يعرض 1 - 18 نتائج من 18 نتيجة بحث عن '"V. Bondarev P."', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00005-21-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022000147-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00005-21-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022000147-4).

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 21, № 1 (2021); 20-30 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 21, № 1 (2021); 20-30 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2021-21-1

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/330/415; https://www.biopreparations.ru/jour/article/downloadSuppFile/330/213; Liang Z, Zhu H, Wang X, Jing B, Li Z, Xia X, et al. Adjuvants for coronavirus vaccines. Front Immunol. 2020;11:589833. https://doi.org/10.3389/fimmu.2020.589833; Онищенко ГГ, Сизикова ТЕ, Лебедев ВН, Борисевич СВ. Анализ перспективных направлений создания вакцин против COVID-19. БИОпрепараты. Профилактика, диагностика, лечение. 2020;20(4):216–27. https://doi.org/10.30895/2221-996X-2020-20-4-216-227; Lau EH, Hsiung CA, Cowling BJ, Chen CH, Ho LM, Tsang T, et al. A comparative epidemiologic analysis of SARS in Hong Kong, Beijing and Taiwan. BMC Infect Dis. 2010;10:50. https://doi.org/10.1186/1471-2334-10-50; Половинкина ВС, Марков ЕЮ. Структура и иммуноадъювантные свойства CPG-ДНК. Медицинская иммунология. 2010;12(6):469–76. https://doi.org/10.15789/1563-0625-2010-6-469-476; Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev. 2009;61(3):195–204. https://doi.org/10.1016/j.addr.2008.12.008; Scheiermann J, Klinman DM. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine. 2014;32(48):6377–89. https://doi.org/10.1016/j.vaccine.2014.06.065; Campbell JD. Development of the CpG adjuvant 1018: a case study. In: Fox C, ed. Vaccine Adjuvants. Methods in Molecular Biology. V. 1494. New York: Humana Press; 2017. P. 15–27. https://doi.org/10.1007/978-1-4939-6445-1_2; Свитич ОА, Лавров ВФ, Кукина ПИ, Скандарян АА, Ганковская ЛВ, Зверев ВВ. Перспективы использования агонистов рецепторов врожденного иммунитета и дефектных вирусных интерферирующих частиц в качестве адъювантов нового поколения. Эпидемиология и вакцинопрофилактика. 2018;17(1):76–86. https://doi.org/10.31631/2073-3046-2018-17-1-76-86; Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol. 2009;9(8):535–42. https://doi.org/10.1038/nri2587; Klinman DM. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol. 2004;4(4):249–59. https://doi.org/10.1038/nri132; Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vacсines. 2011;10(4):499–511. https://doi.org/10.1586/erv.10.174; Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709–60. https://doi.org/10.1146/annurev.immunol.20.100301.064842; Sparwasser T, Vabulas RM, Villmow B, Lipford GB, Wagner H. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins. Eur J Immunol. 2000;30(12):3591–7. https://doi.org/10.1002/1521-4141(200012)30:12%3C3591::aidimmu3591%3E3.0.co;2-j; Lipford GB, Sparwasser T, Zimmermann S, Heeg K, Wagner H. CpG-DNA-mediated transient lymphadenopathy is associated with a state of Th1 predisposition to antigen-driven responses. J Immunol. 2000;165(3):1228–35. https://doi.org/10.4049/jimmunol.165.3.1228; Hyer R, McGuire DK, Xing B, Jackson S, Janssen R. Safety of a two-dose investigational hepatitis B vaccine, HBsAg-1018, using a toll-like receptor 9 agonist adjuvant in adults. Vaccine. 2018;36(19):2604–11. https://doi.org/10.1016/j.vaccine.2018.03.067; Ko EJ, Lee Y, Lee YT, Kim YJ, Kim KH, Kang SM. MPL and CpG combination adjuvants promote homologous and heterosubtypic cross protection of inactivated split influenza virus vaccine. Antiviral Res. 2018;156:107–15. https://doi.org/10.1016/j.antiviral.2018.06.004; Huckriede A, Bungener L, Stegmann T, Daemen T, Medema J, Palache AM, Wilschut J. The virosome concept for influenza vaccines. Vaccine. 2005;23(Suppl 1):S26–38. https://doi.org/10.1016/j.vaccine.2005.04.026; Bron R, Ortiz A, Dijkstra J, Stegmann T, Wilschut J. Preparation, properties, and applications of reconstituted influenza virus envelopes (virosomes). Methods Enzymol. 1993;220:313–31. https://doi.org/10.1016/0076-6879(93)20091-g; Wilschut J. Influenza vaccines: the virosome concept. Immunol Lett. 2009;122(2):118–21. https://doi.org/10.1016/j.imlet.2008.11.006; Moser C, Müller M, Kaeser MD, Weydemann U, Amacker M. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev Vaccines. 2013;12(7):779–91. https://doi.org/10.1586/14760584.2013.811195; Bovier PA. Epaxal®: a virosomal vaccine to prevent hepatitis A infection. Expert Rev Vaccines. 2008;7(8):1141–50. https://doi.org/10.1586/14760584.7.8.1141; Liu H, de Vries-Idema J, Ter Veer W, Wilschut J, Huckriede A. Influenza virosomes supplemented with GPI-0100 adjuvant: a potent vaccine formulation for antigen dose sparing. Med Microbiol Immunol. 2014;203(1):47–55. https://doi.org/10.1007/s00430-013-0313-2; Dong W, Bhide Y, Marsman S, Holtrop M, Meijerhof T, de Vries-Idema J, et al. Monophosphoryl lipid A-adjuvanted virosomes with Ni-chelating lipids for attachment of conserved viral proteins as cross-protective influenza vaccine. Biotechnol J. 2018;13(4):e1700645. https://doi.org/10.1002/biot.201700645; Kabanov VA. From synthetic polyelectrolytes to polymersubunit vaccines. Pure Appl Chem. 2004;76(9):1659–77. https://doi.org/10.1351/pac200476091659; Пинегин БВ, Некрасов АВ, Хаитов РМ. Иммуномодулятор Полиоксидоний: механизмы действия и аспекты клинического применения. Цитокины и воспаление. 2004;3(3):41–7.; Alexia C, Cren M, Louis-Plence P, Vo DN, El Ahmadi Y, Dufourcq-Lopez E, et al. Polyoxidonium® activates cytotoxic lymphocyte responses through dendritic cell maturation: clinical effects in breast cancer. Front Immunol. 2019;10:2693. https://doi.org/10.3389/fimmu.2019.02693; Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clin Exp Vaccine Res. 2015;4(1):23–45. https://doi.org/10.7774/cevr.2015.4.1.23; Лусс ЛВ. Роль Полиоксидония как иммуномодулятора и иммуноадъюванта при профилактике гриппа. Медицинский совет. 2013;(8):50–5.; Talayev V, Zaichenko I, Svetlova M, Matveichev A, Babaykina O, Voronina E, Mironov A. Low-dose influenza vaccine Grippol Quadrivalent with adjuvant Polyoxidonium induces a T helper-2 mediated humoral immune response and increases NK cell activity. Vaccine. 2020;38(42):6645–55. https://doi.org/10.1016/j.vaccine.2020.07.053; Никифорова АН, Миронов АН. Вакцинопрофилактика и поиск новых адъювантов. Сибирский медицинский журнал (Иркутск). 2011;104(5):15–9.; Gupta T, Gupta SK. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int Immunopharmacol. 2020;86:106717. https://doi.org/10.1016/j.intimp.2020.106717; Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27(3):325–8. https://doi.org/10.1016/j.chom.2020.02.001; Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3. https://doi.org/10.1038/s41586-020-2012-7; Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74. https://doi.org/10.1016/S0140-6736(20)30251-8; Du L, Tai W, Zhou Y, Jiang S. Vaccines for the prevention against the threat of MERS-CoV. Expert Rev Vaccines. 2016;15(9):1123–34. https://doi.org/10.1586/14760584.2016.1167603; Jiang S, He Y, Liu S. SARS vaccine development. Emerg Infect Dis. 2005;11(7):1016–20. https://doi.org/10.3201/1107.050219; Tang L, Zhu Q, Qin E, Yu M, Ding Z, Shi H, et al. Inactivated SARS-CoV vaccine prepared from whole virus induces a high level of neutralizing antibodies in BALB/c mice. DNA Cell Biol. 2004;23(6):391–4. https://doi.org/10.1089/104454904323145272; Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 2014;32(26):3169– 74. https://doi.org/10.1016/j.vaccine.2014.04.016; Zakhartchouk AN, Sharon C, Satkunarajah M, Auperin T, Viswanathan S, Mutwiri G, et al. Immunogenicity of a receptorbinding domain of SARS coronavirus spike protein in mice: implications for a subunit vaccine. Vaccine. 2007;25(1):136– 43. https://doi.org/10.1016/j.vaccine.2006.06.084; Takasuka N, Fujii H, Takahashi Y, Kasai M, Morikawa S, Itamura S, et al. A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice. Int Immunol. 2004;16(10):1423–30. https://doi.org/10.1093/intimm/dxh143; Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, Ferris M, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol. 2011;85(23):12201–15. https://doi.org/10.1128/jvi.06048-11; Zhou Z, Post P, Chubet R, Holtz K, McPherson C, Petric M, Cox M. A recombinant baculovirus-expressed S glycoprotein vaccine elicits high titers of SARS-associated coronavirus (SARS-CoV) neutralizing antibodies in mice. Vaccine. 2006;24(17):3624–31. https://doi.org/10.1016/j.vaccine.2006.01.059; Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng BH, et al. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother. 2016;12(9):2351–6. https://doi.org/10.1080/21 645515.2016.1177688; Yasui F, Kai C, Kitabatake M, Inoue S, Yoneda M, Yokochi S, et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J Immunol. 2008;181(9):6337–48. https://doi.org/10.4049/jimmunol.181.9.6337; Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, et al. Development of an inactivated vaccine for SARSCoV-2. Science. 2020;369(6499):77–81. https://doi.org/10.1101/2020.04.17.046375; Chen WH, Tao X, Agrawal AS, Algaissi A, Peng BH, Pollet J, et al. Yeast-expressed SARS-CoV recombinant receptorbinding domain (RBD219-N1) formulated with aluminum hydroxide induces protective immunity and reduces immune enhancement. Vaccine. 2020;38(47):7533–41. https://doi.org/10.1016/j.vaccine.2020.09.061; Graham BS. Rapid COVID-19 vaccine development. Science. 2020;368(6494):945–6. https://doi.org/10.1126/science.abb8923; Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183(4):996–1012. e19. https://doi.org/10.1016/j.cell.2020.09.038; Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One. 2012;7(4):e35421. https://doi.org/10.1371/journal.pone.0035421; Harandi AM. Systems analysis of human vaccine adjuvants. Semin Immunol. 2018;39:30–4. https://doi.org/10.1016/j.smim.2018.08.001; Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine. 2019;37(24):3167–78. https://doi.org/10.1016/j.vaccine.2019.04.055; O’Hagan DT, Ott GS, De Gregorio E, Seubert A. The mechanism of action of MF59 — an innately attractive adjuvant formulation. Vaccine. 2012;30(29):4341–8. https://doi.org/10.1016/j.vaccine.2011.09.061; Zhang N, Channappanavar R, Ma C, Wang L, Tang J, Garron T, et al. Identification of an ideal adjuvant for receptorbinding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus. Cell Mol Immunol. 2016;13(2):180–90. https://doi.org/10.1038/cmi.2015.03; Kong WP, Xu L, Stadler K, Ulmer JB, Abrignani S, Rappuoli R, Nabel GJ. Modulation of the immune response to the severe acute respiratory syndrome spike glycoprotein by gene-based and inactivated virus immunization. J Virol. 2005;79(22):13915–23. https://doi.org/10.1128/jvi.79.22.13915-13923.2005; Tang J, Zhang N, Tao X, Zhao G, Guo Y, Tseng CT, et al. Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus. Hum Vaccin Immunother. 2015;11(5):1244–50. https://doi.org/10.1080/21645515.2015.1021527; Stadler K, Roberts A, Becker S, Vogel L, Eickmann M, Kolesnikova L, et al. SARS vaccine protective in mice. Emerg Infect Dis. 2005;11(8):1312–4. https://doi.org/10.3201/eid1108.041003; Kim YS, Son A, Kim J, Kwon SB, Kim MH, Kim P, et al. Chaperna-Mediated Assembly of ferritin-based Middle East respiratory syndrome-coronavirus nanoparticles. Front Immunol. 2018;9:1093. https://doi.org/10.3389/fimmu.2018.01093; Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology. 2005;334(2):160–5. https://doi.org/10.1016/j.virol.2005.01.042; Roberts A, Lamirande EW, Vogel L, Baras B, Goossens G, Knott I, et al. Immunogenicity and protective efficacy in mice and hamsters of a β-propiolactone inactivated whole virus SARS-CoV vaccine. Viral Immunol. 2010;23(5):509–19. https://doi.org/10.1089/vim.2010.0028; Iwata-Yoshikawa N, Uda A, Suzuki T, Tsunetsugu-Yokota Y, Sato Y, Morikawa S, et al. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J Virol. 2014;88(15):8597–614. https://doi.org/10.1128/jvi.00983-14; Zhao J, Wohlford-Lenane C, Zhao J, Fleming E, Lane TE, McCray PB Jr, Perlman S. Intranasal treatment with poly(I•C) protects aged mice from lethal respiratory virus infections. J Virol. 2012;86(21):11416–24. https://doi.org/10.1128/ jvi.01410-12; Steinhagen F, Kinjo T, Bode C, Klinman DM. TLR-based immune adjuvants. Vaccine. 2011;29(17):3341–55. https://doi.org/10.1016/j.vaccine.2010.08.002; Channappanavar R, Fett C, Zhao J, Meyerholz DK, Perlman S. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J Virol. 2014;88(19):11034–44. https://doi.org/10.1128/jvi.01505-14; Zhao K, Wang H, Wu C. The immune responses of HLAA*0201 restricted SARS-CoV S peptide-specific CD8+ T cells are augmented in varying degrees by CpG ODN, PolyI:C and R848. Vaccine. 2011;29(38):6670–8. https://doi.org/10.1016/j.vaccine.2011.06.100; Duthie MS, Windish HP, Fox CB, Reed SG. Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev. 2011;239(1):178–96. https://doi.org/10.1111/j.1600-065x.2010.00978.x; Gai W, Zou W, Lei L, Luo J, Tu H, Zhang Y, et al. Effects of different immunization protocols and adjuvant on antibody responses to inactivated SARS-CoV vaccine. Viral Immunol. 2008;21(1):27–37. https://doi.org/10.1089/vim.2007.0079; Weeratna RD, Brazolot Millan CL, McCluskie MJ, Davis HL. CpG ODN can re-direct the Th bias of established Th2 immune responses in adult and young mice. FEMS Immunol Med Microbiol. 2001;32(1):65–71. https://doi.org/10.1111/j.1574-695X.2001.tb00535.x; Jiaming L, Yanfeng Y, Yao D, Yawei H, Linlin B, Baoying H, et al. The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine. 2017;35(1):10– 8. https://doi.org/10.1016/j.vaccine.2016.11.064; Lan J, Deng Y, Chen H, Lu G, Wang W, Guo X, et al. Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen. PLoS One. 2014;9(11):e112602. https://doi.org/10.1371/journal.pone.0112602; Honda-Okubo Y, Barnard D, Ong CH, Peng BH, Tseng CT, Petrovsky N. severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol. 2015;89(6):2995–3007. https://doi.org/10.1128/jvi.02980-14; Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, Mayhew S. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305–6. https://doi.org/10.1038/d41573-020-00073-5; Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol. 2020;20(6):339– 41. https://doi.org/10.1038/s41577-020-0321-6; Wang Q, Zhang L, Kuwahara K, Li L, Liu Z, Li T, et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect Dis. 2016;2(5):361–76. https://doi.org/10.1021/acsinfecdis.6b00006; Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol. 2020;94(5):e02015–19. https://doi.org/10.1128/JVI.02015-19; Heaton PM. The Covid-19 vaccine-development multiverse. N Engl J Med. 2020;383(20):1986–8. https://doi.org/10.1056/nejme2025111; Kuo TY, Lin MY, Coffman RL, Campbell JD, Traquina P, Lin YJ, et al. Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Sci Rep. 2020;10(1):20085. https://doi.org/10.1038/s41598-020-77077-z; V’kovski P, Gultom M, Kelly J, Steiner S, Russeil J, Mangeat B, et al. Disparate temperature-dependent virus — host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium. BioRxiv. 2020.04.27.062315. https://doi.org/10.1101/2020.04.27.062315; Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Tolllike receptor 5. Nat Immunol. 2008;9(7):769–76. https://doi.org/10.1038/ni.1622; https://www.biopreparations.ru/jour/article/view/330

  2. 2
    Academic Journal

    المساهمون: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00005-21-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022000147-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00005-21-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022000147-4).

