No. 16-1500039-П and the budget project No. АААА-А18-118020590108-7 of the Institute of Immunology and Physiology UB RAS., Работа выполнена при поддержке гранта РНФ (№ 16-1500039-П) и бюджетной темы ИИФ УрО РАН (№ АААА-А18-118020590108-7).

    المصدر: Bulletin of Siberian Medicine; Том 19, № 4 (2020); 6-13 ; Бюллетень сибирской медицины; Том 19, № 4 (2020); 6-13 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2020-19-4

    وصف الملف: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4141/2862; https://bulletin.tomsk.ru/jour/article/view/4141/2895; Harris-Hayes M., Schootman M., Schootman J.C., Hastings M.K. The Role of physical therapists in fighting the type 2 diabetes epidemic. J. Orthop. Sports. Phys. Ther. 2020; 50 (1): 5–16.; Salinno C., Cota P., Bastidas-Ponce A., Tarquis-Medina M., Lickert H, Bakhti M.β-Cell maturation and identity in health and disease. International Journal of Molecular Sciences. 2019; 20 (21): 5417–5422.; Moin A.S.M., Butler A.E. Alterations in betacell identity in type 1 and type 2 diabetes. Current Diabetes Reports. 2019; 19 (9): 83. DOI:10.1007/s11892-019-1194-6.; Hui H., Perfetti R. Рancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood. European Journal of Endocrinology. 2002; 146 (2): 129–141. DOI:10.1530/eje.0.1460129.; Oster A., Jensen J., Serup P., Galante P., Madsen O.D., Larsson L.I. Rat endocrine pancreatic development in relation to two homeobox gene products (Pdx-1 and Nkx 6.1). Histochem. Cytochem. 1998; 46 (6): 707–715.; Kojima H., Fujimiya M., Matsumura K., Nakahara T., Hara M., Chan L. Extrapancreatic insulin producing cells in multiple organs in diabetes. PNAS. 2004; 101 (8): 2458–2463. DOI:10.1073/pnas.0308690100.; Beamish C.A., Strutt B.J., Arany E.J., Hill D.J. Insulin- positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters. Islets. 2016; 8 (3): 65–82. DOI:10.1080/19382014.2016.1162367.; Dong-Sik H., Juyoung S., Ji-Won K., Heon-Seok P., Jae- Hyoung C., Kun-Ho Y. Generation of functional insulin- producing cells from neonatal porcine liver-derived cells by PDX1/VP16, BETA2/NeuroD and MafA. PLoS One. 2013; 8 (11): 76-79.; Данилова И.Г., Гетте И.Ф. Способ моделирования аллоксанового диабета. Патент на изобретение № 2534411; 2014.; Спасов А.А., Воронкова М.П., Сингур Г.Л., Чепляева Н.И., Чепурнова М.В. Экспериментальная модель сахарного диабета типа 2. Биомедицина.2011; (3): 12–18.; Hewitt S.M., Baskin D.G., Frevert C.W., Stahl W.L., Rosa-Molinar E. Controls for immunohistochemistry: the Histochemical Society’s standards of practice for validation of immunohistochemical assays. J. Histochem. Cytochem. 2014; 62 (10): 693–697. DOI:10.1369/0022155414545224.; Seeberger K.L., Anderson S.J., Ellis C.E., Yeung T.Y., Korbutt G.S. Identification and differentiation of PDX1 β-cell progenitors within the human pancreatic epithelium. World J. Diabetes. 2014; 5 (1): 59–68. DOI:10.4239/wjd.v5.i1.59.; Иммуногистохимические методы: руководство; пер. с англ. под ред. Г.А. Франка, П. Г. Малькова. М., 2011: 224.; Geerts A. History, heteogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 2001; 21: 311–335.; Kojima Н., Fujimiya M., Terashima T., Kimura H., Chan L. Extrapancreatic proinsulin/insulin-expressing cells in diabetes mellitus: Is history repeating itself? Endocr. J. 2006; 53 (6): 715–722.; Okada T., Kimura A., Kanki K., Nakatani S., Nagahara Y., Hiraga M. et al. Liver Resident macrophages (Kupffer cells) share several functional antigens in common with endothelial cells. Scandinavian Journal of lmmunology Experimental Immunology. 2016; 83: 139–150.; Банин В.В., Белоусова Т.А., Быков В.Л. и др. Terminologia histologica. Международные термины по цитологии и гистологии человека с официальным списком русских эквивалентов: справочное пособие; под ред. В.В. Банина, В.Л. Быкова. М.: ГЭОТАР-Медиа, 2009: 272.; Vekemans K., Braet F. Structural and functional aspects of the liver and liver sinusoidal cells in relation to colon carcinoma metastasis. World J. Gastroenterol. 2005; 1 (33): 5095–5102. DOI:10.3748/wjg.v11.i33.5095.; Chakrabarti S.K., James J.C., Mirmira R.G. Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, PDX1. Importance of chromatin structure in directing promoter binding. J. Biol. Chem. 2002; 277: 13286–13293.; Andrali S., Smapley M, Vanderford N., Ozcan S. Glucose regulation of insulin gene expression in pancreatic β-cells. Biochemical Journal. 2008; 415 (1): 1–10.; Koblas T., Leontovyc I., Loukotova S., Kosinova L., Saudek F. Reprogramming of pancreatic exocrine cells AR42J into insulin-producing cells using mRNAs for PDX1, Ngn3, and MafA transcription Factors. Official Journal of the American Society of Gene & Cell Therapy. 2016; 5: 1–12.; https://bulletin.tomsk.ru/jour/article/view/4141

  3. 3
    Academic Journal

    المساهمون: Работа выполнена при поддержке гранта РФФИ № 17-54-30006.

