-
1Academic Journal
المؤلفون: V. . Zolnikova, D. V. Levina, T. D. Okhotsimskaya, V. A. Fadeeva, I. V. Egorova, E. V. Rogatina, E. A. Eremeeva, O. N. Demenkova, S. Yu. Rogova
المصدر: Российский офтальмологический журнал, Vol 10, Iss 3, Pp 22-28 (2018)
مصطلحات موضوعية: пигментный ретинит, электроретинограмма, макулярная эрг, окт-ангиография, глубокое капиллярное сплетение, поверхностное капиллярное сплетение, ретинальные перипапиллярные капилляры, плотность сосудистой сети в парафовеа, сосудистый индекс, площадь кровотока, фовеальная аваскулярная зона, retinitis pigmentosa, electroretinogram, macular erg, oct angiography, superficial capillary plexuses, deep capillary plexuses, retinal peripapillary capillaries, parafoveal vessel density, vascular index, flow area, foveal avascular zone, Ophthalmology, RE1-994
وصف الملف: electronic resource
-
2Academic Journal
المصدر: Российский офтальмологический журнал, Vol 17, Iss 1, Pp 40-46 (2024)
مصطلحات موضوعية: hereditary retinal dystrophies, retinitis pigmentosa, ocular blood flow, laser speckle flowgraphy, lsfg, mbr, parameters of pulse wave, Ophthalmology, RE1-994
Relation: https://roj.igb.ru/jour/article/view/1425; https://doaj.org/toc/2072-0076; https://doaj.org/toc/2587-5760; https://doaj.org/article/c538159329a049d88757c97ce8c146b6
-
3Academic Journal
المؤلفون: V. V. Neroev, L. A. Katargina, M. P. Kharlampidi, L. V. Kogoleva, I. V. Zolnikova, P. A. Ilyukhin, E. V. Denisova, S. V. Milash, N. A. Osipova, S. I. Kutsev, A. V. Polyakov, R. A. Zinchenko, V. V. Kadyshev, Yu. A. Bobrovskaya
المصدر: Российский офтальмологический журнал, Vol 16, Iss 4, Pp 50-62 (2023)
مصطلحات موضوعية: inherited retinal dystrophies, gene therapy, rpe65, voretigen neparvovec, luxturna, leber congenital amaurosis, retinitis pigmentosa, genetics, ophthalmology, RE1-994
Relation: https://roj.igb.ru/jour/article/view/1356; https://doaj.org/toc/2072-0076; https://doaj.org/toc/2587-5760; https://doaj.org/article/ad919c19fbe440018fc9394a33c70d4f
-
4Academic Journal
المؤلفون: L. A. Katargina, V. V. Kadyshev, E. V. Denisova, E. A. Geraskina, A. V. Marakhonov, S. A. Garifullina, I. V. Zolnikova, R. A. Zinchenko
المصدر: Российский офтальмологический журнал, Vol 14, Iss 4, Pp 52-59 (2022)
مصطلحات موضوعية: familial exudative vitreoretinopathy, retinal avascular zones, fzd4 gene mutations, vitreoretinal pathology in children, Ophthalmology, RE1-994
Relation: https://roj.igb.ru/jour/article/view/782; https://doaj.org/toc/2072-0076; https://doaj.org/toc/2587-5760; https://doaj.org/article/7ec125d1a9c5429f9e1a8da644323697
-
5Academic Journal
المؤلفون: I. V. Zolnikova, V. V. Kadyshev, A. V. Marakhonov, A. B. Chernyak, S. V. Milash, Yu. A. Bobrovskaya, N. A. Urakova, N. Sh. Kokoeva, S. I. Kutsev, R. A. Zinchenko, И. В. Зольникова, В. В. Кадышев, А. В. Марахонов, А. Б. Черняк, С. В. Милаш, Ю. А. Бобровская, Н. А. Уракова, Н. Ш. Кокоева, С. И. Куцев, Р. А. Зинченко
المساهمون: Работа выполнена при финансовой поддержке РНФ, проект № 17-15-01051, и в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ».