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 21, № 3 (2021); 142-157 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 21, № 3 (2021); 142-157 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2021-21-3

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/312/432; https://www.biopreparations.ru/jour/article/downloadSuppFile/312/274; Снегирева ИИ, Затолочина КЭ, Дармостукова МА, Аляутдин РН, Романов БК. Современные подходы к взаимозаменяемости вакцин. Ведомости Научного центра экспертизы средств медицинского применения. 2016;(4):3–8; Хотова ТЮ, Снегирева ИИ, Дармостукова МА, Затолочина КЭ, Озерецковский НА, Шалунова НВ, Романов БК. Взаимозаменяемость вакцин против вирусного гепатита В для иммунизации взрослых. Российский медицинский журнал. 2016;22(2):85–90.; Plotkin SA. Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis. 2008;47(3):401–9. https://doi.org/10.1086/589862; Алексеева ИА, Перелыгина ОВ. Сравнительный анализ использования цельноклеточных и бесклеточных коклюшных вакцин для профилактики коклюшной инфекции. БИОпрепараты. Профилактика, диагностика, лечение. 2017;17(4):207–15.; Медуницын НВ, Олефир ЮВ, Меркулов ВА, Бондарев ВП. Персональный и коллективный иммунитет при вакцинации. БИОпрепараты. Профилактика, диагностика, лечение. 2016;16(4):195–207.; Greenberg DP, Lieberman JM, Marcy SM, Wong VK, Partridge S, Chang SJ, et al. Enhanced antibody responses in infants given different sequences of heterogeneous Haemophilus influenzae type b conjugate vaccines. J Pediatr. 1995;126(2):206–11. https://doi.org/10.1016/S0022-3476(95)70546-5; Anderson EL, Decker MD, Englund JA, Edwards KM, Anderson P, Mclnnes P, Belshe RB. Interchangeability of conjugated Haemophilus influenzae type b vaccines in infants. JAMA. 1995;273(11):849–53. https://doi.org/10.1001/jama.1995.03520350031024; Piazza M, Abrescia N, Picciotto L, Orlando R, Cerini R, Borgia G, et al. Demonstration of the interchangeability of 2 types of recombinant anti-hepatitis-B vaccine. Boll Soc Ital Biol Sper. 1993;69(4):273–80.; Bryan JP, Henry CH, Hoffman AG, South-Paul JE, Smith JA, Cruess D, et al. Randomized, cross-over, controlled comparison of two inactivated hepatitis A vaccines. Vaccine. 2000;19(7–8):743–50. https://doi.org/10.1016/s0264-410x(00)00301-7; Greenberg DP, Pickering LK, Senders SD, Bissey JD, Howard RA, Blatter MM, et al. Interchangeability of 2 diphtheria-tetanus-acellular pertussis vaccines in infancy. Pediatrics. 2002;109(4):666–72. https://doi.org/10.1542/peds.109.4.666; Orsi A, Azzari C, Bozzola E, Chiamenti G, Chirico G, Esposito S, et al. Hexavalent vaccines: characteristics of available products and practical considerations from a panel of Italian experts. J Prev Med Hyg. 2018;59(2):E107–19.; Feldman S. Interchangeability of vaccines. Pediatr Infect Dis J. 2001;20(11):523–9. https://doi.org/10.1097/00006454-200111001-00004; Greenberg DP, Feldman S. Vaccine interchangeability. Clin Pediatr (Phila). 2003;42(2):93–9. https://doi.org/10.1177/000992280304200201; Guevara NJ, Borys D, DeAntonio R, Guzman-Holst A, Hoet B. Interchangeability between pneumococcal conjugate vaccines for pediatric use: a systematic literature review. Expert Rev Vaccines. 2020;19(11):1011–22. https://doi.org/10.1080/14760584.2019.1688148; Леви ДТ, Обухов ЮИ, Александрова НВ, Волкова РА, Эльберт ЕВ, Альварес Фигероа МВ и др. Оценка подлинности и стабильности вакцины БЦЖ методом мультиплексной ПЦР. БИОпрепараты. Профилактика, диагностика, лечение. 2016;16(1):49–54.; Cassidy A, Mossman S, Olivieri A, De Ridder М, Leroux-Roels G. Hepatitis B vaccine effectiveness in the face of global HBV genotype diversity. Expert Rev Vaccines. 2011;10(12):1709–15. https://doi.org/10.1586/erv.11.151; Чуланов ВП, Семененко ТА, Карандашова ИВ, Комарова СВ, Костюшев ДС, Суслов АП, Волчкова ЕВ. Современный взгляд на проблему выбора вакцины против гепатита В. Эпидемиология и вакцинопрофилактика. 2017;16(4):65–72. https://doi.org/10.31631/2073-3046-2017-16-4-65-72; Jose-Abredo A. Some considerations about HBV vaccination among HIV patients from Latin America and the Caribbean. Ann Hepatol. 2019;18(5):656–7. https://doi.org/10.1016/j.aohep.2019.06.005; https://www.biopreparations.ru/jour/article/view/312

  3. 3
    Academic Journal

    المساهمون: The study reported in this publication was carried out as part of a publicity funded research project No. 056-00005-21-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022000147-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00005-21-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022000147-4).

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 21, № 2 (2021); 97-107 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 21, № 2 (2021); 97-107 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2021-21-2

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/314/423; https://www.biopreparations.ru/jour/article/downloadSuppFile/314/234; https://www.biopreparations.ru/jour/article/downloadSuppFile/314/235; https://www.biopreparations.ru/jour/article/downloadSuppFile/314/236; Волкова СА, Боровков НН. Основы клинической гематологии. Учебное пособие. Н. Новгород: НижГМА; 2013.; Бломбек М, Антович Й, ред. Нарушения свертывания крови. Практические рекомендации по диагностике и лечению. М.: Медицинская литература; 2014.; Зозуля НИ, Свирин ПВ. Диагностика и лечение гемофилии. Национальные клинические рекомендации. М.: Национальное гематологическое общество; 2014.; Сараева НО. Гематология. Учебное пособие. Изд. 2-е, перераб. Иркутск: ИГМУ; 2015.; Орлова НА, Ковнир СВ, Воробьев ИИ, Габибов АГ, Воробьев АИ. Фактор свертывания крови VIII — от эволюции к терапии. Acta Naturae. 2013;5(2):19–39.; Зозуля НИ, Чернов МВ, Тарасова ИС, Румянцев АГ. Нерешенные вопросы оказания медицинской помощи пациентам с ингибиторной формой гемофилии. Российский журнал детской гематологии и онкологии. 2019;6(2):48–53. https://doi.org/10.21682/2311-1267-2019-6-2-48-53; Mannucci PM, Tuddenham EG. The hemophilias — from royal genes to gene therapy. N Engl J Med. 2001;344(23):1773–9. https://doi.org/10.1056/NEJM200106073442307; Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, eds. Hemostasis and Thrombosis. Basic Principles and Clinical Practice. 4th ed. Philadelphia: Lippincott Williams Wilkins; 2001.; DeLoughery TG. Hemophilia. In: DeLoughery TG, ed. Hemostasis and thrombosis. 2nd ed. Springer; 2019. P. 23–31. https://doi.org/10.1007/978-3-030-19330-0_4; Авдеева ЖИ, Солдатов АА, Бондарев ВП, Мосягин ВД, Меркулов ВА. Лекарственные препараты фактора VIII, актуальные вопросы разработки, клинического исследования и применения (часть 1). БИОпрепараты. Профилактика, диагностика, лечение. 2021;21(1):39–49. https://doi.org/10.30895/2221-996X-2021-21-1-39-49; Hay CRM. The epidemiology of factor VIII inhibitors. Haemophilia. 2006;12(s6):23–9. https://doi.org/10.1111/j.1365-2516.2006.01362.x; Wight J, Paisley S. The epidemiology of inhibitors in haemophilia A: a systematic review. Haemophilia. 2003;9(4):418–35. https://doi.org/10.1046/j.1365-2516.2003.00780.x; Agostini D, Rosset C, Botton MR, Kappel DB, Vieira IA, Gorziza RP, et al. Immune system polymorphisms and factor VIII inhibitor formation in Brazilian haemophilia A severe patients. Haemophilia. 2012;18(6):e416–8. https://doi.org/10.1111/hae.12015; Lillicrap D, Fijnvandraat K, Santagostino E. Inhibitors — genetic and environmental factors. Haemophilia. 2014;20(Suppl 4):87–93. https://doi.org/10.1111/hae.12412; Ghosh K, Shetty S. Immune response to FVIII in hemophilia A: an overview of risk factors. Clin Rev Allergy Immunol. 2009;37(2):58–66. https://doi.org/10.1007/s12016-009-8118-1; Goodeve AC, Peake IR. The molecular basis of hemophilia A: genotype-phenotype relationships and inhibitor development. Semin Thromb Hemost. 2003;29(1):023–030. https://doi.org/10.1055/s-2003-37936; Oldenburg J, Pavlova A. Genetic risk factors for inhibitors to factors VIII and IX. Haemophilia. 2006;12(s6):15–22. https://doi.org/10.1111/j.1365-2516.2006.01361.x; Astermark J, Oldenburg J, Carlson J, Pavlova A, Kavakli K, Berntorp E, Lefvert AK. Polymorphisms in the TNFA gene and the risk of inhibitor development in patients with hemophilia A. Blood. 2006;108(12):3739–45. https://doi.org/10.1182/blood-2006-05-024711; Astermark J, Oldenburg J, Pavlova A, Berntorp E, Lefvert AK. Polymorphisms in the IL10 but not in the IL1beta and IL4 genes are associated with inhibitor development in patients with hemophilia A. Blood. 2006;107(8):3167–72. https://doi.org/10.1182/blood-2005-09-3918; Astermark J, Wang X, Oldenburg J, Berntorp E, Lefvert AK. Polymorphisms in the CTLA-4 gene and inhibitor development in patients with severe hemophilia A. J Thromb Haemost. 2007;5(2):263–5. https://doi.org/10.1111/j.1538-7836.2007.02290.x; Astermark J. Basic aspects of inhibitors to factors VIII and IX and the influence of non-genetic risk factors. Haemophilia. 2006;12(s6):8–14. https://doi.org/10.1111/j.1365-2516.2006.01360.x; Gouw SC, van der Bom JG, Auerswald G, Ettinghausen CE, Tedg å rd U, van den Berg HM. Recombinant versus plasmaderived factor VIII products and the development of inhibitors in previously untreated patients with severe hemophilia A: the CANAL cohort study. Blood. 2007;109(11):4693–7. https://doi.org/10.1182/blood-2006-11-056317; Gouw SC, van den Berg HM, le Cessie S, van der Bom JG. Treatment characteristics and the risk of inhibitor development: a multicenter cohort study among previously untreated patients with severe hemophilia A. J Thromb Haemost. 2007;5(7):1383–90. https://doi.org/10.1111/j.1538-7836.2007.02595.x; Matzinger P. Friendly and dangerous signals: is the tissue in control? Nat Immunol. 2007;8(1):11–3. https://doi.org/10.1038/ni0107-11; Kurnik K, Bidlingmaier C, Engl W, Chehadeh H, Reipert B, Auerswald G. New early prophylaxis regimen that avoids immunological danger signals can reduce FVIII inhibitor development. Haemophilia. 2010;16(2):256–62. https://doi.org/10.1111/j.1365-2516.2009.02122.x; Gouw SC, van den Berg HM, Fischer K, Auerswald G, Carcao M, Chalmers E, et al. Intensity of factor VIII treatment and inhibitor development in children with severe hemophilia A: the RODIN study. Blood. 2013;121(20):4046–55. https://doi.org/10.1182/blood-2012-09-457036; van Velzen AS, Eckhardt CL, Peters M, Leebeek FWG, Escuriola-Ettingshausen C, Hermans C, et al. Intensity of factor VIII treatment and the development of inhibitors in non-severe hemophilia A patients: results of the INSIGHT case-control study. J Thromb Haemost. 2017;15(7):1422–9. https://doi.org/10.1111/jth.13711; Iorio A, Halimeh S, Holzhauer S, Goldenberg N, Marchesini E, Marcucci M, et al. Rate of inhibitor development in previously untreated hemophilia A patients treated with plasma-derived or recombinant factor VIII concentrates: a systematic review. J Thromb Haemost. 2010;8(6):1256–65. https://doi.org/10.1111/j.1538-7836.2010.03823.x; Lacroix-Desmazes S, Repess é Y, Kaveri SV, Dasgupta S. The role of VWF in the immunogenicity of FVIII. Thromb Res. 2008;122(Suppl 2):S3–6. https://doi.org/10.1016/S0049-3848(08)70002-1; Oldenburg J, Lacroix-Desmazes S, Lillicrap D. Alloantibodies to therapeutic factor VIII in hemophilia A: the role of von Willebrand factor in regulating factor VIII immunogenicity. Haematologica. 2015;100(2):149–56. https://doi.org/10.3324/haematol.2014.112821; Fulcher CA, de Graaf Mahoney S, Zimmerman TS. FVIII inhibitor IgG subclass and FVIII polypeptide speci fi city determined by immunoblotting. Blood. 1987;69(5):1475–80.; Reding MT, Lei S, Lei H, Green D, Gill J, Conti-Fine BM. Distribution of Th1- and Th2-induced anti-factor VIII IgG subclasses in congenital and acquired hemophilia patients. Thromb Haemost. 2002;88(4):568–75.; van Helden PMW, van den Berg HM, Gouw SC, Kaijen PHP, Zuurveld MG, Mauser-Bunschoten EP, et al. IgG subclasses of anti-FVIII antibodies during immune tolerance induction in patients with hemophilia A. Br J Haematol. 2008;14(4)2:644–52. https://doi.org/10.1111/j.1365-2141.2008.07232.x; Prescott R, Nakai H, Saenko EL, Scharrer I, Nilsson IM, Humphries JE, et al. The inhibitor antibody response is more complex in hemophilia A patients than in most nonhemophiliacs with factor VIII autoantibodies. Recombinate and Kogenate Study Groups. Blood. 1997;89(10):3663–71.; Fijnvandraat K, Celie PH, Turenhout EA, ten Cate JW, van Mourik JA, Mertens K, et al. A human alloantibody interferes with binding of factor IXa to the factor VIII light chain. Blood. 1998;91(7):2347–52.; Fay PJ, Scandella D. Human inhibitor antibodies specific for the FVIII A2 domain disrupt the interaction between the subunit and factor IXa. J Biol Chem. 1999;274(42):29826–30. https://doi.org/10.1074/jbc.274.42.29826; Arai M, Scandella D, Hoyer LW. Molecular basis of factor VIII inhibition by human antibodies. Antibodies that bind to the factor VIII light chain prevent the interaction of factor VIII with phospholipid. J Clin Invest. 1989;83(6):1978–84. https://doi.org/10.1172/JCI114107; Zhong D, Saenko EL, Shima M, Felch M, Scandella D. Some human inhibitor antibodies interfere with factor VIII binding to factor IX. Blood. 1998;92(1):136–42.; Nogami K, Shima M, Nishiya K, Sakurai Y, Tanaka I, Gidding JC, et al. Human factor VIII inhibitor alloantibodies with a C2 epitope inhibit factor Xa-catalyzed factor VIII activation: a new anti-FVIII inhibitory mechanism. Thromb Haemost. 2002;87(3):459–65.; Meeks SL, Healey JF, Parker ET, Barrow RT, Lollar P. Non-classical anti-C2 domain antibodies are present in patients with factor VIII inhibitors. Blood. 2008;112(4):1151–3. https://doi.org/10.1182/blood-2008-01-132639; Astermark J, Voorberg J, Lenk H, DiMichele D, Shapiro A, Tjönnfjord G, Berntorp E. Impact of inhibitor epitope profile on the neutralizing effect against plasma-derived and recombinant factor VIII concentrates in vitro. Haemophilia. 2003;9(5):567–72. https://doi.org/10.1046/j.1365-2516.2003.00802.x; Gharagozlou S, Sharifian RA, Khoshnoodi J, Karimi K, Milani M, Okita DK, et al. Epitope specificity of anti-factor VIII antibodies from inhibitor positive acquired and congenital haemophilia A patients using synthetic peptides spanning A and C domains. Thromb Haemost. 2009;101(5):834–9.; Ananyeva NM, Lee TK, Jain N, Shima M, Saenko EL. Inhibitors in hemophilia A: advances in elucidation of inhibitory mechanisms and in inhibitor management with bypassing agents. Semin Thromb Hemost. 2009;35(8):735–51. https://doi.org/10.1055/s-0029-1245106; Grif fi ths AE, Wang W, Hagen FK, Fay PJ. Use of af finity-directed liquid chromatography-mass spectrometry to map the epitopes of a factor VIII inhibitor antibody fraction. J Thromb Haemost. 2011;9(8):1534–40. https://doi.org/10.1111/j.1538-7836.2011.04397.x; DiMichele D. Inhibitor development in haemophilia B: an orphan disease in need of attention. Br J Haematol. 2007;138(3):305–15. https://doi.org/10.1111/j.1365-2141.2007.06657.x; Lillicrap D, Fijnvandraat K, Santagostino E. Inhibitors — genetic and environmental factors. Haemophilia. 2014;20(s4):87–93. https://doi.org/10.1111/hae.12412; DiMichele DM. Immune tolerance in haemophilia: the long journey to the fork in the road. Br J Haematol. 2012;159(2):123–34. https://doi.org/10.1111/bjh.12028; Cormier M, Batty P, Tarrant J, Lillicrap D. Advances in knowledge of inhibitor formation in severe haemophilia A. Br J Haematol. 2020;189(1):39–53. https://doi.org/10.1111/bjh.16377; Hay CR, DiMichele DM. The principal results of the International Immune Tolerance Study: a randomized dose comparison. Blood. 2012;119(6):1335–44. https://doi.org/10.1182/blood-2011-08-369132; Gelbenegger G, Schoergenhofer C, Knoebl P, Jilma B. Bridging the missing link with Emicizumab: a bispecific antibody for treatment of hemophilia A. Thromb Haemost. 2020;120(10):1357–70. https://doi.org/10.1055/s-0040-1714279; https://www.biopreparations.ru/jour/article/view/314

  4. 4
    Academic Journal

    المساهمون: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00005-21-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022000147-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00005-21-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022000147-4).