    المصدر: HIV Infection and Immunosuppressive Disorders; Том 10, № 4 (2018); 25-36 ; ВИЧ-инфекция и иммуносупрессии; Том 10, № 4 (2018); 25-36 ; 2077-9828 ; 10.22328/2077-9828-2018-10-4

    وصف الملف: application/pdf

    Relation: https://hiv.bmoc-spb.ru/jour/article/view/389/316; Boulougoura A., Sereti I. HIV infection and immune activation: the role of coinfections. Curr. Opin. HIV AIDS, 2016, Vol. 11, No. 2, pp. 191– 200. URL: http://www.ncbi.nlm.nih.gov/pubmed/26720550.; Appay V., Kelleher A.D. Immune activation and immune aging in HIV infection. Curr. Opin. HIV AIDS, 2016, Vol. 11, No. 2, pp. 242–249. URL: ://WOS:000369652400015.; Matthews P.C., Geretti A.M., Goulder P.J., Klenerman P. Epidemiology and impact of HIV coinfection with hepatitis B and hepatitis C viruses in Sub-Saharan Africa. J. Clin. Virol., 2014, Vol. 61, No. 1, pp. 20–33. URL: http://www.ncbi.nlm.nih.gov/pubmed/24973812.; Effros R.B. The silent war of CMV in aging and HIV infection. Mech. Ageing Dev., 2016, Vol. 158, pp. 46–52. URL: http://www.ncbi.nlm.nih.gov/pubmed/26404009.; Platt L., Easterbrook P., Gower E., McDonald B., Sabin K., McGowan C., Yanny I., Razavi H., Vickerman P. Prevalence and burden of HCV coinfection in people living with HIV: a global systematic review and meta-analysis. Lancet Infect. Dis., 2016, Vol. 16, No. 7, pp. 797–808. URL: http://www.ncbi.nlm.nih.gov/pubmed/26922272.; Alter M.J. Epidemiology of viral hepatitis and HIV co-infection. J. Hepatol., 2006, Vol. 44, No. 1, Suppl., pp. S6–S9. URL: http://www.ncbi.nlm.nih.gov/pubmed/16352363.; Peters L., Mocroft A., Lundgren J., Grint D., Kirk O., Rockstroh J. HIV and hepatitis C co-infection in Europe, Israel and Argentina: a EuroSIDA perspective. BMC Infect. Dis., 2014, Vol. 14, Suppl. 6, pp. S13. URL: http://www.ncbi.nlm.nih.gov/pubmed/25253564.; Rhodes T., Platt L., Judd A., Mikhailova L.A., Sarang A., Wallis N., Alpatova T., Hickman M., Parry J.V. Hepatitis C virus infection, HIV co-infection, and associated risk among injecting drug users in Togliatti, Russia. Int. J. STD AIDS, 2005, Vol. 16, No. 11, pp. 749–754. URL: http://www.ncbi.nlm.nih.gov/pubmed/16303071.; Chen T.Y., Ding E.L., Seage Iii G.R., Kim A.Y. Meta-analysis: increased mortality associated with hepatitis C in HIV-infected persons is unrelated to HIV disease progression. Clin. Infect. Dis., 2009, Vol. 49, No. 10, pp. 1605–1615. URL: http://www.ncbi.nlm.nih.gov/pubmed/19842982.; Deng L.P., Gui X.E., Zhang Y.X., Gao S.C., Yang R.R. Impact of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis. World J. Gastroenterol., 2009, Vol. 15, No. 8, pp. 996–1003. URL: http://www.ncbi.nlm.nih.gov/pubmed/19248201.; Brau N., Fox R.K., Xiao P., Marks K., Naqvi Z., Taylor L.E., Trikha A., Sherman M., Sulkowski M.S., Dieterich D.T., Rigsby M.O., Wright T.L., Hernandez M.D., Jain M.K., Khatri G.K., Sterling R.K., Bonacini M., Martyn C.A., Aytaman A., Llovet J.M., Brown S.T., Bini E.J., North American Liver Cancer in H.I.V.S.G. Presentation and outcome of hepatocellular carcinoma in HIV-infected patients: a U.S.-Canadian multicenter study. J. Hepatol., 2007, Vol. 47, No. 4, pp. 527–537. URL: http://www.ncbi.nlm.nih.gov/pubmed/17692986.; Operskalski E.A., Kovacs A. HIV/HCV co-infection: pathogenesis, clinical complications, treatment, and new therapeutic technologies. Curr. HIV/AIDS Rep., 2011, Vol. 8, No. 1, pp. 12–22. URL: http://www.ncbi.nlm.nih.gov/pubmed/21221855.; Hernando V., Alejos B., Monge S., Berenguer J., Anta L., Vinuesa D., Palacios R., Muga R., Moreno S., Jarrin I., CoRIS cohort. All-cause mortality in the cohorts of the Spanish AIDS Research Network (RIS) compared with the general population: 1997–2010. BMC Infect. Dis., 2013, Vol. 13, pp. 382. URL: http://www.ncbi.nlm.nih.gov/pubmed/23961924.; Rotman Y., Liang T.J. Coinfection with hepatitis C virus and human immunodeficiency virus: virological, immunological, and clinical outcomes. J. Virol., 2009, Vol. 83, No. 15, pp. 7366–7374. URL: http://www.ncbi.nlm.nih.gov/pubmed/19420073.; Kim A.Y., Chung R.T. Coinfection with HIV-1 and HCV–A one-two punch. Gastroenterol., 2009, Vol. 137, No. 3, pp. 795–814. URL: http://www.ncbi.nlm.nih.gov/pubmed/19549523.; Kong L., Cardona Maya W., Moreno-Fernandez M.E., Ma G., Shata M.T., Sherman K.E., Chougnet C., Blackard J.T. Low-level HIV infection of hepatocytes. Virol. J., 2012, Vol. 9, pp. 157. URL: http://www.ncbi.nlm.nih.gov/pubmed/22877244.; Pal S., Sullivan D.G., Kim S., Lai K.K., Kae J., Cotler S.J., Carithers R.L., Jr., Wood B.L., Perkins J.D., Gretch D.R. Productive replication of hepatitis C virus in perihepatic lymph nodes in vivo: implications of HCV lymphotropism. Gastroenterology, 2006, Vol. 130, No. 4, pp. 1107– 1116. URL: http://www.ncbi.nlm.nih.gov/pubmed/16618405.; Laskus T., Radkowski M., Wang