المصدر: Ophthalmology in Russia; Том 18, № 4 (2021); 897-907 ; Офтальмология; Том 18, № 4 (2021); 897-907 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-4
مصطلحات موضوعية: клинический полиморфизм, retinitis pigmentosa, ABCA4, genetics, electroretinography, optical coherence tomography, autofluorescence, DNA diagnostics, mutations, clinical polymorphism, пигментный ретинит, генетика, электроретинография, оптическая когерентная томография, аутофлюоресценция, ДНК-диагностика, мутации
وصف الملف: application/pdf
Relation: https://www.ophthalmojournal.com/opht/article/view/1697/913; Allikmets R., Singh N., Sun H. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;15:236–246. DOI:10.1038/ng0397-236; Gerber S., Rozet J.M., van de Pol T.J. Complete exon-intron structure of the retinaspecific ATP binding transporter gene (ABCR) allows the identification of novel mutations underlying Stargardt disease. Genomics. 1998;15;48(1):139–142. DOI:10.1006/geno.1997.5164; Sun H., Smallwood P.M. Nathans J. Biochemical defects in ABCR protein variants associated with human retinopathies. Nat Genet. 2000. Oct;26(2):242–246. DOI:10.1038/79994; Schulz H.L., Grassmann F., Kellner U., Spital G., Rüther K., Jägle H., Hufendiek K., Rating Ph., Huchzermeyer C., Baier M.J., Weber B.H.F., Stöhr H. Mutation Spectrum of the ABCA4 Gene in 335 Stargardt Disease Patients From a Multicenter German Cohort—Impact of Selected Deep Intronic Variants and Common SNPs. Invest Ophthalmol Vis Sci. 2017;58(1):394–403. DOI:10.1167/iovs.16-19936; Stargardt K. Ueber familiare, progressive Degeneration in der Makulagegend des Auges. Albrecht von Graefes Arch Klin Exp Ophthal. 1909;71:534–549.; Зольникова И.В, Рогатина Е.В. Дистрофия Штаргардта: клиника, диагностика, лечение. Клиницист. 2010;1:29–33.; Зольникова И.В., Карлова И.З., Рогатина Е.В. Макулярная и мультифокальная электроретинография в диагностике дистрофии Штаргардта. Вестник офтальмологии. 2009;125(1):41–46.; van Driel M.A., Maugeri A, Klevering BJ, Hoyng CB, Cremers FP. ABCR unites what ophthalmologists divide(s). Ophthalmic Genet. 1998;19(3):117–122. DOI:10.1076/opge.19.3.117.2187; Zolnikova I.V., Strelnikov V.V., Skvortsova N.A., Alexander S., Tanas А.S., Barh D., Rogatina E.V., Egorova I.V., Levina D.V., Demenkova O.N., Prikaziuk E.G., Ivanova M.E. Stargardt disease-associated mutation spectrum of a Russian Federation cohort. Eur J Med Genet. 2017;60(2):140–147. DOI:10.1016/j.ejmg.2016.12.002; Зольникова И.В., Иванова M.E., Стрельников В.В. Спектр мутаций при ABCA4-ассоциированной болезни Штаргардта в российской популяции. Российская педиатрическая офтальмология. 2016;1:14–22.; Cremers F.P., van de Pol D.J., van Driel M., den Hollander A.I., van Haren F.J., Knoers N.V., Tijmes N., Bergen A.A, Rohrschneider K, Blankenagel A, Pinckers AJ, Deutman AF, Hoyng CB. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum. Mol.Genet. 1998;7:355–362. DOI:10.1093/hmg/7.3.355; Martínez-Mir A., Paloma E., Allikmets R. Ayuso C., del Río T., Dean M., Vilageliu L., Gonzàlez-Duarte R., Balcells S. Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet. 1998;18(1):11–12. DOI:10.1038/ng0198-11; Rudolph G., Kalpadakis P., Haritoglou C., Rivera A., Weber B.H. Mutations in the ABCA4 gene in a family with Stargardt’s disease and retinitis pigmentosa Klin. Monbl. Augenheilkd. 2002;219(8):590–596. DOI:10.1055/s-2002-34425; Kitiratschky V.B.D., Grau T., Bernd A., Zrenner E., Jägle H., Renner A.B., Kellner U., Rudolph G., Jacobson S.G., Cideciyan A.V., Schaich S., Kohl S., Wissinger B. ABCA4gene analysis in patients with autosomal recessive cone and cone rod dystrophies. Eur J Hum Genet. 2008;16(7):812–819. DOI:10.1038/ejhg.2008.23; Lewis R.A., Shroyer N.F., Singh N., Allikmets R., Hutchinson A., Li Y., Lupski J.R., Leppert M., Dean M. Genotype/Phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Am J Hum Genet. 1999;64(2):422–434. DOI:10.1086/302251; Tanna P., Strauss R.W., Fujinami K. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2017;101:25–30. DOI:10.1136/bjophthalmol-2016-308823; Rozet J.M., Gerber S., Souied E., Perrault I., Châtelin S., Ghazi I., Leowski C., Dufier J.L., Munnich A., Kaplan J. Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies. Eur J Hum Genet. 