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 21, № 4 (2021); 234-243 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 21, № 4 (2021); 234-243 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2021-21-4

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/350/461; https://www.biopreparations.ru/jour/article/downloadSuppFile/350/257; https://www.biopreparations.ru/jour/article/downloadSuppFile/350/259; https://www.biopreparations.ru/jour/article/downloadSuppFile/350/281; https://www.biopreparations.ru/jour/article/downloadSuppFile/350/311; Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG, et al. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet. 2010;375(9730):1969–87. https://doi.org/10.1016/S0140-6736(10)60549-1; Wunderink RG, Waterer GW. Community-acquired pneumonia. N Engl J Med. 2014;370:543–51. https://doi.org/10.1056/NEJMcp1214869; Kadioglu A, Weiser JN, Paton JC, Andrew PW. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol. 2008;6(4):288–301. https://doi.org/10.1038/nrmicro1871; Masomian M, Ahmad Z, Gew LT, Poh CL. Development of next generation Streptococcus pneumoniae vaccines conferring broad protection. Vaccines. 2020;8(1):132. https://doi.org/10.3390/vaccines8010132; Kwambana-Adams BA, Mulholland EK, Satzke C, ISPPD group. State-of-the-art in the pneumococcal field: Proceedings of the 11th International symposium on pneumococci and pneumococcal diseases (ISPPD-11). Pneumonia. 2020;12:2. https://doi.org/10.1186/s41479-019-0064-y; Hirst RA, Kadioglu A, O’callaghan C, Andrew PW. The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin Exp Immunol. 2004;138(2):195–201. https://doi.org/10.1111/j.1365-2249.2004.02611.x; Shaper M, Hollingshead SK, Benjamin WH Jr, Briles DE. PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin. Infect Immun. 2004;72(9):5031–40. https://doi.org/10.1128/IAI.72.9.5031-5040.2004; van der Poll T, Opal SM. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet. 2009;374(9700): 1543–56. https://doi.org/10.1016/S0140-6736(09)61114-4; Andre GO, Converso TR, Politano WR, Ferraz LF, Ribeiro ML, Leite LCC, Darrieux M. Role of Streptococcus pneumoniae proteins in evasion of complement-mediated immunity. Front Microbiol. 2017;8:224. https://doi.org/10.3389/fmicb.2017.00224; Mukerji R, Briles DE. New strategy is needed to prevent pneumococcal meningitis. Pediatr Infect Dis J. 2020;39(4):298–304. https://doi.org/10.1097/INF.0000000000002581; Pichichero ME. Pneumococcal whole-cell and protein-based vaccines: changing the paradigm. Expert Rev Vaccines. 2017;16(12):1181–90. https://doi.org/10.1080/14760584.2017.1393335; Klugman KP, Rodgers GL. Time for a third-generation pneumococcal conjugate vaccine. Lancet Infect Dis. 2021;21(1):14–6. https://doi.org/10.1016/S1473-3099(20)30513-2; Huang L, Wang L, Li H, Hu Y, Ru W, Han W, et al. A phase III clinical trial to evaluate the safety and immunogenicity of 23-valent pneumococcal polysaccharide vaccine (PPV23) in healthy children, adults, and elderly. Hum Vaccin Immunother. 2019;15(1):249–55. https://doi.org/10.1080/21645515.2018.1509648; Stacey HL, Rosen J, Peterson JT, Williams-Diaz A, Gakhar V, Sterling TM, et al. Safety and immunogenicity of 15-valent pneumococcal conjugate vaccine (PCV-15) compared to PCV-13 in healthy older adults. Hum Vaccin Immunother. 2019;15(3):530–9. https://doi.org/10.1080/21645515.2018.1532249; Thompson A, Lamberth E, Severs J, Scully I, Tarabar S, Ginis J, et al. Phase 1 trial of a 20-valent pneumococcal conjugate vaccine in healthy adults. Vaccine. 2019;37(42):6201–07. https://doi.org/10.1016/j.vaccine.2019.08.048; Klein NP, Peyrani P, Yacisin K, Caldwell N, Xu X, Scully IL, et al. A phase 3, randomized, double-blind study to evaluate the immunogenicity and safety of 3 lots of 20-valent pneumococcal conjugate vaccine in pneumococcal vaccine-naive adults 18 through 49 years of age. Vaccine. 2021;39(38):5428–35. https://doi.org/10.1016/j.vaccine.2021.07.004; Nagai K, Domon H, Maekawa T, Hiyoshi T, Tamura H, Yonezawa D, et al. Immunization with pneumococcal elongation factor Tu enhances serotype-independent protection against Streptococcus pneumoniae infection. Vaccine. 2019;37(1):160–8. https://doi.org/10.1016/j.vaccine.2018.11.015; Jang A-Y, Ahn KB, Zhi Y, Ji H-J, Zhang J, Han SH, et al. Serotype-independent protection against invasive pneumococcal infections conferred by live vaccine with lgt deletion. Front Immunol. 2019;10:1212. https://doi.org/10.3389/fimmu.2019.01212; Li Y, Wang S, Scarpellini G, Gunn B, Xin W, Wanda S-Y, et al. Evaluation of new generation Salmonella enterica serovar Typhimurium vaccines with regulated delayed attenuation to induce immune responses against PspA. Proc Natl Acad Sci USA. 2009;106(2):593–8. https://www.jstor.org/stable/40254825; Briles DE, Hollingshead SK, Nabors GS, Paton JC, Brooks-Walter A. The potential for using protein vaccines to protect against otitis media caused by Streptococcus pneumonia. Vaccine. 2000;19(Suppl 1):S87–95. https://doi.org/10.1016/S0264-410X(00)00285-1; Briles DE, Hollingshead SK, King J, Swift A, Braun PA, Park MK, et al. Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J Infect Dis. 2000;182(6):1694–701. https://doi.org/10.1086/317602; Georgieva M, Kagedan L, Lu Y-J, Thompson CM, Lipsitch M. Antigenic variation in Streptococcus pneumonia PspC promotes immune escape in the presence of variant-specific immunity. mBio. 2018;9(2):e00264-18. https://doi.org/10.1128/mBio.00264-18; Brooks-Walter A, Briles DE, Hollingshead SK. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun. 1999;67(12):6533–42. https://doi.org/10.1128/IAI.67.12.6533-6542.1999; Khan MN, Pichichero ME. CD4 T cell memory and antibody responses directed against the pneumococcal histidine triad proteins PhtD and PhtE following nasopharyngeal colonization and immunization and their role in protection against pneumococcal colonization in mice. Infect Immun. 2013;81(10):3781–92. https://doi.org/10.1128/IAI.00313-13; Godfroid F, Hermand P, Verlant V, Denoël P, Poolman JT. Preclinical evaluation of the Pht proteins as potential crossprotective pneumococcal vaccine antigens. Infect Immun. 2011;79(1):238–45. https://doi.org/10.1128/IAI.00378-10; Verhoeven D, Perry S, Pichichero ME. Contributions to protection from Streptococcus pneumoniae infection using the monovalent recombinant protein vaccine candidates PcpA, PhtD, and PlyD1 in an infant murine model during challenge. Clin Vaccine Immunol. 2014;21(8):1037–45. https://doi.org/10.1128/CVI.00052-14; Denoël P, Philipp MT, Doyle L, Martin D, Carletti G, et al. A protein-based pneumococcal vaccine protects rhesus macaques from pneumonia after experimental infection with Streptococcus pneumoniae. Vaccine. 2011;29(33):5495–501. https://doi.org/10.1016/j.vaccine.2011.05.051; Seiberling M, Bologa M, Brookes R, Ochs M, Go K, Ne ve u D, et al. Safety and immunogenicity of a pneumococcal histidine triad protein D vaccine candidate in adults. Vaccine. 2012;30(52): 7455–60. https://doi.org/10.1016/j.vaccine.2012.10.080; Brookes RH, Ming M, Williams K, Hopfer R, Gurunathan S, Gallichan S, et al. Passive protection of mice against Streptococcus pneumoniae challenge by naturally occurring and vaccine-induced human anti-PhtD antibodies. Hum Vaccin Immunother. 2015;11(7):1836–9. https://doi.org/10.1080/21645515.2015.1039210; Hermand P, Vandercammen A, Mertens E, Di Paolo E, Verlant V, Denoël P, Godfroid F. Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen. Hum Vaccin Immunother. 2017;13(1):220–8. https://doi.org/10.1080/21645515.2016.1234553; Leroux-Roels G, Maes C, De Boever F, Traskine M, Rüggeberg JU, Borys D. Safety, reactogenicity and immunogenicity of a novel pneumococcal protein-based vaccine in adults: a phase I/II randomized clinical study. Vaccine. 2014;32(50):6838–46. https://doi.org/10.1016/j.vaccine.2014.02.052; Odutola A, Ota MOC, Antonio M, Ogundare EO, Saidu Y, Foster-Nyarko E, et al. Efficacy of a novel, protein-based pneumococcal vaccine against nasopharyngeal carriage of Streptococcus pneumoniae in infants: a phase 2, randomized, controlled, observer-blind study. Vaccine. 2017;35(19):2531–42. https://doi.org/10.1016/j.vaccine.2017.03.071; Verhoeven D, Xu Q, Pichichero ME. Vaccination with a Streptococcus pneumoniae trivalent recombinant PcpA, PhtD and PlyD1 protein vaccine candidate protects against lethal pneumonia in an infant murine model. Vaccine. 2014;32(26):3205–10. https://doi.org/10.1016/j.vaccine.2014.04.004; Brooks WA, Chang L-J, Sheng X, Hopfer R. Safety and immunogenicity of a trivalent recombinant PcpA, PhtD, and PlyD1 pneumococcal protein vaccine in adults, toddlers, and infants: a phase I randomized controlled study. Vaccine. 2015;33(36):4610–7. https://doi.org/10.1016/j.vaccine.2015.06.078; Visan L, Rouleau N, Proust E, Peyrot L, Donadieu A, Ochs M. Antibodies to PcpA and PhtD protect mice against Streptococcus pneumoniae by a macrophage- and complement-dependent mechanism. Hum Vaccin Immunother. 2018;14(2):489–94. https://doi.org/10.1080/21645515.2017.1403698; Hill S, Entwisle C, Pang Y, Joachim M, McIlgorm A, Dalton K, et al. Immunogenicity and mechanisms of action of PnuBioVax, a multi-antigen serotype-independent prophylactic vaccine against infection with Streptococcus pneumoniae. Vaccine. 2018;36(29):4255–64. https://doi.org/10.1016/j.vaccine.2018.05.122; Entwisle C, Hill S, Pang Y, Joachim M, McIlgorm A, Colaco C, et al. Safety and immunogenicity of a novel multiple antigen pneumococcal vaccine in adults: a phase 1 randomised clinical trial. Vaccine. 2017;35(51):7181–6. https://doi.org/10.1016/j.vaccine.2017.10.076; Liberman C, Takagi M, Cabrera-Crespo J, Sbrogio-Almeida ME, Dias WO, Leite LCC, Gonçalves VM. Pneumococcal whole-cell vaccine: optimization of cell growth of unencapsulated Streptococcus pneumoniae in bioreactor using animal-free medium. J Ind Microbiol Biotechnol. 2008;35(11):1441–5. https://doi.org/10.1007/s10295-008-0445-3; Lu YJ, Leite L, Gonçalves VM, Dias WO, Liberman C, Fratelli F, et al. GMP-grade pneumococcal whole-cell vaccine injected subcutaneously protects mice from nasopharyngeal colonization and fatal aspiration-sepsis. Vaccine. 2010;28(47):7468–75. https://doi.org/10.1016/j.vaccine.2010.09.031; Gonçalves VM, Dias WO, Campos IB, Liberman C, Sbrogio-Almeida ME, Silva EP, et al. Development of a whole cell pneumococcal vaccine: BPL inactivation, cGMP production, and stability. Vaccine. 2014;32(9):1113–20. https://doi.org/10.1016/j.vaccine.2013.10.091; Malley R, Lipsitch M, Stack A, Saladino R, Fleisher G, Pelton S, et al. Intranasal immunization with killed unencapsulated whole cells prevents colonization and invasive disease by capsulated pneumococci. Infect Immun. 2001;69(8):4870–3. https://doi.org/10.1128/IAI.69.8.4870-4873.2001; Lu YJ, Yadav P, Clements JD, Forte S, Srivastava A, Thompson CM, et al. Options for inactivation, adjuvant, and route of topical administration of a killed, unencapsulated pneumococcal whole-cell vaccine. Clin Vaccine Immunol. 2010;17(6):1005–12. https://doi.org/10.1128/CVI.00036-10; Hogenesch H, Dunham A, Hansen B, Anderson K, Maisonneuve JF, Hem SL. Formulation of a killed whole cell pneumococcus vaccine — effect of aluminum adjuvants on the antibody and IL-17 response. J Immune Based Ther Vaccines. 2011;29(9):5. https://doi.org/10.1186/1476-8518-9-5; Keech CA, Morrison R, Anderson P, Tate A, Flores J, Goldblatt D, et al. A phase 1 randomized, placebo-controlled, observer-blinded trial to evaluate the safety and immunogenicity of inactivated Streptococcus pneumoniae whole-cell vaccine in adults. Pediatr Infect Dis J. 2020;39(4):345–51. https://doi.org/10.1097/inf.0000000000002567; Kim EH, Choi SY, Kwon MK, Tran TD, Park SS, Lee KJ, et al. Streptococcus pneumoniae pep27 mutant as a live vaccine for serotype-independent protection in mice. Vaccine. 2012;30:2008–19. https://doi.org/10.1016/j.vaccine.2011.11.073; Seon SH, Choi JA, Yang E, Pyo S, Song MK, Rhee DK. Intranasal immunization with an attenuated pep27 mutant provides protection from influenza virus and secondary pneumococcal infections. J Infect Dis. 2018;217:637–40. https://doi.org/10.1093/infdis/jix594; Kim SJ, Seon SH, Luong TT, Ghosh P, Pyo S, Rhee DK. Immunization with attenuated non-transformable pneumococcal pep27 and comD mutant provides serotype-independent protection against pneumococcal infection. Vaccine. 2019;37:90–8. https://doi.org/10.1016/j.vaccine.2018.11.027; Anish C, Upadhyay AK, Sehgal D, Panda AK. Influences of process and formulation parameters on powder flow properties and immunogenicity of spray dried polymer particles entrapping recombinant pneumococcal surface protein A. Int J Pharm. 2014;466:198–210. https://doi.org/10.1016/j.ijpharm.2014.03.025; Kunda NK, Alfagih IM, Miyaji EN, Figueiredo DB, Gonçalves VM, Ferreira DM, et al. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles. Int J Pharm. 2015;495:903–12. https://doi.org/10.1016/j.ijpharm.2015.09.034; van Roosmalen ML, Kanninga R, El Khattabi M, Neef J, Audouy S, Bosma T, et al. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. Methods. 2006;38:144–9. https://doi.org/10.1016/j.ymeth.2005.09.015; Lu J, Guo J, Wang D, Yu J, Gu T, Jiang C, et al. Broad protective immune responses elicited by bacterium-like particle-based intranasal pneumococcal particle vaccine displaying PspA2 and PspA4 fragments. Hum Vaccin Immunother. 2019;15:371–80. https://doi.org/10.1080/21645515.2018.1526556; Gupalova T, Leontieva G, Kramskaya T, Grabovskaya K, Kuleshevich E, Suvorov A. Development of experimental pneumococcal vaccine for mucosal immunization. PLoS One. 2019;14(6):e0218679. https://doi.org/10.1371/journal.pone.0218679; Xu JH, Dai WJ, Chen B, Fan XY. Mucosal immunization with PsaA protein, using chitosan as a delivery system, increases protection against acute otitis media and invasive infection by Streptococcus pneumoniae. Scand J Immunol. 2015;81:177–85. https://doi.org/10.1111/sji.12267; Haryono A, Salsabila K, Restu WK, Harmami SB, Safari D. Effect of chitosan and liposome nanoparticles as adjuvant codelivery on the immunoglobulin G subclass distribution in a mouse model. J Immunol Res. 2017;2017:9125048. https://doi.org/10.1155/2017/9125048; Tada R, Suzuki H, Takahashi S, Negishi Y, Kiyono H, Kunisawa J, Aramaki Y. Nasal vaccination with pneumococcal surface protein A in combination with cationic liposomes consisting of DOTAP and DC-chol confers antigen-mediated protective immunity against Streptococcus pneumoniae infections in mice. Int Immunopharmacol. 2018;61:385–93. https://doi.org/10.1016/j.intimp.2018.06.027; Voß F, Kohler TP, Meyer T, Abdullah MR, van Opzeeland FJ, Saleh M, et al. Intranasal vaccination with lipoproteins confers protection against pneumococcal colonisation. Front Microbiol. 2018;9:2405. https://doi.org/10.3389/fimmu.2018.02405; https://www.biopreparations.ru/jour/article/view/350

  5. 5
    Academic Journal

    المساهمون: The study reported in this publication was carried out as part of a publicity funded research project No. 056-00003-20-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. AAAA-A18-118021590046-9)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00003-20-00 на проведение прикладных научных исследований (номер государственного учета НИР AAAA-A18-118021590046-9).