L.F., Vargas H., Rakela J. The presence of active hepatitis C virus replication in lymphoid tissue in patients coinfected with human immunodeficiency virus type 1. J. Infect. Dis., 1998, Vol. 178, No. 4, pp. 1189–1192. URL: http://www.ncbi.nlm.nih.gov/pubmed/9806058.; Thomas D.L., Astemborski J., Vlahov D., Strathdee S.A., Ray S.C., Nelson K.E., Galai N., Nolt K.R., Laeyendecker O., Todd J.A. Determinants of the quantity of hepatitis C virus RNA. J. Infect. Dis., 2000, Vol. 181, No. 3, pp. 844–851. URL: http://www.ncbi.nlm.nih.gov/pubmed/10720503.; Bonacini M., Govindarajan S., Blatt L.M., Schmid P., Conrad A., Lindsay K.L. Patients co-infected with human immunodeficiency virus and hepatitis C virus demonstrate higher levels of hepatic HCV RNA. J. Viral. Hepat., 1999, Vol. 6, No. 3, pp. 203–208. URL: http://www.ncbi.nlm.nih.gov/pubmed/10607232.; Beld M., Penning M., Lukashov V., McMorrow M., Roos M., Pakker N., van den Hoek A., Goudsmit J. Evidence that both HIV and HIV-induced immunodeficiency enhance HCV replication among HCV seroconverters. Virol., 1998, Vol. 244, No. 2, pp. 504–512. URL: http://www.ncbi.nlm.nih.gov/pubmed/9601518.; Lin W., Weinberg E.M., Tai A.W., Peng L.F., Brockman M.A., Kim K.A., Kim S.S., Borges C.B., Shao R.X., Chung R.T. HIV increases HCV replication in a TGF-beta1-dependent manner. Gastroenterology, 2008, Vol. 134, No. 3, pp. 803–811. URL: http://www.ncbi.nlm.nih.gov/pubmed/18325393.; Reiberger T., Ferlitsch A., Sieghart W., Kreil A., Breitenecker F., Rieger A., Schmied B., Gangl A., Peck-Radosavljevic M. HIV-HCV co-infected patients with low CD4+ cell nadirs are at risk for faster fibrosis progression and portal hypertension. J. Viral. Hepat., 2010, Vol. 17, No. 6, pp. 400–409. URL: http://www.ncbi.nlm.nih.gov/pubmed/19780945.; Rashkin S., Rouster S., Goodman Z.D., Sherman K.E. T-helper cells and liver fibrosis in hepatitis C virus-monoinfected patients. J. Viral. Hepat., 2010, Vol. 17, No. 3, pp. 222–226. URL: http://www.ncbi.nlm.nih.gov/pubmed/19709360.; Kooij K.W., Wit F.W., van Zoest R.A., Schouten J., Kootstra N.A., van Vugt M., Prins M., Reiss P., van der Valk M., Group A.G.C.S. Liver fibrosis in HIV-infected individuals on long-term antiretroviral therapy: associated with immune activation, immunodeficiency and prior use of didanosine. AIDS, 2016, Vol. 30, No. 11, pp. 1771–1780. URL: http://www.ncbi.nlm.nih.gov/pubmed/27088320.; Potter M., Odueyungbo A., Yang H., Saeed S., Klein M.B. Canadian Co-infection Cohort Study I. Impact of hepatitis C viral replication on CD4+ T-lymphocyte progression in HIV-HCV coinfection before and after antiretroviral therapy. AIDS, 2010, Vol. 24, No. 12, pp. 1857–1865. URL: http://www.ncbi.nlm.nih.gov/pubmed/20479633.; Mandorfer M., Schwabl P., Steiner S., Reiberger T., Peck-Radosavljevic M. Advances in the management of HIV/HCV coinfection. Hepatol. Int., 2016, Vol. 10, No. 3, pp. 424–435. URL: http://www.ncbi.nlm.nih.gov/pubmed/26758592.; Zhao Q., Qin C.Y., Zhao Z.H., Fan Y.C., Wang K. Epigenetic modifications in hepatic stellate cells contribute to liver fibrosis. Tohoku J. Exp. Med., 2013, Vol. 229, No. 1, pp. 35–43. URL: http://www.ncbi.nlm.nih.gov/pubmed/23238615.; Lee U.E., Friedman S.L. Mechanisms of hepatic fibrogenesis. Best Pract. Res. Clin. Gastroenterol., 2011, Vol. 25, No. 2, pp. 195–206. URL: http://www.ncbi.nlm.nih.gov/pubmed/21497738.; Marrone G., Shah V.H., Gracia-Sancho J. Sinusoidal communication in liver fibrosis and regeneration. J. Hepatol., 2016, Vol. 65, No. 3, pp. 608–617. URL: DOI:10.1016/j.jhep.2016.04.018. http://www.ncbi.nlm.nih.gov/pubmed/27151183.; Greuter T., Shah V.H. Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights. J. Gastroenterol., 2016, Vol. 51, No. 6, pp. 511–519. URL: http://www.ncbi.nlm.nih.gov/pubmed/26939970.; Matsuzaki K. Modulation of TGF-beta signaling during progression of chronic liver diseases. Front. Biosci (Landmark Ed), 2009, Vol. 14, pp. 2923–2934. URL: http://www.ncbi.nlm.nih.gov/pubmed/19273245.; Tsukamoto H., Zhu N.L., Asahina K., Mann D.A., Mann J. Epigenetic cell fate regulation of hepatic stellate cells. Hepatol. Res., 2011, Vol. 41, No. 7, pp. 675–682. URL: http://www.ncbi.nlm.nih.gov/pubmed/21504520.; Jain M.K., Adams-Huet B., Terekhova D., Kushner L.E., Bedimo R., Li X., Holodniy M. Acute and chronic immune biomarker changes during interferon/ribavirin treatment in HIV/HCV co-infected patients. J. Viral. Hepat., 2015, Vol. 22, No. 1, pp. 25–36. URL: http://www.ncbi.nlm.nih.gov/pubmed/24506344.; Ciccaglione A.R., Marcantonio C., Tritarelli E., Tataseo P., Ferraris A., Bruni R., Dallapiccola B., Gerosolimo G., Costantino A., Rapicetta M. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones. BMC Genomics, 2008, Vol. 9, pp. 309. URL: http://www.ncbi.nlm.nih.gov/pubmed/18590516.; Hiet M.S., Bauhofer O., Zayas M., Roth H., Tanaka Y., Schirmacher P., Willemsen J., Grunvogel O., Bender S., Binder M., Lohmann V., Lotteau V., Ruggieri A., Bartenschlager R. Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A. J. Hepatol., 2015, Vol. 63, No. 4, pp. 829–837. URL: http://www.ncbi.nlm.nih.gov/pubmed/25908268.; Arnaud N., Dabo S., Akazawa D., Fukasawa M., Shinkai-Ouchi F., Hugon J., Wakita T., Meurs E.F. Hepatitis C virus reveals a novel early control in acute immune response. PLoS Pathog., 2011, Vol. 7, pp. e1002289. URL: http://www.ncbi.nlm.nih.gov/pubmed/22022264.; Li K., Li N.L., Wei D., Pfeffer S.R., Fan M., Pfeffer L.M. Activation of chemokine and inflammatory cytokine response in hepatitis C virus-infected hepatocytes depends on Toll-like receptor 3 sensing of hepatitis C virus double-stranded RNA intermediates. Hepatology, 2012, Vol. 55, No. 3, pp. 666–675. URL: http://www.ncbi.nlm.nih.gov/pubmed/22030901.; Wieland S., Makowska Z., Campana B., Calabrese D., Dill M.T., Chung J., Chisari F.V., Heim M.H. Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected human liver. Hepatology, 2014, Vol. 59, No. 6, pp. 2121–2130. URL: http://www.ncbi.nlm.nih.gov/pubmed/24122862.; Metz P., Dazert E., Ruggieri A., Mazur J., Kaderali L., Kaul A., Zeuge U., Windisch M.P., Trippler M., Lohmann V., Binder M., Frese M., Bartenschlager R. Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology, 2012, Vol. 56, No. 6, pp. 2082–2093. URL: http://www.ncbi.nlm.nih.gov/pubmed/22711689.; Scagnolari C., Monteleone K., Cacciotti G., Antonelli G. Role of interferons in chronic hepatitis C infection. Curr. Drug Targets, 5 Feb. 2016. URL: http://www.ncbi.nlm.nih.gov/pubmed/26844564.; Dill M.T., Duong F.H., Vogt J.E., Bibert S., Bochud P.Y., Terracciano L., Papassotiropoulos A., Roth V., Heim M.H. Interferon-induced gene expression is a stronger predictor of treatment response than IL28B genotype in patients with hepatitis C. Gastroenterology, 2011, Vol. 140, No. 3, pp. 1021–1031. URL: http://www.ncbi.nlm.nih.gov/pubmed/21111740.; Norris S., Collins C., Doherty D.G., Smith F., McEntee G., Traynor O., Nolan N., Hegarty J., O’Farrelly C. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J. Hepatol., 1998, Vol. 28, No. 1, pp. 84–90. URL: http://www.ncbi.nlm.nih.gov/pubmed/9537869.; Amadei B., Urbani S., Cazaly A., Fisicaro P., Zerbini A., Ahmed P., Missale G., Ferrari C., Khakoo S.I. Activation of natural killer cells during acute infection with hepatitis C virus. Gastroenterology, 2010, Vol. 138, No. 4, pp. 1536–1545. URL: http://www.ncbi.nlm.nih.gov/pubmed/20080094.; Ahlenstiel G., Titerence R.H., Koh C., Edlich B., Feld J.J., Rotman Y., Ghany M.G., Hoofnagle J.H., Liang T.J., Heller T., Rehermann B. Natural killer cells are polarized toward cytotoxicity in chronic hepatitis C in an interferon-alfa-dependent manner. Gastroenterology, 2010, Vol. 138, No. 1, pp. 325–335. URL: http://www.ncbi.nlm.nih.gov/pubmed/19747917.; Holder K.A., Stapleton S.N., Gallant M.E., Russell R.S., Grant M.D. Hepatitis C virus-infected cells downregulate NKp30 and inhibit ex vivo NK cell functions. J. Immunol., 2013, Vol. 191, No. 6, pp. 3308–3318. URL: http://www.ncbi.nlm.nih.gov/pubmed/23960237.; Mondelli M.U., Oliviero B., Mele D., Mantovani S., Gazzabin C., Varchetta S. Natural killer cell functional dichotomy: a feature of chronic viral hepatitis? Front. Immunol., 2012, Vol. 3, pp. 351. URL: http://www.ncbi.nlm.nih.gov/pubmed/23420385.; Frese M., Schwarzle V., Barth K., Krieger N., Lohmann V., Mihm S., Haller O., Bartenschlager R. Interferon-gamma inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology, 2002, Vol. 35, No. 3, pp. 694–703. URL: http://www.ncbi.nlm.nih.gov/pubmed/11870386.; Major M.E., Mihalik K., Puig M., Rehermann B., Nascimbeni M., Rice C.M., Feinstone S.M. Previously infected and recovered chimpanzees exhibit rapid responses that control hepatitis C virus replication upon rechallenge. J. Virol., 2002, Vol. 76, No. 13, pp. 6586–6595. URL: http://www.ncbi.nlm.nih.gov/pubmed/12050371.; Glässner A., Eisenhardt M., Krämer B., Körner C., Coenen M., Sauerbruch T., Spengler U., Nattermann J. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab. Invest., 2012, Vol. 92, No. 7, pp. 967–977. URL: http://www.ncbi.nlm.nih.gov/pubmed/22449797.; Terilli R.R., Cox A.L. Immunity and hepatitis C: a review. Curr. HIV/AIDS Rep., 2013, Vol. 10, No. 1, pp. 51–58. URL: http://www.ncbi.nlm.nih.gov/pubmed/23180007.; Semmo N., Lucas M., Krashias G., Lauer G., Chapel H., Klenerman P. Maintenance of HCV-specific T-cell responses in antibody-deficient patients a decade after early therapy. Blood, 2006, Vol. 107, No. 11, pp. 4570–4571. URL: http://www.ncbi.nlm.nih.gov/pubmed/16717132.; Lauer G.M., Walker B.D. Hepatitis C virus infection. N. Engl. J. Med., 2001, Vol. 345, No. 1, pp. 41–52. URL: http://www.ncbi.nlm.nih.gov/pubmed/11439948.; Morin T.J., Broering T.J., Leav B.A., Blair B.M., Rowley K.J., Boucher E.N., Wang Y., Cheslock P.S., Knauber M., Olsen D.B., Ludmerer S.W., Szabo G., Finberg R.W., Purcell R.H., Lanford R.E., Ambrosino D.M., Molrine D.C., Babcock G.J. Human monoclonal antibody HCV1 effectively prevents and treats HCV infection in chimpanzees. PLoS Pathog., 2012, Vol. 8, pp. e1 002 895. URL: http://www.ncbi.nlm.nih.gov/pubmed/22952447.; Law M., Maruyama T., Lewis J., Giang E., Tarr A.W., Stamataki Z., Gastaminza P., Chisari F.V., Jones I.M., Fox R.I., Ball J.K., McKeating J.A., Kneteman N.M., Burton D.R. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat. Med., 2008, Vol. 14, No. 1, pp. 25–27. URL: http://www.ncbi.nlm.nih.gov/pubmed/18064037.; Dowd K.A., Netski D.M., Wang X.H., Cox A.L., Ray S.C. Selection pressure from neutralizing antibodies drives sequence evolution during acute infection with hepatitis C virus. Gastroenterology, 2009, Vol. 136, No. 7, pp. 2377–2386. URL: http://www.ncbi.nlm.nih.gov/pubmed/19303013.; Grakoui A., Shoukry N.H., Woollard D.J., Han J.H., Hanson H.L., Ghrayeb J., Murthy K.K., Rice C.M., Walker C.M. HCV persistence and immune evasion in the absence of memory T cell help. Science, 2003, Vol. 302, No. 5645, pp. 659–662. URL: http://www.ncbi.nlm.nih.gov/pubmed/14576438.; Shoukry N.H., Grakoui A., Houghton M., Chien D.Y., Ghrayeb J., Reimann K.A., Walker C.M. Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J. Exp. Med., 2003, Vol. 197, No. 12, pp. 1645–1655. URL: http://www.ncbi.nlm.nih.gov/pubmed/12810686.; Shin E.C., Park S.H., Demino M., Nascimbeni M., Mihalik K., Major M., Veerapu N.S., Heller T., Feinstone S.M., Rice C.M., Rehermann B. Delayed induction, not impaired recruitment, of specific CD8(+) T cells causes the late onset of acute hepatitis C. Gastroenterology, 2011, Vol. 141, No. 2, pp. 686–695, 695.e681. URL: http://www.ncbi.nlm.nih.gov/pubmed/21699897.; Klenerman P., Thimme R. T cell responses in hepatitis C: the good, the bad and the unconventional. Gut, 2012, Vol. 61, No. 8, pp. 1226–1234. URL: http://www.ncbi.nlm.nih.gov/pubmed/21873736.; Smyk-Pearson S., Tester I.A., Klarquist J., Palmer B.E., Pawlotsky J.M., Golden-Mason L., Rosen H.R. Spontaneous recovery in acute human hepatitis C virus infection: functional T-cell thresholds and relative importance of CD4 help. J. Virol., 2008, Vol. 82, No. 4, pp. 1827–1837. URL: http://www.ncbi.nlm.nih.gov/pubmed/18045940.; Urbani S., Amadei B., Fisicaro P., Tola D., Orlandini A., Sacchelli L., Mori C., Missale G., Ferrari C. Outcome of acute hepatitis C is related to virus-specific CD4 function and maturation of antiviral memory CD8 responses. Hepatology, 2006, Vol. 44, No. 1, pp. 126–139. URL: http://www.ncbi.nlm.nih.gov/pubmed/16799989.; Raziorrouh B., Ulsenheimer A., Schraut W., Heeg M., Kurktschiev P., Zachoval R., Jung M.C., Thimme R., Neumann-Haefelin C., Horster S., Wachtler M., Spannagl M., Haas J., Diepolder H.M., Gruner N.H. Inhibitory molecules that regulate expansion and restoration of HCV-specific CD4+ T cells in patients with chronic infection. Gastroenterology, 2011, Vol. 141, No. 4, pp. 1422–1431. URL: http://www.ncbi.nlm.nih.gov/pubmed/21763239.; Kared H., Fabre T., Bedard N., Bruneau J., Shoukry N.H. Galectin-9 and IL-21 mediate cross-regulation between Th17 and Treg cells during acute hepatitis C. PLoS Pathog., 2013, Vol. 9, pp. e1003422. URL: http://www.ncbi.nlm.nih.gov/pubmed/23818845.; Taye S., Lakew M. Impact of hepatitis C virus co-infection on HIV patients before and after highly active antiretroviral therapy: an immunological and clinical chemistry observation, Addis Ababa, Ethiopia. BMC Immunol., 2013, Vol. 14, pp. e23. URL: http://www.ncbi.nlm.nih.gov/pubmed/23679118.; Santin M., Mestre M., Shaw E., Barbera M.J., Casanova A., Niubo J., Bolao F., Podzamczer D., Gudiol F. Impact of hepatitis C virus coinfection on immune restoration during successful antiretroviral therapy in chronic human immunodeficiency virus type 1 disease. Eur. J. Clin. Microbiol. Infect. Dis., 2008. Vol. 27, No. 1. pp. 65–73. URL: http://www.ncbi.nlm.nih.gov/pubmed/17938979.; Yacisin K., Maida I., Rios M.J., Soriano V., Nunez M. Hepatitis C virus coinfection does not affect CD4 restoration in HIV-infected patients after initiation of antiretroviral therapy. AIDS Res. Hum. Retroviruses, 2008, Vol. 24, No. 7, pp. 935–940. URL: http://www.ncbi.nlm.nih.gov/pubmed/18593347.; Rockstroh J.K., Mocroft A., Soriano V., Tural C., Losso M.H., Horban A., Kirk O., Phillips A., Ledergerber B., Lundgren J., Euro S.S.G. Influence of hepatitis C virus infection on HIV-1 disease progression and response to highly active antiretroviral therapy. J. Infect. Dis., 2005, Vol. 192, No. 6, pp. 992–1002. URL: http://www.ncbi.nlm.nih.gov/pubmed/16107951.; Tsiara C.G., Nikolopoulos G.K., Dimou N.L., Bagos P.G., Saroglou G., Velonakis E., Hatzakis A. Effect of hepatitis C virus on immunological and virological responses in HIV-infected patients initiating highly active antiretroviral therapy: a meta-analysis. J. Viral Hepat., 2013, Vol. 20, No. 10, pp. 715–724. URL: http://www.ncbi.nlm.nih.gov/pubmed/24010646.; Mohan M., Kaushal D., Aye P.P., Alvarez X., Veazey R.S., Lackner A.A. Focused examination of the intestinal epithelium reveals transcriptional signatures consistent with disturbances in enterocyte maturation and differentiation during the course of SIV infection. PloS One, 2013, Vol. 8, No. 4, pp. e60122. URL: ://WOS:000317909600013.; Klatt N.R., Funderburg N.T., Brenchley J.M. Microbial translocation, immune activation, and HIV disease. Trends Microbiol., 2013, Vol. 21, No. 1, pp. 6–13. URL: http://www.ncbi.nlm.nih.gov/pubmed/23062765.; Nazli A., Chan O., Dobson-Belaire W.N., Ouellet M., Tremblay M.J., Gray-Owen S.D., Arsenault A.L., Kaushic C. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PloS Pathog., 2010, Vol. 6, pp. e1000852. URL: ://WOS:000277722400024.; Smith A.J., Schacker T.W., Reilly C.S., Haase A.T. A role for syndecan-1 and claudin-2 in microbial translocation during HIV-1 infection. JAIDS, 2010, Vol. 55, No. 3, pp. 306–315. URL: ://WOS:000283847400006.; Klatt N.R., Estes J.D., Sun X., Ortiz A.M., Barber J.S., Harris L.D., Cervasi B., Yokomizo L.K., Pan L., Vinton C.L., Tabb B., Canary L.A., Dang Q., Hirsch V.M., Alter G., Belkaid Y., Lifson J.D., Silvestri G., Milner J.D., Paiardini M., Haddad E.K., Brenchley J.M. Loss of mucosal CD103+ DCs and IL-17+ and IL-22+ lymphocytes is associated with mucosal damage in SIV infection. Mucosal Immunol., 2012, Vol. 5, No. 6, pp. 646–657. URL: ://WOS:000310572800007.; Brenchley J.M., Price D.A., Schacker T.W., Asher T.E., Silvestri G., Rao S., Kazzaz Z., Bornstein E., Lambotte O., Altmann D., Blazar B.R., Rodriguez B., Teixeira-Johnson L., Landay A., Martin J.N., Hecht F.M., Picker L.J., Lederman M.M., Deeks S.G., Douek D.C. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med., 2006, Vol. 12, No. 12, pp. 1365–1371. URL: http://www.ncbi.nlm.nih.gov/pubmed/17115046.; Leon A., Leal L., Torres B., Lucero C., Inciarte A., Arnedo M., Plana M., Vila J., Gatell J.M., Garcia F. Association of microbial translocation biomarkers with clinical outcome in controllers HIV-infected patients. AIDS, 2015, Vol. 29, No. 6, pp. 675–681. URL: ://WOS:000351688200005.; Perkins M.R., Bartha I., Timmer J.K., Liebner J.C., Wolinsky D., Gunthard H.F., Hauser C., Bernasconi E., Hoffmann M., Calmy A., Battegay M., Telenti A., Douek D.C., Fellay J., Study S.H.C. The interplay between host genetic variation, viral replication, and microbial translocation in untreated HIV-infected individuals. J. Infect. Dis., 2015, Vol. 212, No. 4, pp. 578–584. URL: ://WOS:000359677600010.; Jiang W., Lederman M.M., Hunt P., Sieg S.F., Haley K., Rodriguez B., Landay A., Martin J., Sinclair E., Asher A.I., Deeks S.G., Douek D.C., Brenchley J.M. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J. Infect. Dis., 2009, Vol. 199, No. 8, pp. 1177–1185. URL: ://WOS:000264409000013.; Marchetti G., Gori A., Casabianca A., Magnani M., Franzetti F., Clerici M., Perno C.F., Monforte A., Galli M., Meroni L. Comparative analysis of T-cell turnover and homeostatic parameters in HIV-infected patients with discordant immune-virological responses to HAART. AIDS, 2006, Vol. 20, No. 13, pp. 1727–1736. URL: http://www.ncbi.nlm.nih.gov/pubmed/16931937.; Novati S., Sacchi P., Cima S., Zuccaro V., Columpsi P., Pagani L., Filice G., Bruno R. General issues on microbial translocation in HIV-infected patients. Eur. Rev. Med. Pharmacol. Sci., 2015, Vol. 19, No. 5, pp. 866–878. URL: ://WOS:000352642700024.; Marchetti G., Nasta P., Bai F., Gatti F., Bellistri G.M., Tincati C., Borghi F., Carosi G., Puoti M., Monforte A. Circulating sCD14 is associated with virological response to pegylated-interferon-alpha/ribavirin treatment in HIV/HCV co-infected patients. PLoS One, 2012, Vol. 7, pp. e32028. URL: http://www.ncbi.nlm.nih.gov/pubmed/22363790.; de Oca Arjona M.M., Marquez M., Soto M.J., Rodriguez-Ramos C., Terron A., Vergara A., Arizcorreta A., Fernandez-Gutierrez C., GironGonzalez J.A. Bacterial translocation in HIV-infected patients with HCV cirrhosis: implication in hemodynamic alterations and mortality. J. Acquir. Immune Defic. Syndr., 2011, Vol. 56, No. 5, pp. 420–427. URL: http://www.ncbi.nlm.nih.gov/pubmed/21266909.; Scarpellini E., Valenza V., Gabrielli M., Lauritano E.C., Perotti G., Merra G., Dal Lago A., Ojetti V., Ainora M.E., Santoro M., Ghirlanda G., Gasbarrini A. Intestinal permeability in cirrhotic patients with and without spontaneous bacterial peritonitis: is the ring closed? Am. J. Gastroenterol., 2010, Vol. 105, No. 2, pp. 323–327. URL: http://www.ncbi.nlm.nih.gov/pubmed/19844200.; Nakamoto N., Kanai T. Role of toll-like receptors in immune activation and tolerance in the liver. Front. Immunol., 2014, Vol. 5, pp. e221. URL: http://www.ncbi.nlm.nih.gov/pubmed/24904576.; Paik Y.H., Schwabe R.F., Bataller R., Russo M.P., Jobin C., Brenner D.A. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology, 2003, Vol. 37, No. 5, pp. 1043–1055. URL: http://www.ncbi.nlm.nih.gov/pubmed/12717385.; Scott M.J., Liu S., Shapiro R.A., Vodovotz Y., Billiar T.R. Endotoxin uptake in mouse liver is blocked by endotoxin pretreatment through a suppressor of cytokine signaling-1-dependent mechanism. Hepatology, 2009, Vol. 49, No. 5, pp. 1695–1708. URL: http://www.ncbi.nlm.nih.gov/pubmed/19296467.; Lumsden A.B., Henderson J.M., Kutner M.H. Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology, 1988, Vol. 8, No. 2, pp. 232–236. URL: http://www.ncbi.nlm.nih.gov/pubmed/3281884.; Gonzalez V.D., Falconer K., Blom K.G., Reichard O., Morn B., Laursen A.L., Weis N., Alaeus A., Sandberg J.K. High levels of chronic immune activation in the T-cell compartments of patients coinfected with hepatitis C virus and human immunodeficiency virus type 1 and on highly active antiretroviral therapy are reverted by alpha interferon and ribavirin treatment. J. Virol., 2009, Vol. 83, No. 21, pp. 11407–11411. URL: http://www.ncbi.nlm.nih.gov/pubmed/19710147.; Feuth T., Arends J.E., Fransen J.H., Nanlohy N.M., van Erpecum K.J., Siersema P.D., Hoepelman A.I., van Baarle D. Complementary role of HCV and HIV in T-cell activation and exhaustion in HIV/HCV coinfection. PLoS One, 2013, Vol. 8, pp. e59302. URL: http://www.ncbi.nlm.nih.gov/pubmed/23555014.; Green D.R., Droin N., Pinkoski M. Activation-induced cell death in T cells. Immunol. Rev., 2003, Vol. 193, pp. 70–81. URL: http://www.ncbi.nlm.nih.gov/pubmed/12752672.; Brenner D., Krammer P.H., Arnold R. Concepts of activated T cell death. Crit. Rev. Oncol. Hematol., 2008, Vol. 66, No. 1, pp. 52–64. URL: http://www.ncbi.nlm.nih.gov/pubmed/18289867.; Funderburg N., Luciano A.A., Jiang W., Rodriguez B., Sieg S.F., Lederman M.M. Toll-like receptor ligands induce human T cell activation and death, a model for HIV pathogenesis. PLoS One., 2008, Vol. 3., pp. e1915. URL: http://www.ncbi.nlm.nih.gov/pubmed/18382686.; Körner C., Krämer B., Schulte D., Coenen M., Mauss S., Fatkenheuer G., Oldenburg J., Nattermann J., Rockstroh J.K., Spengler U. Effects of HCV co-infection on apoptosis of CD4+ T-cells in HIV-positive patients. Clin. Sci. (Lond.), 2009, Vol. 116, No. 12, pp. 861–870. URL:http://www.ncbi.nlm.nih.gov/pubmed/19128241.; Körner C., Tolksdorf F., Riesner K., Krämer B., Schulte D., Nattermann J., Rockstroh J.K., Spengler U. Hepatitis C coinfection enhances sensitization of CD4(+) T-cells towards Fas-induced apoptosis in viraemic and HAART-controlled HIV-1-positive patients. Antivir. Ther., 2011, Vol. 16, No. 7, pp. 1047–1055. URL: http://www.ncbi.nlm.nih.gov/pubmed/22024520.; Dichamp I., Abbas W., Kumar A., Di Martino V., Herbein G. Cellular activation and intracellular HCV load in peripheral blood monocytes isolated from HCV monoinfected and HIV-HCV coinfected patients. PLoS One, 2014, Vol. 9, pp. e96907. URL: http://www.ncbi.nlm.nih.gov/pubmed/24809719.; Rempel H., Sun B., Calosing C., Abadjian L., Monto A., Pulliam L. Monocyte activation in HIV/HCV coinfection correlates with cognitive impairment. PLoS One, 2013, Vol. 8, pp. e55776. URL: http://www.ncbi.nlm.nih.gov/pubmed/23437063.; Goeser F., Glassner A., Kokordelis P., Wolter F., Lutz P., Kaczmarek D.J., Schwarze-Zander C., Boesecke C., Strassburg C.P., Rockstroh J.K., Spengler U., Kramer B., Nattermann J. HIV mono-infection is associated with an impaired anti-hepatitis C virus activity of natural killer cells. AIDS, 2016, Vol. 30, No. 3, pp. 355–363. URL: http://www.ncbi.nlm.nih.gov/pubmed/26558728.; Kahan S.M., Wherry E.J., Zajac A.J. T cell exhaustion during persistent viral infections. Virology, 2015, Vol. 479–480, pp. 180–193. URL: https://www.ncbi.nlm.nih.gov/pubmed/25620767.; Tsoukas C. Immunosenescence and aging in HIV. Curr. Opin. HIV AIDS, 2014, Vol. 9, No. 4, pp. 398–404. URL: https://www.ncbi.nlm.nih.gov/pubmed/24840059.; Hartling H.J., Jespersen S., Gaardbo J.C., Sambleben C., Thorsteinsson K., Gerstoft J., Ullum H., Nielsen S.D. Reduced IL-7R T cell expression and increased plasma sCD127 in late presenting HIV-infected individuals. J. Acquir. Immune Defic. Syndr., 2017, Vol. 74, No. 1, pp. 81–90. URL: https://www.ncbi.nlm.nih.gov/pubmed/27509242.; https://hiv.bmoc-spb.ru/jour/article/view/389