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 20, № 4 (2020); 228-244 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 20, № 4 (2020); 228-244 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2020-20-4

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/311/384; Горенков ДВ, Хантимирова ЛМ, Шевцов ВА, Рукавишников АВ, Меркулов ВА, Олефир ЮВ. Вспышка нового инфекционного заболевания COVID-19: β-коронавирусы как угроза глобальному здравоохранению. БИОпрепараты. Профилактика, диагностика, лечения. 2020:20(1):6–20. https://doi.org/10.30895/2221-996X-2020-20-1-6-20; Hobson D, Curry RL, Beare AS, Ward-Gardner A. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J Hyg (Lond). 1972;70(4):767–77. https://doi.org/10.1017/s0022172400022610; Roestenberg M, de Vlas SJ, Nieman AE, Sauerwein RW, Hermsen CC. Efficacy of preerythrocytic and blood-stage malaria vaccines can be assessed in small sporozoite challenge trials in human volunteers. J Infect Dis. 2012;206(3):319–23. https://doi.org/10.1093/infdis/jis355; Mayne B. The injection of mosquito sporozoites in malaria therapy. Public Health Rep. 1933;48(31):909–16. https://doi.org/10.2307/4580870; Black S, Nicolay U, Vesikari T, Knuf M, Del Giudice G, Della Cioppa G, et al. Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children. Pediatr Infect Dis J. 2011;30(12):1081–5. https://doi.org/10.1097/inf.0b013e3182367662; Neter E, Shumway CN. E. coli serotype D433: occurrence in intestinal and respiratory tracts, cultural characteristics, pathogenicity, sensitivity to antibiotics. Proc Soc Exp Biol Med. 1950;75(2):504–7. https://doi.org/10.3181/00379727-75-18246; Tacket CO, Kotloff KL, Losonsky G, Nataro JP, Michalski J, Kaper JB, et al. Volunteer studies investigating the safety and efficacy of live oral El Tor Vibrio cholerae O1 vaccine strain CVD 111. Am J Trop Med Hyg. 1997;56(5):533–7. https://doi.org/10.4269/ajtmh.1997.56.533; Laurens MB, Duncan CJ, Epstein JE, Hill AV, Komisar JL, Lyke KE, et al. A consultation on the optimization of controlled human malaria infection by mosquito bite for evaluation of candidate malaria vaccines. Vaccine. 2012;30(36):5302–4. https://doi.org/10.1016/j.vaccine.2012.04.088; Darton TC, Blohmke CJ, Moorthy VS, Altmann DM, Hayden FG, Clutterbuck EA, et al. Design, recruitment, and microbiological considerations in human challenge studies. Lancet Infect Dis. 2015;15(7):840–51. https://doi.org/10.1016/s1473-3099(15)00068-7; DeVincenzo JP, Whitley RJ, Mackman RL, ScaglioniWeinlich C, Harrison L, Farrell E, et al. Oral GS-5806 activity in a respiratory syncytial virus challenge study. N Engl J Med. 2014;371(8):711–22. https://doi.org/10.1056/nejmoa1401184; Memoli MJ, Shaw PA, Han A, Czajkowski L, Reed S, Athota R, et al. Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model. mBio. 2016;7(2):e00417-16. https://doi.org/10.1128/mbio.00417-16; Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20(6):669– 77. https://doi.org/10.1016/s1473-3099(20)30243-7; Palacios R, Shah SK. When could human challenge trials be deployed to combat emerging infectious diseases? Lessons from the case of a Zika virus human challenge trial. Trials. 2019;20(Suppl 2):702. https://doi.org/10.1186/s13063-019-3843-0; Shah SK, Kimmelman J, Lyerly AD, Lynch HF, McCutchan F, Miller FG, et al. Ethical considerations for Zika virus human challenge trials. National Institute of Allergy and Infectious Diseases; 2017.; Nieman AE, de Mast Q, Roestenberg M, Wiersma J, Pop G, Stalenhoef A, et al. Cardiac complication after experimental human malaria infection: a case report. Malar J. 2009;8(1):277. https://doi.org/10.1186/1475-2875-8-277; Sherman AC, Mehta A, Dickert NW, Anderson EJ, Rouphael N. The future of flu: a review of the human challenge model and systems biology for advancement of influenza vaccinology. Front Cell Infect Microbiol. 2019;9:107. https://doi.org/10.3389/fcimb.2019.00107; Jamrozik E, Selgelid MJ. Ethical issues surrounding controlled human infection challenge studies in endemic low-and middle-income countries. Bioethics. 2020;34(8):797–808. https://doi.org/10.1111/bioe.12802; Lipsitch M, Swerdlow DL, Finelli L. Defining the epidemiology of Covid-19 — studies needed. N Engl J Med. 2020;382(13):1194–6. https://doi.org/10.1056/nejmp2002125; Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatullin AI, Shcheblyakov DV, Dzharullaeva AS, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887– 97. https://doi.org/10.1016/s0140-6736(20)31866-3; Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a doseescalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845–54. https://doi.org/10.1016/s0140-6736(20)31208-3; Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, BelijRammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396(10249):467–78. https://doi.org/10.1016/s0140-6736(20)31604-4; Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA vaccine against SARS-CoV-2 — preliminary report. N Engl J Med. 2020;NEJMoa2022483. https://doi.org/10.1056/nejmoa2022483 [Epub ahead of print]; Zhu FC, Hou LH, Li JX, Wu SP, Liu P, Zhang GR, et al. Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China: preliminary report of a randomised, double-blind, placebocontrolled, phase 1 trial. Lancet. 2015;385(9984):2272–9. https://doi.org/10.1016/s0140-6736(15)60553-0; https://www.biopreparations.ru/jour/article/view/311

  6. 6
    Academic Journal

    المساهمون: The study reported in this publication was carried out as part of a publicity funded research project No. 056-00003-20-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. AAAA-A18-118021590046-9), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00003-20-00 на проведение прикладных научных исследований (номер государственного учета НИР AAAA-A18-118021590046-9)

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 20, № 1 (2020); 30-41 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 20, № 1 (2020); 30-41 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2020-20-1

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/251/280; Зозуля НИ, Свирин ПВ. Диагностика и лечение гемофилии. Национальные клинические рекомендации. М.: Национальное гематологическое общество; 2014.; Волкова СА, Боровков НН. Основы клинической гематологии. Учебное пособие. Н. Новгород: НижГМА; 2013.; Бломбек М, Антович Й, ред. Нарушения свертывания крови. Практические рекомендации по диагностике и лечению. М.: Медицинская литература; 2014.; Сараева НО. Гематология. Учебное пособие. Изд. 2-е, перераб. Иркутск: ИГМУ; 2015.; Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, eds. Hemostasis and thrombosis. Basic principles and clinical practice. 4th ed. Philadelphia: Lippincott Williams Wilkins; 2001.; DeLoughery TG, ed. Hemostasis and thrombosis. 2nd ed. Georgetown, TX: Landes Bioscience; 2019. 23–31.; Баркаган ЗС, Момот АП. Диагностика и контролируемая терапия нарушений гемостаза. М.: Ньюдиамед; 2008.; Rogaev EI, Grigorenko AP, Faskhutdinova G, Kittler EL, Moliaka YK. Genotype analysis identifies the cause of the «royal disease». Science. 2009;326(5954):817. https://doi.org/10.1126/science.1180660; Reitsma PH, Bertina RM, Ploos van Amstel JK, Riemens A, Briet E. The putative factor IX gene promoter in hemophilia B Leyden. Blood. 1988;72(3):1074–6.; Русанов ВМ, Левин И. Лечебные препараты крови. М.: Медпрактика-М; 2004.; Зубкова НВ. Обеспечение инфекционной безопасности препаратов из плазмы крови доноров. Гематология и трансфузиология. 2014;59(2):44–9.; Дереза ТЛ, Скрылева ИА, Кутюрова ОГ, Берковский АЛ. Выделение плазменного фактора свертывания крови IX высокой степени очистки. Гематология и трансфузиология. 2014;59(2):25–9.; Velthove KJ, Over J, Abbink K, Janssen MP. Viral safety of human plasma-derived medicinal products: impact of regulation requirements. Transfus Med Rev. 2013;27(3):179–83. https://doi.org/10.1016/j.tmrv.2013.05.002; DiMichele D. Inhibitor development in haemophilia B: an orphan disease in need of attention. Br J Haematol. 2007;138(3):305–15. https://doi.org/10.1111/j.13652141.2007.06657.x; High KA. Factor IX: molecular structure, epitopes, and mutations associated with inhibitor formation. In: Aledort LM, Hoyer LW, Lusher JM, Reisner HM, White GC, eds. Inhibitors to coagulation factors. Advances in Experimental Medicine and Biology, vol 386. Boston, MA: Springer; 1995. P. 79–86. https://doi.org/10.1007/978-14613-0331-2_6; Thorland EC, Drost JB, Lusher JM, Warrier I, Shapiro A, Koerper MA, et al. Anaphylactic response to factor IX replacement therapy in haemophilia B patients: complete gene deletions confer the highest risk. Haemophilia. 1999;5(2):101–5. https://doi.org/10.1046/j.1365-2516.1999.t01-1-00303.x; Lillicrap D, Fijnvandraat K, Santagostino E. Inhibitors — genetic and environmental factors. Haemophilia. 2014;20(s4):87–93. https://doi.org/10.1111/hae.12412; DiMichele DM. Immune tolerance in haemophilia: the long journey to the fork in the road. Br J Haematol. 2012;159(2):123–34. https://doi.org/10.1111/bjh.12028; Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371(21):1994–2004. https://doi.org/10.1056/NEJMoa1407309; Peyvandi F, Garagiola I, Young G. The past and future of haemophilia: diagnosis, treatments, and its complications. Lancet. 2016;388(10040):187–97. https://doi.org/10.1016/S0140-6736(15)01123-X; Nogami K, Shima M. Pathogenesis and treatment of hemophilia. In: Ishii E, eds. Hematological disorders in children. Singapore: Springer Nature; 2017. P. 189–204. https://doi.org/10.1007/978-981-10-3886-0_9; Орлова НА, Ковнир СВ, Воробьев ИИ, Габибов AГ. Фактор свертывания крови IX для терапии гемофилии В. Acta Naturae (русскоязычная версия). 2012;4(2):62–75.; Солдатов АА, Авдеева ЖИ, Мосягин ВД, Олефир ЮВ, Бондарев ВП. Основные направления по разработке и модификации препаратов для лечения гемофилии. Гематология и трансфузиология. 2016;61(4):208–15.; https://www.biopreparations.ru/jour/article/view/251

  7. 7
    Academic Journal

    المساهمون: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00154-19-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. AAAA-A18-118021590046-9)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00154-19-00 на проведение прикладных научных исследований (номер государственного учета НИР AAAA-A18-118021590046-9).

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 19, № 2 (2019); 81-87 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 19, № 2 (2019); 81-87 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2019-19-2

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/186/189; Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382(9888):209–22. http://doi.org/10.1016/S0140-6736(13)60844-2; Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD, WHO-coordinated Global Rotavirus Surveillance Network. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(2):136–41. https://doi.org/10.1016/S1473-3099(11)70253-5; Hasan MA, Mouw C, Jutla A, Akanda AS. Quantification of rotavirus diarrheal risk due to hydroclimatic extremes over South Asia: Prospects of satellite-based observations in detecting outbreaks. GeoHealth. 2018;2(2):70–86. https://doi.org/10.1002/2017GH000101; da Silva M, Miagostovich M, Victoria M. Rotavirus and Astroviruses. In: Global Water Pathogen Project. Part three. Specific excreted pathogens: environmental and epidemiology aspects. Section I. Viruses. 2016. https://doi.org/10.14321/waterpathogens.18; Недачин АЕ, Дмитриева РА, Доскина ТВ, Долгин ВА, Чуланов ВП, Пименов НН. Сточные воды как резервуар возбудителей кишечных вирусных инфекций. Гигиена и санитария. 2015;94(7):37–40.; Pollard SL, Malpica-Llanos T, Friberg IK, Fischer-Walker C, Ashraf S, Walker N. Estimating the herd immunity effect of rotavirus vaccine. Vaccine. 2015;33(32):3795–800. https://doi.org/10.1016/j.vaccine.2015.06.064; Burke RM, Tate JE, Dahl RM, Aliabadi N, Parashar UD. Rotavirus vaccination is associated with reduced seizure hospitalization risk among commercially insured US children. Clin Infect Dis. 2018;67(10):1614–6. https://doi.org/10.1093/cid/ciy424; Payne DC, Baggs J, Zerr DM, Klein NP, Yih K, Glanz J, et al. Protective association between rotavirus vaccination and childhood seizures in the year following vaccination in US children. Clin Infect Dis. 2014;58(2):173–7. https://doi.org/10.1093/cid/cit671; Standaert B, Strens D, Li X, Schecroun N, Raes M. The sustained rotavirus vaccination impact on nosocomial infection, duration of hospital stay, and age: the RotaBIS study (2005–2012). Infect Dis Ther. 2016;5(4):509–24. https://doi.org/10.1007/s40121-016-0131-0; Боковой АГ, Иваненко МА, Ковалев ИВ, Мухина АА, Маккавеева ЛФ, Володина ОА и др. Нозокомиальная ротавирусная инфекция у детей. Детские инфекции. 2002;(1):28–31.; Haffejee IE. Neonatal rotavirus infections. Rev Infect Dis. 1991;13(5):957–62.; Hwang NR, Kim JK. Relationship between asymptomatic rotavirus infection and jaundice in neonates: a retrospective study. BMC Pediatr. 2018;18:376. https://doi.org/10.1186/s12887-018-1352-z; Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, et al. Rotavirus infection. Nat Rev Dis Primers. 2017;3:17083. http://doi.org/10.1038/nrdp.2017.83; Rodríguez JM, Chichón FJ, Martín-Forero E, González-Camacho F, Carrascosa JL, Castón JR, Luque D. New insights into rotavirus entry machinery: stabilization of rotavirus spike conformation is independent of trypsin cleavage. PLoS Pathog. 2014;10(5):e1004157. http://doi.org/10.1371/journal.ppat.1004157; Velázquez FR, Matson DO, Guerrero ML, Shults J, Calva JJ, Morrow AL, et al. Serum antibody as a marker of protection against natural rotavirus infection and disease. J Infect Dis. 2000;182(6):1602–9. https://doi.org/10.1086/317619; Jiang B, Gentsch JR, Glass RI. The role of serum antibodies in the protection against rotavirus disease: an overview. Clin Infect Dis. 2002;34(10):1351–61. https://doi.org/10.1086/340103; Blutt SE, Warfield KL, Lewis DE, Conner МE. Early response to rotavirus infection involves massive B cell activation. J Immunol. 2002;168(11):5716–21. https://doi.org/10.4049/jimmunol.168.11.5716; Matthijnssens J, Otto PH, Ciarlet M, Desselberger U, Van Ranst M, Johne R. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Arch Virol. 2012;157(6):1177–82. https://doi.org/10.1007/s00705-012-1273-3; Santos N, Hoshino Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev Med Virol. 2005;15(1):29–56. https://doi.org/10.1002/rmv.448; Gorziglia M, Larralde G, Kapikian AZ, Chanock RM. Antigenic relationships among human rotaviruses as determined by outer capsid protein VP4. Proc Natl Acad Sci USA. 1990;87(18):7155–9.; Matthijnssens J, Van Ranst M. Genotype constellation and evolution of group A rotaviruses infecting humans. Curr Opin Virol. 2012;2(4):426–33. https://doi.org/10.1016/j.coviro.2012.04.007; Matthijnssens J, Bilcke J, Ciarlet M, Martella V, Bányai K, Rahman M, et al. Rotavirus disease and vaccination: impact on genotype diversity. Future Microbiol. 2009;4(10):1303–16. https://doi.org/10.2217/fmb.09.96; Todd S, Page NA, Duncan Steele A, Peenze I, Cunliffe NA. Rotavirus strain types circulating in Africa: Review of studies published during 1997–2006. J Infect Dis. 2010;202(Suppl. 1):S34–42. https://doi.org/10.1086/653555; Luchs A, Timenetsky MC. Group A rotavirus gastroenteritis: post-vaccine era, genotypes and zoonotic transmission. Einstein (Sao Paulo). 2016;14(2):278–87. https://doi.org/10.1590/S1679-45082016RB3582; McDonald SM, Matthijnssens J, McAllen JK, Hine E, Overton L, Wang S, et al. Evolutionary dynamics of human rotaviruses: balancing reassortment with preferred genome constellations. PLoS Pathog. 2009;5(10):e1000634. https://doi.org/10.1371/journal.ppat.1000634; Zinder D, Riolo MA, Woods RJ, Pascual M. Role of competition in the strain structure of rotavirus under invasion and reassortment. bioRxiv. 2017. https://doi.org/10.1101/137661; Bernstein DI. Rotavirus vaccines: mind your Ps and Gs. J Infect Dis. 2018;218(4):519–21. https://doi.org/10.1093/infdis/jiy203; Nordgren J, Nitiema LW, Sharma S, Ouermi D, Traore AS, Simpore J, Svensson L. Emergence of unusual G6P[6] rotaviruses in children, Burkina Faso, 2009–2010. Emerg Infect Dis. 2012;18(4):589–97. https://doi.org/10.3201/eid1804.110973; Leshem E, Lopman B, Glass R, Gentsch J, Bányai K, Parashar U, Patel M. Distribution of rotavirus strains and strain-specific effectiveness of the rotavirus vaccine after its introduction: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(9):847–56. https://doi.org/10.1016/S1473-3099(14)70832-1; Seheri LM, Magagula NB, Peenze I, Rakau K, Ndadza A, Mwenda JM, et al. Rotavirus strain diversity in Eastern and Southern African countries before and after vaccine introduction. Vaccine. 2018;36(47):7222–30. https://doi.org/10.1016/j.vaccine.2017.11.068; Dóró R, László B, Martella V, Leshem E, Gentsch J, Parashar U, Bányai K. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? Infect Genet Evol. 2014;28:446–61. https://doi.org/10.1016/j.meegid.2014.08.017; Correia JB, Patel MM, Nakagomi O, Montenegro FM, Germano EM, Correia NB, et al. Effectiveness of monovalent rotavirus vaccine (Rotarix) against severe diarrhea caused by serotypically unrelated G2P[4] strains in Brazil. J Infect Dis. 2010;201(3):363–9. https://doi.org/10.1086/649843; de Hoog MLA, Vesikari T, Giaquinto C, Huppertz HI, Martinon-Torres F, Bruijning-Verhagen P. Report of the 5th European expert meeting on rotavirus vaccination (EEROVAC). Hum Vaccin Immunother. 2018;14(4):1027–34. https://doi.org/10.1080/21645515.2017.1412019; Епифанова НВ, Сашина ТА, Новикова НА, Морозова ОВ, Фомина СГ, Луковникова ЛБ, Кашников АЮ. Спектр генотипов ротавирусов, циркулировавших на территории Нижнего Новгорода в 2005–2012 годах. Доминирование генотипа G4P[8]. Медицинский альманах. 2014;2(32):52–7.; Lobzin YV, Kharit SM, Goveia MG, O’Brian MA, Podkolzin AT, Blokhin BM, et al. Burden of childhood rotavirus disease in the outpatient setting of the Russian Federation. Pediatr Infect Dis J. 2017;36(5):472–6. https://doi.org/10.1097/INF.0000000000001472; Kiseleva V, Faizuloev E, Meskina E, Marova A, Oksanich A, Samartseva T, et al. Molecular-genetic characterization of human rotavirus A strains circulating in Moscow, Russia (2009–2014). Virol Sin. 2018;33(4):304–13. https://doi.org/10.1007/s12250-018-0043-0; Гирина АА, Курганская АЮ. Ротавирусная инфекция в структуре острых кишечных инфекций у детей. Научный медицинский вестник Югры. 2016;(2):18–22.; Рудакова АВ, Харит СМ, Усков АН, Лобзин ЮВ. Оценка предотвращенных затрат на терапию ротавирусной инфекции при вакцинации 5-валентной вакциной в Российской Федерации. Журнал инфектологии. 2014;6(2):71–5.; St-Martin G, Lindstrand A, Sandbu S, Fischer TK. Selection and interpretation of scientific evidence in preparation for policy decisions: a case study regarding introduction of rotavirus vaccine into national immunization programs in Sweden, Norway, Finland, and Denmark. Front Public Health. 2018;6:131. https://doi.org/10.3389/fpubh.2018.00131; Parez N, Giaquinto C, Du Roure C, Martinon-Torres F, Spoulou V, Van Damme P, Vesikari T. Rotavirus vaccination in Europe: drivers and barriers. Lancet Infect Dis. 2014;14(5):416–25. https://doi.org/10.1016/S1473-3099(14)70035-0; https://www.biopreparations.ru/jour/article/view/186