  4. 4
  5. 5
    Academic Journal
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    المؤلفون: F. D. Goebel, S. Giannini, P. König, T. Ichihashi, C. Libon, H. Khorram Khorshid, S. Morel, A. Irie, S. P. Ribeiro, M. E. Cueno, Y. Pasman, I. Drexler, A. Didierlaurent, J. A. James, H. Chen, S. V. Di Giacomo, E. Rodríguez-Castro, J. C. A. Cobbin, S. Patterson, Catherine Servis, F. Decaillot, A. Fischer, E. C. Mairena, Azam Bolhassani, K. Kamali, E. Cunha-Neto, S. Daneshmandi, A. Gilyazova, M. Maeurer, S. Gordon, R. Baier, L. Frelin, T. K. Berthoud, Y. Suzuma, R. J. Webby, K. Ljungberg, D. N. Rao, M. G. Wallach, S. Kim, Mohammad Taghikhani, C. Lin, Y. Kumagai, V. S. Olivera, S. Allgayer, J E de Vries, S. Pillay, C. Teoh, C. Mancini, O. Arteaga-Ruíz, Y. Yamori, W. ter Veer, B. Baras, R. Feinstein, S. Delhaye, M. Mori, A. Bråve, H. Mori, D. Kim, H. Liu, A. Cosma, M. Alinezhad, H. Mukai, L. Lockman, W. Lian, T. N. Nguyen, M. Park, G. Kornilaeva, T. Nakano, L. F. Thompson, A. Pourfathollah, M. Mohraz, E. Karamov, K. Kajino, H. Yamato, Z. Matsuda, P. Chong, C. López-Macías, N. Sakaguchi, S. Hook, P. I. Zamorano, S. C. Gilbert, V. Quattrocchi, J. A. Napier, S. C. Oliveira, R. Kemp, C. A. Langellotti, Y. Maeda, A. Takada, M. Van Mechelen, J. Park, B. Coller, M. Toniutti, A. Yasmeen, Nahid Ghasemi, C. González-Bonilla, S. Kutscher, V. Roberts, E. Emmoth, M. Sällberg, D. Boyle, S. Baschieri, H. Negishi, E. Nagy, N. Garçon, T. Rades, S. G. Fonseca, K. Young, N. Kondo, A. Tenorio-Calvo, L. E. Brown, J. Kalil, J. Chen, S. Wigenstedt, A. B. Pérez, A. K. Kaushik, C. Huang, C. Leng, H. Takahashi, K. Yoshinaga, D. C. Jackson, Andrew W. Moore, G. Gasteiger, N. J. Bond, W. Zeng, W. Kastenmuller, K. Kuwahara, G. M. Air, I. Magalhaes, M. Allende, A. van Laarhoven, D. Busch, S. Koh, T. Hanke, Y. Hibi, Yiming Yang, Y. Y. Lee, G. Buriani, S. Bayanolhagh, D. Yoon, F. Capuano, S. Applequist, M. Chen, M. Foroughi, F. Chiu, T. Kahara, S. Nyström, J. S. Pappalardo, L. Guilherme, E. Ferat-Osorio, V. Erfle, A. Roos, T. Toda, E. Benvenuto, J. R. Bogner, V. Chereshnev, R. Pastelín-Palacios, K. S. Lilley, L. Chang, A. Muschaweckh, J. Talavera-Piña, T. Okamoto, A. R. Jilbert, F. Feng, J. Haeuw, B. Baradaran, C. J. Dembek, S. Kisling, T. Lambe, C. Yang, B. L. Chiang, F. Beaudoin, D. S. Rosa, J. Tsai, N. Corvaia, F. Gotch, A. Robert, E. Postól, A. V. S. Hill, A. Huckriede, S. Liu, V. P. Torchilin, J. Feng, J. Wilschut, A. Pasetto, K. Grönvik, B. Lozano-Dubernard, Sima Rafati, M. L. Knudsen, A. Isibasi, P. Liljeström, T. S. Levchenko, P. Bourguignon, L. Lin, L. Arriaga-Pizano

    المصدر: International Immunology. 22:iv32-iv37

  14. 14
    Academic Journal

    المصدر: Bulletin of Experimental Biology & Medicine; Sep2007, Vol. 144 Issue 3, p326-330, 5p

    مصطلحات موضوعية: IMMUNOREGULATION, CYTOKINES, GLYCOLIPIDS, LEUCOCYTES

  15. 15
    Academic Journal
  16. 16
    Academic Journal

    المصدر: Bulletin of Experimental Biology & Medicine; Apr2006, Vol. 141 Issue 4, p536-543, 8p

    مصطلحات موضوعية: LEUCOCYTES, CELLULAR therapy, BLOOD plasma, SERUM

  17. 17
    Academic Journal

    المصدر: Bulletin of Experimental Biology & Medicine; Nov2005, Vol. 140 Issue 5, p627-630, 4p

  18. 18
    Academic Journal
  19. 19
    Academic Journal

    المصدر: Bulletin of Experimental Biology & Medicine; Jul2005, Vol. 140 Issue 1, p74-76, 3p

  20. 20
    Academic Journal

    المصدر: Bulletin of Experimental Biology & Medicine; Aug2005, Vol. 140 Issue 2, p217-218, 2p