  8. 8
    Academic Journal

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 16, № 1 (2016); 14-26 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 16, № 1 (2016); 14-26 ; 2619-1156 ; 2221-996X ; undefined

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/37/86; Public Health Services Act 42 U. S. C. § 262(i).; Directive 2001/83/EC of the European parliament and of the council of 6 November 2001 on the Community code relating to medicinal products for human use (OJ L 311, 28.11.2001, p. 67).; Pichler WJ. Adverse side-effects to biological agents. Allergy; 2006; 61: 912-20.; Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008; 7(1): 21 - 39.; International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Q5C: Quality of biotechnological products: Stability testing of biotechnological/biological products, Nov. 30, 1995.; Солдатов АА, Авдеева ЖИ, Алпатова НА, Медуницын НВ, Киселевский МВ, Лысикова СЛ. и др. Проблемы регистрации биологических неоригинальных препаратов. Биопрепараты 2014; (4): 24-36.; Wax PM. Elixirs, diluents, and the passage of the 1938 Federal Food, Drug and Cosmetic Act. Ann Intern Med. 1995; 122(6): 456-61.; Stephens T, Brynner R. Dark Remedy. The Impact of Thalidomide and its Revival as a Vital Medicine. Cambridge, Massachusetts: Perseus Publishing; 2001.; Dukes MNG. The seven pillars of foolishness. In: Dukes MNG, editor. Side Effects of Drugs. Annual 8. Amsterdam: Elsevier; 1984. P. xvii-xxiii.; Shah RR. Drug-induced prolongation of the QT interval: why the regulatory concern? Fundam Clin Pharmacol. 2002; 16(2): 119-24.; World Health Organization. The Importance of Pharmacovigilance. Safety Monitoring of Medicinal Products. Chapter 2. A Short History of Involvement in Drug Safety Monitoring by WHO. Available from: http://apps.who.int/medicinedocs/en/d/Js4893e/3.html.; Available from: evs.nci.gov/ftp1/CTCAE v 4.03.; Ferner RE, Butt TF. Adverse drug reactions. Med. 2012; 40: 366-70.; Rawlins M, Thompson W. Mechanisms of adverse drug reactions. In: Davies D, ed. Textbook of adverse drug reactions. New York: Oxford University Press; 1991. P. 18-45.; Ebbers HC, Al-Temimi E, Moors EHM, Mantel-Teeuwisse AK, Schellekens H, Leufkens HGM. Differences Between Post-Authorization Adverse Drug Reactions of Biopharmaceuticals and Small Molecules. BioDrugs 2013; 27(2): 167-74.; Giezen TJ, Mantel-Teeuwisse AK, Straus SMJM, et al. Safety-related regulatory actions for biologicals approved in the United States and the European Union. JAMA 2008; 300: 1887-96.; Pichler WJ. Delayed drug hypersensitivity reactions. Ann Intern Med. 2003; 139: 683-93.; Perez-Soler R, Saltz L. Cutaneous adverse effects with HER1/ EGFR-targeted agents: is there a silver lining? J Clin Oncol. 2005; 23: 5235-46.; Danese S, Fiocchi C. Platelet activation and the CD40 / CD40 ligand pathway: mechanisms and implications for human disease. Crit Rev Immunol 2005; 25: 103-21.; Kwon HJ, Cote TR, Cuffe MS, Kramer JM, Braun MM. Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med. 2003; 138: 807-11.; Kasahara A, Hiraide A, Tomita N, Iwahashi H, Imagawa A, Ohguro N, et al. Vogt-Koyanagi-Harada disease occurring during interferon alpha therapy for chronic hepatitis C. J Gastroenterol. 2004; 39: 1106-09.; Sherer K, Spoerl D, Bircher AJ. Adverse drug reactions to biologics. JDDG 2010; (8): 411-26.; Clarke JB. Mechanisms of adverse drug reactions to biologics. In: Uetrecht J, ed. Adverse Drug Reactions. Handbook of Experimental Pharmacology. New York: Springer; 2010. P. 453-74.; Aronson JK, Ferner RE. Joining the DoTS: new approach to classify adverse drug reactions. BMJ 2003; 327: 1222-25.; Napoleone E. Children and ADRs (Adverse Drug Reactions). Ital. J. Pediat. 2011; 36: e1-e5.; Horen B, Montastruc JL. Adverse drug reactions and off-label drug use in pediatric outpatients. Br J Clin Pharmacol. 2002; 5(4): 665-70.; Pichler WJ, Adam J, Daubner B, Gentinetta T, Keller M, Yerly D. Drug Hypersensitivity Reactions: Pathomechanism and Clinical Symptoms. Med Clin № Am. 2010; 94: 645-64.; Nassif A, Bensussan A, Dorothee G, et al. Drug specific cytotoxic T-cells in the skin lesions of a patient with toxic epidermal necrolysis. J Invest Dermatol. 2002; 118: 728-33.; Britschgi M, Steiner UC, Schmid S, et al. T-cell involvement in drug-induced acute generalized exanthematous pustulosis. J Clin Invest. 2001; 107: 1433-41.; Pichler WJ. Pharmacological interaction of drugs with antigen-specific immune receptors: the p-i concept. Curr Opin Allergy Clin Immunol. 2002; 2: 301-5.; National Cancer Institute. Common Terminology Criteria for Adverse Events v3.0 (CTCAE). 9 August, 2006. Available from: http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf.; Barbaud A., Granel F., Waton J., Poreaux C. How to manage hypersensitivity reactions to biological agents? Eur J Dermatol. 2011; 21 (5): 667-74.; https://www.biopreparations.ru/jour/article/view/37; undefined

  9. 9
    Academic Journal

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; № 4 (2015); 4-10 ; БИОпрепараты. Профилактика, диагностика, лечение; № 4 (2015); 4-10 ; 2619-1156 ; 2221-996X ; undefined

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/26/27; Дзагуров СГ., Быченко Б.Д. Биологическая стандартизация. Вопросы вирусологии 1984; (3): 264-70.; Воробьёва М.С. Принципы стандартизации и совершенствование методов контроля вакцин клещевого энцефалита: дис. д-ра мед. наук. М.; 1985.; Воробьёва М.С. Вакцины для специфической профилактики клещевого энцефалита. Дезинфекционное дело 2007; (1): 45-7.; Расщепкина М.Н. Разработка и изучение стандартного образца для оценки иммуногенной активности вакцины клещевого энцефалита. В сб.: Стандарты., штаммы., и методы контроля бактерийных и вирусных препаратов. М.; 1982. С. 154-8.; Воробьёва М.С., Меркулов В.А., Ладыженская И.П., Рукавишников А.В., Шевцов В.А. История создания и оценки качества современных вакцин КЭ отечественного и зарубежного производства. Ведомости Научного центра экспертизы средств медицинского применения 2013; Вакцина клещевого энцефалита культуральная очищенная концентрированная инактивированная сорбированная жидкая или сухая с в комплекте с растворителем - алюминия гидроксидом. Фармакопейная статья. Государственный стандарт качества лекарственного средства. Available from: http://www.rosminzdrav.ru/ministry/61/11/ materialy-po-deyatelnosti-departamenta/stranitsa-856/spisok-obschih-farmakopeynyh-statey.; Красильников И.В. Вакцины против клещевого энцефалита., бешенства и гепатита В. Разработка высокоэффективной технологии получения препаратов., иммунобиологические и клинические испытания: дис. д-ра биол. наук. М.; 1998.; Reed L.J., Muench H. A simple method for estimating fifty percent endpoints. Amer J Hyg. 1938; 27:493.; Kunz Ch., Heinz F., Hofmann H. Immunogenity and reactogenity of a highly purified vaccine against tick-borne encephalitis. Med Virol. 1980; 2: 103- 9.; Эльберт Л.Б., Гагарина А.В., Ханина М.К. Концентрированная очищенная вакцина против клещевого энцефалита., приготовленная методом зонального центрифугирования. Разработка препарата. Вопросы вирусологии 1980; (3): 341.; Ашмарин И.П., Воробьев А.А. Статистические методы в микробиологических исследованиях. М; 1962.; Воробьёва М.С., Расщепкина М.Н., Ладыженская И.П., Горбунов М.А., Павлова Л.И., Бектимиров Т.А. Сравнительное изучение инактивированных культуральных вакцин против клещевого энцефалита отечественного производства и производства фирмы «Иммуно» (Австрия). Вопросы вирусологии 1996; 41(5): 221-4.; Holzmann H., Vorobyova M.S., Ladeshenskaya I.P., Ferenzi E., Kundi M., Kunz C., Heinz F.X. Molecular epidemiology of tick-borne virus: cross-protection between European and Far Eastern subtypes. Vaccine 1992., 10:345-9.; https://www.biopreparations.ru/jour/article/view/26; undefined

  10. 10
    Academic Journal

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; № 2 (2015); 59-63 ; БИОпрепараты. Профилактика, диагностика, лечение; № 2 (2015); 59-63 ; 2619-1156 ; 2221-996X ; undefined

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/15/16; Иммунизация, вакцины и биологические препараты. Тиомерсал. ВОЗ; 2011.; Волкова Р.А., Гавриленкова В.Ю., Каргина T.M., Штанчаева С.М., Конду Э.И., Эльберт Е.В., Рунова В.Ф., Блоха В.В., Черняховская И.В. Физикохимические, химические, физические и иммунохимические методы контроля медицинских иммунобиологических препаратов. Фармакопейная статья. ФС 42-3874-99. М.; 1999.; British Pharmacopoeia 2013, Mercury A84, Atomic Absorption Spectrometry A171.; European Pharmacopoeia. 7th edition, 2.2.23. Atomic Absorption Spectrometry.; Thiomersal in vaccines. Extract from report of GACVS meeting 6-7 June 2012. Published WHO Weekly Epidemiological Record, 27 July 2012.; Material Safety Data Sheet. Thiomersal MSDS. Joint Commission on Accreditation and Healthcare Organization (JCAHO); Perkin Elmer Corporation, 2012. WinLab32 for AA program. User Manual.; Veda Dzeti. J. Chem. Soc. Japan, Pure Chem Sect. 1971; 92: 418.; Wolf G.K. Kerntechnik, 1965; 7: 122; C.A., 66, 81337c (196); Hirai M., Hagatsu R. 1 Pharmac Soc Japan 1950; 70: 670.; Ldutard J., Pateau L. Chim analyt. 1956; 38: 158.; Lopez-Escobar L., Hume D.N. Analyt. Letters 1973; 6: 343. References; https://www.biopreparations.ru/jour/article/view/15; undefined

  11. 11
    Academic Journal

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 16, № 4 (2016); 208-218 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 16, № 4 (2016); 208-218 ; 2619-1156 ; 2221-996X ; undefined

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/67/118; Elliott MJ, Maini RN, Feldmann M, Long-Fox A, Charles P, Katsikis P, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum. 1993; 36(12): 1681-90.; Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Ann Rev Immunol. 1996; 14: 397-440.; Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis J, Macfarlane JD, et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 1998; 41(9): 1552-63.; Pettit AR, Walsh NC, Manning C, Goldring SR, Gravallese EM. RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatology (Oxford) 2006. 45: 1068-76.; Guideline on development, production, characterization and specifications for monoclonal antibodies and related products. London. European Medicines Agency. 2008.; Guidelines for assuring the quality of monoclonal antibodies for use in humans. WHO Expert Committee on Biological Standardization. Forty-second report. Geneva, World Health Organization, 1991 (WHO Technical Report Series, No. 822).; ICH Q5A (R1) guideline. Quality of biotechnological products: Viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. Geneva, International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, 1999.; Note for guidance on virus validation studies: The design, contribution and interpretation of studies validating the inactivation and removal of viruses (CPMP/BWP/268/95); London. 14 February 1996.; Guidance on virus validation studies. The design, contribution and interpretation of studies validating the inactivation and removal of viruses. (EMEA/CHMP/BWP/398498/2005); London. February 2009.; ICH Q2A guideline. Validation of Analytical Procedures. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, 1994.; ICH Q2B guideline. Validation of Analytical Procedures: Methodology. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, 1996.; ICH Q6B guideline. Note For Guidance on Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products (CPMP/ICH/365/96).; Assessment report. Remsima (EMA/CHMP/589317/2013). 27 June 2013. Committee for Medicinal Products for Human Use (CHMP).; Assessment report. Inflectra (EMA/CHMP/589422/2013). 27 June 2013. Committee for Medicinal Products for Human Use (CHMP).; Guideline on similar biological medicinal products (EMA/CHMP/ 0437/2004). London. 2005.; Guideline on similar biological medicinal products (revision 1) (EMA/CHMP/0437/2004). London. 2014. Effective date: 30 April 2015.; Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues (EMEA/CHMP/BMWP/49348/2005). London. 2006.; Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues (revision 1) (EMEA/CHMP/BWP/247713/2012). London. 22 May 2014. Effective date: 1 December 2014.; Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: Non-clinical and clinical issues (revision 1). (EMEA/CHMP/BMWP/42832/2005). London. January 2015. Effective date: 1 July 2015.; Guidelines on evaluation of similar biotherapeutic products (SBPs). WHO Expert Committee on Biological Standardization. Geneva. 19 to 23 October. 2009.; Guidelines on evaluation of similar biotherapeutic products (SBPs). Annex 2 in: WHO Expert Committee on Biological Standardization. Sixtieth report. Geneva, WHO Technical Report Series, No. 977. 2013.; WHO/KFDA Joint workshop on implementing WHO guidelines on evaluating smilar biotherapeutic products. Meeting Report. Seoul, Republic of Korea 24 - 26 August. 2010 (Accepted 1 August 2011).; Guidance for industry. Quality consideration in demonstrating biosimilarity of a therapeutic protein product to a reference product. U. S. Department of Health and Human Services. Food and Drug Administration. Center for Drug Evaluation and Research (CDER). Center for Biologics Evaluation and Research (CBER) April 2015.; Руководство по экспертизе лекарственных средств. Том I. М.: Гриф и К. 2013; с. 289-303.; Guideline on similar biological medicinal products containing monoclonal antibodies - non-clinical and clinical issues (EMA/CHMP/BMWP/403543/2010). London. 2012.; Руководство по экспертизе лекарственных средств. Том IV. М.: ПОЛИГРАФ-ПЛЮС. 2014; С. 31-53.; European Pharmacopoeia 6.0. Monoclonal antibodies for human use. 01/2008:2031.; ICH Q5C guideline. Quality of Biotechnological Products: Stability Testing of Biotechnological/Biological Products. International Conference on Harmonization. of Technical Requirements for Registration of Pharmaceuticals for Human Use, 1995.; Guideline on Immunogenicity Assessment of Biotechnology-Derived Therapeutic Proteins (EMEA/CHMP/BMWP/14327/2006). London, European Medicines Agency. London, January, 2007.; Guideline on immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use. (EMA/CHMP/BMWP/ 86289/2010). London, European Medicines Agency. 2012.; Guidelines for good clinical practice (GCP) for trials on pharmaceutical product. Annex 3 in WHO Expert Committee on Selection and Use of Essential Medicines. Sixth report. Geneva, World Health Organization. 1995 (WHO Technical Report Series, No. 850).; ICH E6 guideline. Guideline for good clinical practice. Geneva, International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. 1996.; Guidelines on the quality, safety, and efficacy of biotherapeutic protein products prepared by recombinant DNA technology. Replacement of Annex 3 of WHO Technical Report Series. № 814. WHO Expert Committee on biological Standardization. October 2013 (Accessed 23 January 2014).; Руководство по проведению клинических исследований лекарственных средств (иммунобиологические лекарственные препараты). Часть первая. М.: Гриф и К, 2012.; Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008; 117(2): 244-79.; https://www.biopreparations.ru/jour/article/view/67; undefined

  12. 12
    Academic Journal

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 16, № 2 (2016); 78-89 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 16, № 2 (2016); 78-89 ; 2619-1156 ; 2221-996X ; undefined

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/46/95; Guideline on similar biological medicinal products (CHMP/437/04 Rev. 1).; Guidance for Industry. Scientific Considerations in Demonstrating Biosimilarity to a Reference Product. U. S. Department of Health and Human Services Food and Drug Administration. Biosimilarity. February, 2012.; Wolfe F, Michaud K. The loss of health status in rheumatoid arthritis and the effect of biologic therapy: a longitudinal observational study. Arthritis Research Therapy 2010; 12: R35-47.; Shaw BE, Confer DL, Hwang WY, Pamphilon DH, Pulsipher MA. Concerns about the use of biosimilar granulocyte colonystimulating factors for the mobilization of stem cells in normal donors: position of the World Marrow Donor Association. Haematol. 2011; 96: 942-7.; Barosi G, Bosi A, Abbracchio MP, Danesi R, Genazzani A, Corradini P, et al. Key concepts and critical issues on epoetin and filgrastim biosimilars. A position paper from the Italian Society of Hematology, Italian Society of Experimental Hematology, and Italian Group for Bone Marrow Transplantation. Haematol. 2011; 96: 937-42.; Schmitt M, Publicover A, Orchard KH, Görlach M, Wang L, Schmitt A, et al. Biosimilar G-CSF based mobilization of peripheral blood hematopoietic stem cells for autologous and allogeneic stem cell transplantation. Theranostics 2014; 4(3): 280-9.; Declerck PJ. Biosimilar monoclonal antibodies: a science-based regulatory challenge. Expert Opin Biol Ther. 2013; 13: 153-6.; Lispi M, Datola A, Bierau H, Ceccarelli D, Crisci C, Minari K, et al. Heterogeneity of commercial recombinant human growth hormone (r-hGH) preparations containing a thioether variant. J Pharm Sci. 2009; 98(12): 4511-24.; Praditpornsilpa K, Tiranathanagul K, Kupatawintu P, Jootar S, Intragumtornchai T, Tungsanga K, et al. Biosimilar recombinant human erythropoietin induces the production of neutralizing antibodies. Kidney Int. 2011; 80(1): 88-92.; EMA. Inflectra: EPAR - Public assessment report. 2013. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR-Public_assessment_report/human/002778/WC500151490.pdf.; Ebbers HC, Crow SA, Vulto AG, Schellekens H. Interchangeability, immunogenicity and biosimilars. Nat Biotechnol. 2012; 30: 1186-90.; Fiorino G, Danese S. The biosimilar road in inflammatory bowel disease: the right way? Best Pract Res Clin Gastroenterol. 2014; 28: 465-71.; de Ridder L, Waterman M, Turner D, Bronsky J, Hauer AC, Dias JA, et al. Use of biosimilars in paediatric inflammatory bowel disease: a position statement of the ESPGHAN Paediatric IBD Porto Group. J Pediat Gastroenter Nutr. 2015; 61(4): 503-31.; Fonseca JE, Gonçalves J, Araújo F, Cordeiro I, Teixeira F, Canhão H, et al. The Portuguese Society of Rheumatology position paper on the use of biosimilars. Acta Reumatol Port. 2014; 39: 60-71.; Fiorino G, Girolomoni G, Lapadula G, Orlando A, Danese S, Olivieri I. The use of biosimilars in immune-mediated disease: a joint Italian Society of Rheumatology (SIR), Italian Society of Dermatology (SIDeMaST), and Italian Group of Inflammatory Bowel Disease (IG-IBD) position paper. Autoimmunity Rev. 2014; 13: 751-5.; Argüelles-Arias F, Barreiro-de-Acosta M, Carballo F, Hinojosa J, Tejerina T. Joint position statement by «Sociedad Espańola de Patología Digestiva» (Spanish Society of Gastroenterology) and «Sociedad Espańola de Farmacología» (Spanish Society of Pharmacology) on biosimilar therapy for inflammatory bowel disease. Rev Esp Enferm Dig. 2013; 105(1): 37-43.; Scott BJ, Klein AV, Wang J. Biosimilar monoclonal antibodies: a canadian regulatory perspective on the assessment of clinically relevant differences and indication extrapolation. J Clin Pharmac 2015; 55(S3): S123-32.; Ben-Horin S, Yavzori M, Fudim E, Picard O, Ungar B, Lee SY, et al. Cross-immunogenicity: antibodies to infliximab in Remicade-treated patients with IBD similarly recognize the bio-similar Remsima. Gut 2016; 65(7): 1132-8.; Gecse K, Farkas K, Lovasz B, Banai J, Bene L, Gasztonyi B, et al. Biosimilar infliximab in inflammatory bowel diseases: first interim results from a prospective nationwide observational cohort. Gastroenter. 2015; 148: S-865-6.; EMA. Abasria Insulin glargine: EPAR - Public assessment report. 2014. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion_-_Initial_authorisation/human/002835/WC500169353.pdf.; Guideline on non-clinical and clinical development of similar biological medicinal products containing recombinant human insulin and insulin analogues (EMEA/CHMP/BMWP/32775/2005 Rev. 1).; Heinemann L, Home PD, Hompesch M. Biosimilar insulins: guidance for data interpretation by clinicians and users. Diab Obes Metabol. 2015; 17(10): 911-8.; Шестакова МВ, Викулова ОК. Биосимиляры: презумпция «виновности». Сахарный диабет 2011; (4): 91-9.; Климонтов ВВ, Мякина НЕ. Биосимиляры аналогов инсулина: что мы должны о них знать. Эффективная фармакотерапия 2015; 1(7): 28-34.; EGA. Handbook on biosimilar medicines. 2012.; Guidelines on evaluation of similar biotherapeutic products (SBPs). Annex 2. WHO Technical Report Series № 977, 2013.; US Food and Drug Administration. Background information: lists of licensed biological products with reference product exclusivity and biosimilarity or interchangeability evaluations. 2014. Available from: http://www.fdagov/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/Biosimilars/ucm411424.htm.; Niederwieser D, Schmitz S. Biosimilar agents in oncology-haematology: from approval to practice. Eur J Haematol. 2011; 86(4): 277-88.; Mellstedt H. Clinical considerations for biosimilar antibodies. EJC Suppl. 2013; 11(3): 1-11.; Биологические препараты. Позиция Российской ассоциации эндокринологов. Сахарный диабет 2013; (3): 121-2.; Шаньгин ИВ, Смирнов АС, Шнайдер АА. Взаимозаменяемость лекарственных препаратов в России: проблемы и перспективы. Современная организация лекарственного обеспечения 2013; (3): 10-18.; Василенко ИА. Взаимозаменяемость лекарственных препаратов: сравнительные аспекты. Разработка и регистрация лекарственных средств 2014; 1(3): 146-52.; Scott DL, Kingsley G. Clinical effectiveness of biologics in clinical practice. Arthritis Res Ther. 2010; 12(2): 115-6.; Mitchell P, Korobelnik P, Lanzetta P, Holz FG, Prünte C, Schmidt-Erfurth U, et al. Ranibizumab (Lucentis) in neovascular age-related macular degeneration: evidence from clinical trials. Br J Ophthalmol. 2010; 94(1): 2-13.; Pełka M, Broniarczyk-Dyła G. Zastosowanie leków biologicznych w dermatologii. Post Dermatol Alergol. 2007; 24(1): 35-41.; Shankar S, Handa R. Biological agents in rheumatoid arthritis. J Postgrad Med. 2004; 50: 293-9.; Gouw SC, van der Bom JG, Auerswald G, Ettinghausen CE, Tedgård U, van den Berg HM. Recombinant versus plasma-derived factor VIII products and the development of inhibitors in previously untreated patients with severe hemophilia A: the CANAL cohort study. Blood 2007; 109(11): 4693-7.; Richter B, Neises G, Bergerhoff K. Human versus animal insulin in people with diabetes mellitus: a systematic review. Endocrinol Metab Clin North Am. 2002; 31: 723-49.; Белоусов ДЮ. Биоаналоги - насколько они подобны? Качественная клиническая практика 2006; (2): 80-3.; Ермоленко ВМ, Филатова НН, Михайлова НА, Хасабов НН. Рекомбинантный человеческий эритропоэтин: оригинальные препараты и биоаналоги. Клиническая нефрология 2012; (2): 4-8.; Солдатов АА, Авдеева ЖИ, Алпатова НА, Медуницын НВ, Киселевский МВ, Лысикова СЛ. и др. Проблемы регистрации биологических неоригинальных лекарственных препаратов. Биопрепараты 2014; (4): 24-36.; World Health Organization. Regulatory expectations and risk assessment for biotherapeutic products. WHO/RRA BT DRAFT/24 January 2014. Available from: http://www.who.int/biologicals/WHO_Risk_Assessment_for_Biotherapeutics_1st_PC_24_Jan_2014.pdf.; Owens DR, Landgraf W, Schmidt A, Bretzel RG, Kuhlmann M. The emergence of biosimilar insulin preparations - a cause for concern? Diab Technol Ther. 2012; 14: 989-96.; Joshi SR. Biosimilar peptides: need for pharmacovigilance. J Assoc Phys India 2011; 59: 44-7.; Kuhlmann MK, Schmidt A. Production and manufacturing of biosimilar insulins: implications for patients, physicians, and health care systems. Biosimilars 2014; (4): 45-58.; Friedrichs A, Bohnet J, Korger V, Adler S, Schubert-Zsilavecz M, Abdel-Tawab M. Dose Accuracy and Injection Force of Different Insulin Glargine Pens. J Diabetes Sci Technol 2013; 7(5): 1346-53.; Policy statement: Clarifying the appropriate regulatory pathway for subsequent entry low molecular weight heparins. Available from: http://www.hc-sc.gc.ca/dhp-mps/brgtherap/applic-demande/guides/lmwh-pol-3 hfmm-eng.php.; Guidance for sponsors: Information and Submission Requirements for Subsequent Entry Biologics (SEBs). Published by authority of the Minister of Health. Available from: http://www.hc-sc.gc.ca/dhp- mps/brgtherap/applic-demande/guides/seb-pbu/seb-pbu_2010-eng.php.; https://www.biopreparations.ru/jour/article/view/46; undefined

  13. 13
    Academic Journal

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 16, № 2 (2016); 67-77 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 16, № 2 (2016); 67-77 ; 2619-1156 ; 2221-996X ; undefined

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/45/94; Федеральный закон «Об обращении лекарственных средств» № 61-ФЗ от 22.12.2014 г.; Directive 2001/83/EC of the European parliament and of the council of 6 November 2001 on the Community code relating to medicinal products for human use (OJ L 311, 28.11.2001, p. 67).; Медуницын НВ, Миронов АН, Мовсесянц АА. Теория и практика вакцинологии. М.: Ремедиум; 2015.; Медуницын НВ. Вакцинология. М.: Триада-Х; 2010.; Цыбалова ЛМ, Киселев ОИ. Универсальные вакцины против гриппа. Разработки, перспективы использования. Вопросы вирусологии 2012; 57(1): 9-14.; Медуницын НВ, Покровский ВИ. Основы вакцинопрофилактики и иммунотерапии. М.: ГЭОТАР-Медиа; 2005.; Солдатов АА, Авдеева ЖИ, Алпатова НА, Медуницын НВ, Лысикова СЛ. Орфанные препараты, принципы их регистрации и применения. Биопрепараты 2015; 55(3): 4-16.; Насонов ЕЛ, ред. Анти-В-клеточная терапия в ревматологии: фокус на ритуксимаб. М.: ИМА-ПРЕСС; 2012.; Насонов ЕЛ, Каратеев АЕ, Клюквина НГ. Фармакотерапия. В кн.: Насонов ЕЛ, Насонова ВА, ред. Ревматология: национальное руководство. М.: ГЭОТАР-Медиа; 2008. С. 178-251.; Сигидин ЯА, Лукина ГВ. Биологическая терапия в ревматологии. М.: Практическая медицина; 2009.; Моисеенко ВМ. Возможности моноклональных антител в лечении злокачественных опухолей. Практическая онкология 2002; 3(4): 253-61.; Buch MH, Bingham SJ, Bejanaro V, Bryer D, White J, Reece R, et al. Therapy of patients with rheumatoid arthritis. Outcome of infliximab failures switched to etanercept. Arthr Care Res. 2007; 57: 448-53.; van Vollenhoven RF, Emery P, Bingham CO, Keystone EC, Fleischmann RM, Furst DE, et al. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann Rheum Dis. 2013; 72(9): 1496-502.; Gutheil J. The promise of monoclonal antibodies for the therapy of cancer. Critical Rev Oncol. Hematology 2001; 38: 1-2.; Авдеева ЖИ, Алпатова НА, Волкова РА, Лаптева ЛК. Лекарственные препараты на основе генно-инженерных моноклональных антител. Биопрепараты 2011; 42(2): 14-9.; Алпатова НА, Авдеева ЖИ, Солдатов АА, Медуницын НВ, Бондарев ВП, Миронов АН, Меркулов ВА. Проблемы, связанные с проявлением иммуногенности лекарственных препаратов моноклональных антител при клиническом использовании. Иммунология 2014; (1): 28-32.; Guidelines on the quality, safety, and efficacy of biotherapeutic protein products prepared by recombinant DNA technology. Replacement of Annex 3 of WHO Technical Report Series, № 814 World Health Organization, October 2013.; Baker MP, Reynolds HM, Lumicisi B, Bryson CJ. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. Self Nonself. 2010; (1): 314-22.; ICH S6(R1) guideline. Preclinical safety evaluation of biotechnology-derived pharmaceuticals. Geneva, International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. 2011.; Guideline on similar biological medicinal products (CHMP/437/04 Rev 1).; Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues (EMEA/CHMP/BMWP/42832/2005 Rev 1).; Guidance for Industry. Scientific Considerations in Demonstrating Biosimilarity to a Reference Product. U. S. Department of Health and Human Services Food and Drug Administration. Biosimilarity. February. 2012.; Руководство по экспертизе лекарственных средств. Т. I. М.: Гриф и К; 2013.; Niederwieser D, Schmitz S. Biosimilar agents in oncology?haematology: from approval to Practice. Eur J Haemat. 2011; 86: 277-88.; Василенко ИА. Взаимозаменяемость лекарственных препаратов: сравнительные аспекты. Разработка и регистрация лекарственных средств 2014; 1(6): 146-52.; Солдатов АА, Авдеева ЖИ, Медуницын НВ. Механизмы аллергической реакции немедленного типа, препараты и методы специфической иммунотерапии. Иммунология 2016; 37(1): 52-61.; Гущин ИС. IgE-опосредованная гиперчувствительность как ответ на нарушение барьерной функции тканей. Иммунология 2015; 36(1): 45-52.; Солдатов АА, Медуницын НВ, Авдеева ЖИ, Бондарев ВП, Миронов АН. Препараты лечебных аллергенов: проблемы и пути повышения качества, безопасности и эффективности. Ведомости НЦЭСМП 2013; (4): 31-8.; Thomas WR, Hales BJ, Smith WA. House dust mite allergens in asthma and allergy. Trends Mol Med 2010; (16): 321-8.; Purohit A, Niederberger V, Kronqvist M, Horak F, Grunneberg R, Suck R, et al. Clinical effects of immunotherapy with genetically modified recombinant birch pollen Bet v 1 derivatives. Clin Exp Allergy 2008; 38(9): 1514-25.; Moldaver D, Larche M. Immunotherapy with peptides. Allergy 2011; 66(6): 784-91.; Edlmayr J, Niespodziana K, Focke-Tejkl M, Linhart B, Valenta R. Allergen-specific immunotherapy: towards combination vaccines for allergic and infectious diseases. Curr Top Microbiol Immunol. 2011; (352): 121-40.; Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy: Multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol. 2014; (133): 621-31.; Stella JA, D’Amore A, Wagner WR, Sacks MS. On the biomechanical function of scaffolds for engineering load-bearing soft tissues. Acta Biomater. 2010; 6(7): 2365-81.; Chen G, Ushida T, Tateish T. Scaffold design for tissue engineering. Macromol Biosci. 2002; (2): 67-77.; Кузнецова ДС, Тимашев ПС, Баграташвили ВИ, Загайнова ЕВ. Костные имплантанты на основе скаффолдов и клеточных систем в тканевой инженерии (обзор). Современные технологии в медицине 2014; 6(4): 201-12.; Plosker GL, Keam SJ. Omalizumab: a review of its use in the treatment of allergic asthma. BioDrugs 2008; (22): 189-204.; Колокольцева ТД, Сабурина ИН, Кубатиев АА. Культура клеток человека и животных: выделение, культивирование, криоконсервация и контроль. Патогенез 2015; 13(2): 50-65.; Кошелева НВ, Зурина ИМ, Сабурина ИН, Горкун АА, Колокольцева ТД, Борзенок СА, Репин ВС. Влияние эмбриональной телячьей сыворотки на формирование сфероидов из стромальных клеток лимба глаза. Патогенез 2015; 13(2): 4-11.; Макаров МС, Сторожева МВ, Конюшко ОИ, Боровкова НВ, Хватов ВБ. Влияние концентрации тромбоцитарного фактора роста на пролиферативную активность фибробластов человека. Клеточные технологии в биологии и медицине 2013; (2): 111-5.; Игнатьев ПС, Тычинский ВП, Вышенская ТВ. Исследование активации лимфоцитов методом когерентной фазовой микроскопии. Альманах клинической медицины 2008; 17(2): 65-7.; Цалман АЯ, Ватазин АВ, Василенко ИА, Метелин ВБ, Вышенская ТВ. Интерференционная фазометрия ядерных структур лимфоцитов при трансплантации почки. Клиническая нефрология 2010; (6): 43-7.; Василенко ИА, Пашкин ИН, Суслов ВП, Власова ЕА. Динамика морфометрических показателей тромбоцитов периферической крови как критерий оценки тромбогенности диализных мембран. Урология 2011; (2): 36-41.; Ушакова АЮ, Феклисова ЛВ, Мескина ЕР, Тедер ЮГ, Волохович ТТ, Пожалостина ЛВ. Клинико-лабораторная эффективность применения различных схем аципола в лечении детей, больных острыми кишечными инфекциями. Биопрепараты 2008; (2): 19-21.; https://www.biopreparations.ru/jour/article/view/45; undefined

  14. 14
    Academic Journal

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 16, № 3 (2016); 172-178 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 16, № 3 (2016); 172-178 ; 2619-1156 ; 2221-996X ; undefined

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/61/112; Авдеева ЖИ, Солдатов АА, Алпатова НА, Киселевский МВ, Лысикова СЛ, Бондарев ВП, Медуницын НВ, Мосягин ВД, Меркулов ВА, Миронов АН. Биоаналоговые (биоподобные) лекарственные препараты рекомбинантного гранулоцитарного колониестимулирующего фактора. Оценка качества. Биопрепараты 2015; (1): 4-14.; Aapro MS, Cameron DA, Pettengell R, Bohlius J, Crawford J, Ellis M, et al. EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphomas and solid tumours. Eur J Cancer. 2006; 42: 2433-53.; Clark OA, Lyman GH, Castro AA, Clark LG, Djulbegovic B. Colony stimulating factors for chemotherapy induced febrile neutropenia [Review]. Cochrane Database of Systematic Reviews. The Cochrane Collaboration. Published by John Wiley & Sons; 2008.; Johnston E, Crawford J, Blackwell S, Bjurstrom T, Lockbaum P, Roskos L, et al. Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy. J Clin Oncol. 2000; 18(13): 2522-8.; Nakoinz I, Lee MT, Weaver JF, Ralph P. Differentiation of the IL-3-dependent NFS-60 cell line and adaption to growth in macrophage colony-stimulating factor. Journal of Immunology 1990; 145(3): 860-4.; Mire-Sluis AR, Das RG, Thorpe R. The international standard for granulocyte colony stimulating factor (G-CSF). Evaluation in an international collaborative study. Participants of the Collaborative Study. J Immunol Methods 1995; 179(1): 117-26.; Wadhwa M, Bird C, Hamill M, Heath AB, Matejtschuk P, Thorpe R. The 2nd International Standard for human granulocyte colony stimulating factor. J Immunol Methods 2011; 367(1-2): 63-9.; Bristow AF, Bird C, Bolgiano B, Thorpe R. Regulatory requirements for therapeutic proteins: the relationship between the conformation and biological activity of filgrastim. Pharmeuropa Bio & Scientific Notes. 2012, 2012: 103-17.; Gao K, Rao C, Tao L, Han C, Shi X, Wang L, Fan W, Yu L, Wang J. Development and calibration of a standard for the protein content of granulocyte colony-stimulating factor products. Biologicals 2012; 40(2): 151-7.; Фармакопейная статья предприятия ЛСР-000598-091210 с изм. № 1, 2 на «Филграстим, субстанция 30 млн. МЕ/мл».; Гланц С. Медико-биологическая статистика. М.: Практика; 1999.; The United States Pharmacopeia - National Formulary. USP 38-Rockville, VD: The United States Pharmacopoeial Convention, 2015.; European Pharmacopeia 6.3. Strasbourg: European Directorate for the Quality of Medicines. 2009. Filgrastim concentrated solution. MONOGRAPH, 01/2009:2206. P. 4143-4.; https://www.biopreparations.ru/jour/article/view/61; undefined

  15. 15
    Academic Journal

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 16, № 4 (2016); 195-207 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 16, № 4 (2016); 195-207 ; 2619-1156 ; 2221-996X ; undefined

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/66/117; Брико НИ. Оценка качества и эффективности иммунопрофилактики. Available from: http//www.lvrach.ru/2012/10/ 15435557/22/02/2016.; Борисевич ИВ, Мовсесянц АА, Горбунов МА, Медуницын НВ. Вакцины. Проблемы и перспективы. БИОпрепараты. Профилактика, диагностика, лечение 2010; (3): 8-9.; Борисевич ИВ, Дармов ИВ, ред. Руководство по вакцинопрофилактике особо опасных инфекций. Киров; 2011.; Dhiman N, Bonilla R, Jacobson R, et al. Differential HLA Gene E expression in Measles Vaccine Seropositive and Seronegative Subjects: A Pilot Study. Scand J Infect Dis. 2003; (35): 332-6.; Höhler T, Gerken G, Notghi A, et al. HLA-DRB1*1301 and *1302 protect against chronic hepatitis. B J Hepatol. 1997; 26(3): 503-7.; Kaslow RA, Duquesnoy R, Van Raden M, et al. A1, Cw7, B8, DR3 HLA antigen combination associated with rapid decline of T-helper lymphocytes in HIV-1 infection. A report from the Multicenter AIDS Cohort Study. Lancet 1990; 335(8695): 927-30.; Khomenko AG, Litvinov VI, Chukanova VP, Pospelov LE. Tuberculosis in patients with various HLA phenotypes. Tubercle 1990; 71(3): 187-92.; Zavaglia C, Bortolon C, Ferrioli G, et al. HLA typing in chronic type B, D and C hepatitis. J Hepatol. 1996; 24(6): 658-65.; Koike S, Taya C, Kurata Т, et al. Transgenic mice susceptible to polioviruses. Proc Nat Acad Sci USA 1991; (88): 951-5.; Ren R, Constantini F, Gorgasz EJ, et al. Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 1990; (63): 353-62.; Прилуцкий АС, Сохин АА, Майлян ЭА. Связь интенсивности выработки антител к возбудителям дифтерии и столбняка с некоторыми генетическими маркерами у детей, вакцинированных АКДС. Журнал микробиологии, эпидемиологии и иммунологии 1994; (2): 89-92.; Bothamley GH, Beck JS, Schreuder GM, et al. Association of tuberculosis and M. tuberculosis-specific antibody levels with HLA. J Infect Dis. 1989; 159(3): 549-55.; Hayney MS, Poland GA, Jacobson RM, et al. The influence of the HLA DRB1*13 allele on measles vaccine response. J Invest Med. 1996; (44): 261-3.; McNeil AJ, Yap PL, Gore SM, et al. Association of HLA types A1-B8-DR3 and B27 with rapid and slow progression of HIV disease. Quarterly Journal of Medicine 1996; 89(3): 177-85.; Краснянский ВП, Потрываева НВ, Борисевич ИВ, Градобоев ВН, Пашанина ТП, Пшеничнов ВА. Оценка возможности получения инактивированной вакцины против лихорадки Ласса. Журнал микробиологии, эпидемиологии и иммунобиологии 1994; (6): 74-5.; Бондарева ТА, Калининский ВБ, Борисевич ИВ, Бондарев ВП, Фоменков ОО. Современное состояние и перспективы решения проблемы повышения эффективности экстренной профилактики и лечения системных бактериальных инфекций. Молекулярная медицина 2009; (5): 21-5.; Борисевич ИВ, Михайлов ВВ, Махлай АА. Патогенетические принципы специфической профилактики и лечения особо опасных вирусных геморрагических лихорадок. В кн.: Патогенетические основы лечения острых инфекционных заболеваний. Сборник научных трудов к 70-летию со дня рождения академика В. И. Покровского. М.; 1999. С. 236-44.; Краснянский ВП, Потрываева НВ, Борисевич ИВ, Градобоев ВН, Пашанина ТП, Пшеничнов ВА. Опыт получения инактивированной вакцины лихорадки Ласса. Вопросы вирусологии 1993; (6): 276-9.; Богачева НВ, Дармов ИВ, Борисевич ИВ, Крючков АВ, Печенкин ДВ. Динамика показателей клеточного иммунитета на фоне введения чумной живой сухой вакцины. Клиническая лабораторная диагностика 2009; (8): 24-6.; Георгиев ТБ. Об аутовакцинотерапии и изготовлении аутовакцин. Днепропетровск; 1958.; Егорова НБ, Мирошниченко ИВ, Крейнин ЛС. Иммунологическая реактивность людей к нескольким одновременно вводимым анатоксинам. В кн.: Иммунологические аспекты эпидемиологии. Кишинев; 1977. С. 15-6.; Попов ВФ. Корь и коревая вакцина Л-16. М.: Триада-Х; 2002.; Басова НН, Русакова ГВ, Готвянская ТП. и др. Результаты серологического контроля медицинских работников для коррекции прививок против дифтерии. Эпидемиология и инфекционные болезни 1997; (5): 42-6.; Ерш АВ, Полтавченко АГ, Пьянков СА. и др. Метод комплексной оценки гуморального иммунитета к детским вакциноуправляемым вирусным инфекциям. Вопросы вирусологии 2015; 60(1): 41-5.; Медуницын НВ. Вакцинология. М.: Триада-Х; 2010.; Platkov E, Berlin K, Glik Y, Fischbein A. Peculiarities of immune status among hospital employees following vaccination with recombinant DNA Hepatitis В vaccine. Intern Journal on Immunorehabilitation 1999; (12 Suppl): 77.; Миронов АН, Супотницкий МВ, Лебединская ЕВ. Феномен антитело-зависимого усиления инфекции у вакцинированных и переболевших. БИОпрепараты. Профилактика, диагностика, лечение 2013; (3): 12-25.; Fulginiti FA, Eller JJ, Downie AW, Kempe CH. Altered reactivity to measles virus. Atypical measles in children previously immunized with inactivated measles virus vaccines. JAMA 1967; 202: 1075-80.; Kim HW, Canchola JG, Brandt CD, et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. 1969; 89: 422-34.; Маркин ВА, Борисевич ИВ, Махлай АА. Особенности патогенеза вирусных особо опасных геморрагических лихорадок. В кн.: Патогенетические основы лечения острых инфекционных заболеваний. Сборник научных трудов к 70-летию со дня рождения академика В. И. Покровского. М.; 1999. С. 228-36.; Борисевич ИВ, Потрываева НВ, Мельников СА, Евсеев АА, Краснянский ВП, Максимов ВА. Получение иммуноглобулина к вирусу Марбург на основе сыворотки крови лошадей. Вопросы вирусологии 2008; 53(1): 39-41.; Михайлов ВВ, Борисевич ИВ, Тиманькова ГД, Краснянский ВП, Потрываева НВ, Лебединская ЕВ, Черникова НК. Препарат, содержащий иммуноглобулин против лихорадки Эбола, из сыворотки крови лошадей, жидкий (иммуноглобулин Эбола). Патент на изобретение RUS 2130318 05.07.1996.; Краснянский ВП, Михайлов ВВ, Борисевич ИВ, Потрываева НВ, Мельников СА, Тиманькова ГД. Препарат, содержащий иммуноглобулин против лихорадки Марбург из сыворотки крови лошадей жидкий (иммуноглобулин лошадиный Марбург). Патент на изобретение RUS 2257916 04.12.2003.; Хмелев АЛ, Борисевич ИВ, Пантюхов ВБ, Пирожков АП, Сыромятникова СИ, Шатохина ИВ, Мельников СА, Шагаров ЕЕ. Использование морских свинок для оценки эффективности гетерологичного иммуноглобулина против боливийской геморрагической лихорадки. Вопросы вирусологии 2009; 54(4): 42-4.; Коза НМ, Фельдблюм ИВ, Маркович НИ, Паршин АА. Иммунологический надзор за дифтерией и корью как основа коррекции иммунитета в группах риска. В кн.: Иммунологические реакции в диагностике, профилактике и эпидемиологическом надзоре за инфекционными болезнями. Пермь; 1991. C. 66-71.; Polland G, Ovsyannikova I, Jacobson R. Identification of an association between HLA class II alleles and low antibody level afner measels immunization. Vaccine 2002; 20: 230-8.; Петров РВ, Хаитов РМ, Пинегин БВ, и др. Оценка иммунного статуса человека при массовых обследованиях. Иммунология 1992; (6): 51-62.; Пинегин БВ, Чередеев АН, Хаитов PM. Оценка иммунной системы человека: сложности и достижения. Вестник РАМН 1999; (5): 1-15.; Колесин ИД, Воробьева АА, Циберная АЮ. Модельный анализ эффективности ранней иммунизации населения. Эпидемиология и вакцинопрофилактика 2015; (5): 21-6.; Иванченко ОИ, Лисицина ТС, Никулина НВ. Математическое прогнозирование иммунологической эффективности ревакцинации взрослых анатоксином. В кн.: Иммунологические реакции в диагностике, профилактике и эпидемиологическом надзоре за инфекционными болезнями. Пермь; 1991. С. 71-4.; Кошкина НА. Опыт организации серологического контроля защищенности от дифтерии медработников ЛПУ МПС. В кн.: Современная вакцинология. Пермь; 1998. С. 46-7.; Организация и проведение серологического мониторинга состояния коллективного иммунитета против управляемых инфекций (дифтерия столбняк, корь, краснуха, эпидемический паротит, полиомиелит). Методические указания МУ 3.1.1760-03.; Костинов МП. Вакцинация детей с аллергическими заболеваниями. Методические рекомендации. М.; 1991.; Учайкин ВФ, Скачкова ЛО, Смирнов АВ. и др. Вакцинация детей с тяжелой соматической патологией. В кн.: Современная вакцинология. Пермь; 1998. С. 33-4.; Юшков ВВ, Юшкова ТА. Иммунодефициты и вакцинация. В кн.: Современная вакцинология. Пермь; 1998. С. 24-5.; Hedrich AW. The corrected average attack rate of measles among city children. Am J Epidemiol. 1930; 11(3): 576-600.; Брико НИ. Оценка качества и эффективности вакцинации. Медицинский вестник 2015; (9): 1-6.; Брико НИ, Лобзин ЮВ, Баранов АА. и др. Оценка эффективности вакцинации: основные подходы и спорные вопросы. Педиатрическая фармакология 2014; 11(4): 8-14.; Покровский ВИ, Пак СГ, Брико НИ, Данилкин БК. Инфекционные болезни и эпидемиология. Учебник для врачей. М.: ГЭОТАР-Медиа; 2008.; Ющук НД, Кулагина МГ. Грипп. В кн.: Инфекционные болезни. Национальное руководство. М.: ГЭОТАР-Медиа; 2009. С. 701-9.; Жданов ВМ, Ершов ФИ. Укрощение строптивых: рассказы о вирусах и вирусологии. М.: Медицина; 1988.; Супотницкий МВ. Феномен антигенного импринтинга в эпидемических, инфекционных и поствакцинальных процессах. БИОпрепараты. Профилактика, диагностика, лечение 2014; (3): 27-40.; Медуницын НВ, Миронов АН, Мовсесянц АА. Теория и практика вакцинологии. М.: Ремедиум; 2015.; Зверев ВВ, Семенов БФ, Хаитов РМ. Вакцины и вакцинация. Национальное руководство. М.: ГЭОТАР-Медиа; 2011.; Медуницын НВ. Нужны ли людям вакцины? М.: Компания БОРГЕС; 2006.; https://www.biopreparations.ru/jour/article/view/66; undefined

  16. 16
    Academic Journal

    المصدر: BIOpreparations. Prevention, Diagnosis, Treatment; Том 16, № 3 (2016); 139-144 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 16, № 3 (2016); 139-144 ; 2619-1156 ; 2221-996X ; undefined

    وصف الملف: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/56/105; Yang Y, Wang J, Wen H, Liu H. Comparison of two suspension arrays for simultaneous detection of five biothreat bacterial in powder samples. J Biomed Biotechnol. 2012; 2012: 831052. doi:10.1155/2012/831052.; Бондарева ОС, Савченко СС, Ткаченко ГА, Абуева АИ, Муратова ЮО, Антонов ВА. Современные подходы к генотипированию возбудителей особо опасных инфекций. Эпидемиология и инфекционные болезни 2014; (1): 34-44.; Сколотнева ЕС, Волкова РА, Эльберт ЕВ, Миронов АН, Меркулов ВА, Бондарев ВП, Борисевич ИВ. Методы генотипирования бактерий: фрагментный анализ. Биопрепараты 2014; (2): 13-21.; Волкова РА, Сколотнева ЕС, Эльберт ЕВ, Мыца ЕД, Миронов АН, Меркулов ВА, Бондарев ВП, Борисевич ИВ. Прямые и косвенные методы определения нуклеотидного состава ДНК последовательностей микроорганизмов. Биопрепараты 2015; (2): 9-16.; Power EG. RAPD typing in microbiology - a technical review. J Hosp Infect. 1996; 34: 247-65.; Rezk NA, Mansour H, Ghoneim NH, Rifaat MM. Typing of Salmonella typhi strains isolated from Egypt by RAPD PCR. Biothech. 2012; 2(1): 17-25.; Fournier PE, Zhu Y, Ogata H, Raoult D. Use of highly variable intergenetic spacer sequences for multispacer typing of Rickettsia conorii strains. J Clin Microbiol. 2004; 42: 5757-66.; Li W, Chomel BB, Maruyama S, Guptil L, Sander A, Raoult D, et al. Multispacer typing to study the genotypic distribution of Bartonella henselae populations. J Clin Microbiol. 2006; 44: 2499-506.; van Belkum A, Scherer S, Verbrugh H. Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol R. 1998; 62: 275-93.; Li W, Raoult D, Fournier P. Bacterial strain typing in the genomic era. FEMS Microbiology Rev. 2009; 33(5): 892-916.; Cooper JE, Feil EJ. Multilocus sequence typing - what is resolved? Trends Microbiol. 2004; 12: 373-7.; Сухих ГТ, Павлова ГВ, Рысков АП, Бутовская ПР, Мартиросян ИА. Способ контроля за генетической изменчивостью в культуре животных клеток различной длительности пассирования. Патент Российской Федерации, № 2392330 С2; 2006.; Kellenberger E. Exploring the unknown. The silent revolution of microbiology. EMBO Rep. 2001; (2): 5-7.; Rappe MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003; 57: 369-94.; Sabat AJ, Budimir A, Nashev D, Sá-Leão R, van Dijl JM, Laurent F, et al. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill. 2013; 18(4): 20380.; Aguiar-Alves F, Medeiros F, Fernandes O, Pereira RM, Perdreau-Remington F, Riley L. New Staphylococcus aureus genotyping method based on exotoxin (set) genes. J Clin Microbiol. 2006; 44: 2728-32.; Miya S, Kimura B, Sato M, Takahashi H, Ishikawa T, Suda T, et al. Development of a multilocus variable-number of tandem repeat typing method for Listeria monocytogenes serotype 4b strains. Int J Food Microbiol. 2008; 124(3): 239-49.; Chuang Y, Wang J, Chen M, Chen YC. Comparison of an automated repetitive-sequence-based PCR microbial typing system with pulsed-field gel electrophoresis for molecular typing of vancomycin-resistant Enterococcus faecium. J Clin Microbiol. 2010; 48: 2897-901.; Souza RA, Falcão JP. A novel high-resolution melting analysis-based method for Yersinia pseudotuberculosis genotyping. J Microbiol Meth. 2012; 91(3): 329-35.; Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, et al. Unlocking the potential of metagenomics through replicated experimental design. Nature Biotechnology 2012; 30: 513-20.; Antonov AV, Mewes HW. Complex phylogenetic profiling reveals fundamental genotype-phenotype associations. Comput Biol Chem. 2008; 32: 412-6.; Benfey PN, Mitchell-Olds T. From genotype to phenotype: systems biology meets natural variation. Science. 2008; 320: 495-7.; Harris SR, Cartwright EJP, Török ME, et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis. 2013; 13(2): 130-6.; Тотолян АА. Современные подходы и технологии в инфекционной эпидемиологии (на примере инфекций, вызываемых патогенными стрептококками). Журнал инфектологии 2012; 4(3): 88-100.; Kīser CU, Ellington MJ, Cartwright EJP, Gillespie SH, Brown NM, Farrington M, et al. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathogen 2012; 8(8): 1-9.; Алексеева АЕ, Бруснигина НФ. Возможности и перспективы применения методов массивного параллельного секвенирования в диагностике и эпидемиологическом надзоре за инфекционными заболеваниями (аналитический обзор). Медиаль 2014; 2(12): 1-28.; Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genetics. 2011; 52(4): 413-35.; https://www.biopreparations.ru/jour/article/view/56; undefined

  17. 17
    Academic Journal

    المصدر: Epidemiology and Vaccinal Prevention; Том 14, № 5 (2015); 85-89 ; Эпидемиология и Вакцинопрофилактика; Том 14, № 5 (2015); 85-89 ; 2619-0494 ; 2073-3046 ; 10.31631/2073-3046-2015-14-5

    وصف الملف: application/pdf

    Relation: https://www.epidemvac.ru/jour/article/view/78/79; Бешенство. Информационный бюллетень ВОЗ. 2014: 99.; Emerging infectious disease., 2012; 18 (9): 5, 6.; Шабейкин А.А., Гулюкин А.М., Хисматуллина Н.А., Цареградский П.Ю., Паршикова А.В., Rob van Herwijen. Обзор эпизоотической ситуации бешенства, сложившейся в Российской Федерации в 2014 году. Ветеринария и кормление. 2015; 2: 19 - 22.; Полещук Е.М., Сидоров Г.Н., Сидорова Д.Г., Колычев Н.М. Бешенство в Российской Федерации: Информационный бюллетень. Омск; 2009.; Бешенство: Информационный бюллетень. Москва; 1998.; Бешенство в Российской Федерации в 2000 - 2005 годах: Информационный бюллетень. Москва; 2006.; General recommendation on immunization. Recommendations of the Advisory committee on immunization practices (ACIP). Доступно на: http://www.cdc. gov/mmwr/pdf/rr/rr6002.pdf; Use of a reduced (4-dose) vaccine schedule for postexposure prophylaxis to prevent human rabies. Recommendations of the Advisory committee on immunization practices. 2010; 59 (NRR-02).; Public Health England guidelines on managing rabies post-exposure. 2015: 9 - 26.; Human Rabies Immunoglobulin (HRIG). Public Health England, 2014.; Gomph S.G., Bronze M.S. Rabies. Medscape reference. Drugs, Diseases and Procedures. New York; 2014.; Ломакин И.Р К вопросу о серотерапии бешенства. Профилактическая медицина. 1925; 3: 7 - 13.; Карнаухова Е.И. К вопросу о действии специфической сыворотки на яд бешенства: Сборник работ и исторический очерк развития и деятельности за 25 лет Пермского института микробиологии. Пермь; 1922: 103 - 116.; Миролюбова Е.И. Применение смешанных методов антирабического лечения при тяжелых укусах. Журнал микробиологии и эпидемиологии. 1940; 4: 9 - 10.; Селимов М.А. Бешенство. Москва: Медицина; 1978.; Селимов М.А., Михайловский Е.М., Клюева Е.В. К вопросу об эффективности и неудачах антирабических прививок в СССР в 1954 - 1972 годах. В кн.: Симпозиум по бешенству. Москва; 1972: 82 - 87.; Proca C., Babes S., Jonnesco D. Sur la serotherapie preventive de la rage. Comptes Rendus des S ances et M moires de la Soci t de Biologie. 1934; 115: 1001 - 1003.; Habel K. Post-exposure vaccination and antiserum prophilaxis of rabies in man. In: Proceedings National rabies symposium. Atlanta. 1966: 89 - 94.; Role of passive immunity. The immunological basis for immunization series. Module 17: Rabies. Geneva: WHO; 2010.; Кравченко А.Т., Мовсесянц А.А. Профилактика и лечение гидрофобии: достижения и проблемы. Журнал микробиологии и эпидемиологии. 1989; 8: 97 - 104.; Atanasiu Fi, Lepine P., Dighe Fi Purification partielle et concentration du virus rabique des rues cultive sur une souche de cellules clonoles de rein de hamster. Comptes Rendus de l’Academie des Sciences. 1963; 256 (7): 1415 - 1417.; Мовсесянц А.А., Агеенко Г.Б. Медицинские иммунобиологические препараты для специфической профилактики бешенства. Ветеринарная патология. 2002. 1: 48 - 51.; Updated WHO position paper on rabies vaccine. Geneva: WHO; 2010.; Movsesyants A.A. Russia’s position on rabies preparation. BIT’s VI Annual world congress of vaccines. Dalian, China; 2014.; Медицинские иммунобиологические препараты. Т. 2. Иммуноглобулины человека, сыворотки, иммуноглобулины гетерологичные, моноклональные антитела, пробиотики, аллергены, бактериофаги, цитокины, вводимые людям. Москва: Гелла-Принт; 2011.; WHO Expert Consultation on Rabies. First report Geneva, World Health Organization. 2004 (WHO Technical Report Series. № 931).; Laboratory techniques in rabies. 4th ed., Geneva: World Health Organization; 1996.; Lang J., Attanath P., Quiambao B., Singhasivanon V., Chanthavanich P., Montalban C. et al. Evaluation of the safety, immunogenicity, and pharmacokinetic profile of a new, highly purified, heat-treated equine rabies immunoglobulin, administered either alone or in association with a purified, Vero-cell rabies vaccine. Acta Tropica. 1998; 70 (3): 317 - 333.; Wilde H. Failures of post-exposure rabies prophylaxis. Vaccine. 2007; 25: 7605 - 7609.; Purified equine rabies immune globulin: a safe and affordable alternative to human rabies immune globulin. Bull World Health Organ. 1989; 67 (6): 731 - 736.; Приказ Минпромторга России от 14.06.2013 № 916 «Об утверждении правил организации производства и контроля качества лекарственных средств». Доступно на: http://www.rg.ru/2013/09/20/minpromtorg-dok.html; International conference on harmonization (1999). Specifications: test procedures and acceptance criteria for biotechnological. Biological products (Q6A). Доступно на: http://www.ich.org/fileadmin/Public_Web_Site/ ICH_Products/Guidelines/Quality/Q6A/Step4/Q6Astep4.pdf; international conference on harmonization (1999). Specifications: test procedures and acceptance criteria for biotechnological. biological products (Q6B). Доступно на: http://www.ich.org/fileadmin/Public_Web_Site/ ICH_Products/Guidelines/Quality/Q6B/Step4/Q6B_Guideline.pdf; Note for guidance on production and quality control of animal immunoglobulins and immunosera for human use. The European agency for the evaluation of medicinal products. Доступно на: http://www.who.int/bloodproducts/publications/EMEA-animal%20sera.pdf; Kopel E., Oren G., Sidi Y., David D. inadequate antibody response to rabies vaccine in immunocompromised patient. Emerging infectious diseases, 2012; 18 (9): 1493 - 1495.; Генералов С.В., Абрамова Е.Г., Никифоров А.К., Матвеева Ж.В. Клеточные культуры в производстве гетерологичного антирабического иммуноглобулина. Проблемы особо опасных инфекций. 2011; 4 (110): 76 - 79.; Генералов С.В., Абрамова Е.Г., Матвеева Ж.В., Жулидов И.М., Лобовикова О.А., Савицкая Л.В. Получение кроличьего антирабического иммуноглобулина с применением культурального антигена. Проблемы особо опасных инфекций. 2012; 2 (112): 78 - 81.; Европейская фармакопея 7-е изд. Т. 1. Москва: Ремедиум; 2011.; Bourhy H., Dacheux L., Ribadeau-Dumas F. The use of passive rabies immunotherapy: from the past to the future. Biologie aujourd’hui, 2010; 204 (1): 71 - 80.; https://www.epidemvac.ru/jour/article/view/78

  18. 18
    Academic Journal

    المصدر: Moscow State University Bulletin. Series 18. Sociology and Political Science; № 4 (2014); 138-165 ; Вестник Московского университета. Серия 18. Социология и политология; № 4 (2014); 138-165 ; 2541-8769 ; 1029-3736 ; 10.24290/1029-3736-2014-0-4

    وصف الملف: application/pdf

    Relation: https://vestnik.socio.msu.ru/jour/article/view/60/61; Бертельс Л. Город как малая родина. Смоленск, 2004.; Битюкова В.Р. Социально-экологические проблемы развития городов России. М., 2009.; Бондарев В.П. Социальные следствия взаимодействия общества с окружающей средой (на примере урбанизированных территорий) // Вестн. Моск. ун-та. Сер. 18. Социология и политология. 2013. № 4. С. 119-133.; Воспроизводство населения Московской области за 2010 г.: Статистический сборник. М., 2011.; Габидулина С.Э. Психология городской среды. М., 2012.; Геоэкологические проблемы Новой Москвы: Сб. научн. тр. / Отв. ред. А.В. Кошкарев, Э.А. Лихачева, А.А. Тишков. М., 2013.; Гичев Ю.П. Загрязнение окружающей среды и здоровье человека. Новосибирск, 2002.; Городков А.В., Салтанова С.И. Экология визуальной среды. СПб., 2013.; Городская агломерация // Большой Энциклопедический словарь. М., 2002.; Город-экосистема. М., 1996.; Здравоохранение в России: Стат. сб. М., 2009.; Коронкевич Н.И., Мельник К.С. Современные тенденции изменения поверхностных водных ресурсов Московского региона // Геоэкологические проблемы Новой Москвы. М., 2013. С. 27-32.; Костриков И.Д. Город как суперсистема. Москва может стать крупнейшим в мире национальным парком // Экология и жизнь. 2012. № 2. URL: http://www.ecolife.ru/zhurnal/articles/4434/ (дата обращения: 30.05.2014).; Краснощекова Н.С. Формирование природного каркаса в генеральных планах городов. М., 2010.; Лаппо Г.М. Города на пути в будущее. М., 1987.; Лихачева Э.А, Тимофеев Д.А., Жидков М.П. и др. Город-экосистема. М., 1996.; Лихачева Э.А. Экологические хроники Москвы. М., 2007.; Лэндри Ч. Креативный город. М., 2006.; Малхазова СМ., Шартова Н.В. Пространственно-временной анализ показателей смертности населения Московского региона // Геоэкологические проблемы Новой Москвы. М., 2013. С. 38-43.; Махрова А.Г., Нефедова Т.Г., Трейвиш А.И. Новая Москва в контексте развития Московской агломерации // Геоэкологические проблемы Новой Москвы. М., 2013. С. 18-27.; Микулина Е.М., Благовидова Н.Г. Архитектурная экология. М., 2013.; Москва: геология и город / Под ред. В.И. Осипова, О.П. Медведева. М., 1997.; Обзоры состояния и загрязнения окружающей среды в Российской Федерации за 2007-2010 гг. М., 2008, 2009, 2010, 2011.; Перцик Е.Н. География городов (геоурбанистика). М., 1991.; Прокачева В.Г., Усачев В.Ф. Загрязненные земли в регионах России. Гидрографический аспект. Справочные данные. СПб., 2004.; Прокачева В.Г., Усачев В.Ф., Чмутова Н.П. Зоны хронического загрязнения вокруг городских поселений и вдоль дорог по республикам, краям и областям Российской Федерации: Справочник. СПб., 1992.; Свалки Москвы, проблема ТБО // Федеральный портал Protown.ru. URL: http://www.protown.ru/russia/city/articles/2551.html (дата обращения: 31.05.2014).; Смоляр И.М., Микулина Е.М., Благовидова Н.Г. Экологические основы архитектурного проектирования. М., 2010.; Териор А.Н. Экосити: проблемы, решения. М., 2005.; Тишков А.А. Биосферные функции природных экосистем России. М., 2005.; Тишков А.А. Будущая концепция “Большой Москвы” // Городская экология. Климатическая политика и права человека. Берлин, 2012. Вып. 1. С. 40-46.; Тишков А.А. Эколого-географическая составляющая в будущей концепции развития Московской агломерации: Москва в новых границах // Стратегия развития мегаполиса (некоторые аспекты). М., 2012. С. 22-31.; Тишков А.А. Эколого-географические ограничения развития территории Новой Москвы // Геоэкологические проблемы Новой Москвы. М., 2013. С. 6-17.; Трубина Е.Г. Город в теории: опыт осмысления пространства. М., 2011.; Черногаева Г.М., Зеленов А.С. Комплексная оценка состояния окружающей среды Московского региона и его природных объектов по данным Росгидромета // Геоэкологические проблемы Новой Москвы. М.С, 2013. С. 33-37.; Шупер B.A. Самоорганизация городского расселения. М., 1995.; Шупер В.А. Релятивистская теория центральных мест и расселение в постиндустриальную эпоху // География мирового развития. М., 2010. Вып. 2. С. 177-194.; Шупер В.А., Эм П.П. Москва в системе расселения центральной России: возможные альтернативы развития // Геоэкологические проблемы Новой Москвы. М., 2013. С. 14-17.; Экологическая проблема // Философия: Энциклопедический словарь / Под ред. А.А. Ивина. М., 2004.; Douglas I. The city as an ecosystem // Progress in Physical Geography. 1981. N 5. P. 315-367.; New urbanism. Creating livable sustainable communities. URL: http://www.newurbanism.org/; https://vestnik.socio.msu.ru/jour/article/view/60