1998 May-Jun;6(3):291–295. DOI:10.1038/sj.ejhg.5200221; Jespersgaard C., Fang M., Bertelsen M., Dang X, Jensen H, Chen Y, Bech N, Dai L, Rosenberg T., Zhang J., Møller L.B., Tümer Z., Brøndum-Nielsen K., Grønskov K. Molecular genetic analysis using targeted NGS analysis of 677 individuals with retinal dystrophy. Sci Rep. 2019;9(1):1219. DOI:10.1038/s41598-018-38007-2; Garces F., Jiang K., Molday L.L., Stöhr H., Weber B.H., Lyons C.J., Maberley D., Molday R.S. Correlating the Expression and Functional Activity of ABCA4 Disease Variants With the Phenotype of Patients With Stargardt Disease. Invest Ophthalmol Vis Sci. 2018:59(6):2305–2315. DOI:10.1167/iovs.17-23364.; Ścieżyńska A., Oziębło D., Ambroziak A.M., Korwin M., Szulborski K., Krawczyński M., Stawiński P., Szaflik J., Szaflik J.P., Płoski R., Ołdak M. Nextgeneration sequencing of ABCA4: High frequency of complex alleles and novel mutations in patients with retinal dystrophies from Central Europe. Exp Eye Res. 2016;145:93–99. DOI:10.1016/j.exer.2015.11.011; Zhang N., Tsybovsky Y., Kolesnikov A.V., Rozanowska M., Swider M., Schwartz S.B., Stone E.M., Palczewska G., Maeda A., Kefalov V.J., Jacobson S.G., Cideciyan A.V., Palczewski K. Protein misfolding and the pathogenesis of ABCA4-associated retinal degenerations. Hum Mol Genet. 2015;24(11):3220–3237. DOI:10.1093/hmg/ddv073; Cella W., Greenstein V.C., Zernant-Rajang J., Smith T.R., Barile G., Allikmets R., Stephen Tsang S.T. G1961E mutant allele in the Stargardt disease gene ABCA4 causes bull’s eye maculopathy. Exp Eye Res. 2009;89:16–24. DOI:10.1016/j. exer.2009.02.001; Testa F., Rossi S., Sodi A., Passerini I., Di Iorio V., Della Corte M., Banfi S., Surace E.M., Menchini U., Auricchio A., Simonelli F. Correlation between photoreceptor layer integrity and visual function in patients with Stargardt disease: implications for gene therapy. Invest Ophthalmol Vis Sci. 2012;8:4409–4415. DOI:10.1167/ iovs.11-8201; Fakin A., Robson A.G., Fujinami K., Moore A.T., Michaelides M., Pei-Wen Chiang J., Holder G., Webster A.R. Phenotype and Progression of Retinal Degeneration Associated With Nullizigosity of ABCA4. Invest Ophthalmol Vis Sci. 2016;57(11):4668–4678. DOI:10.1167/iovs.16-19829; Lee W., Schuerch K., Zernant J., Collison F.T., Bearelly S., Fishman G.A., Tsang S.H., Sparrow J.R. Genotypic spectrum and phenotype correlations of ABCA4-associated disease in patients of south Asian descent. Eur J Hum Genet. 2017;25(6):735–743. DOI:10.1038/ejhg.2017.13; Zernant J., Schubert C., Im K.M., Burke T., Brown C.M., Fishman G.A., Tsang S.H., Gouras P., Dean M., Allikmets R. Analysis of the ABCA4 gene by next-generation sequencing. Invest Ophthalmol Vis Sci. 2011;52:8479–8487. DOI:10.1167/iovs.11-8182; Zernant J., Lee W., Collison F.T. Fishman G.A., Sergeev Y.V., Schuerch K., Sparrow J.R., Tsang S.H., Allikmets R. Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. J Med Genet. 2017;54(6):404–412. DOI:10.1136/jmedgenet-2017-104540; Riveiro-Alvarez R., Lopez-Martinez M.A., Zernant J., Aguirre-Lamban J., Cantalapiedra D., Avila-Fernandez A., Gimenez A., Lopez-Molina M.I., Garcia-Sandoval B., Blanco-Kelly F., Corton M., Tatu S., Fernandez-San Jose P., Trujillo-Tiebas M.J., Ramos C., Allikmets R., Ayuso C. Outcome of ABCA4 disease-associated alleles in autosomal recessive Retinal Dystrophies: Retrospective analysis in 420 Spanish families. Ophthalmology. 2013;120(11):2332–2337. DOI:10.1016/j.ophtha.2013.04.002; Maugeri A., Klevering B.J., Rohrschneider K., Blankenagel A., Brunner H.G., Deutman A.F., Hoyng C.B., Cremers F.P. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet. 2000 Oct;67(4):960–966. DOI:10.1086/303079; Wiszniewski W., Zaremba C.M., Yatsenko A.N., Jamrich M., Wensel T.G., Lewis R.A., Lupski J.R. ABCA4 mutations causing mislocalization are found frequently in patients with severe retinal dystrophies. Hum Mol Genet. 2005;14:2769–2778. DOI:10.1093/hmg/ddi310; https://www.ophthalmojournal.com/opht/article/view/1697
-
6Academic Journal
المؤلفون: I. V. Zolnikova, V. V. Kadyshev, A. V. Marakhonov, S. I. Kutsev, R. A. Zinchenko, И. В. Зольникова, В. В. Кадышев, А. В. Марахонов, С. И. Куцев, Р. А. Зинченко
المصدر: Ophthalmology in Russia; Том 18, № 1 (2021); 157-164 ; Офтальмология; Том 18, № 1 (2021); 157-164 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-1
مصطلحات موضوعية: ОКТ, GJA1, DNA-diagnosis, electroretinogram, visual evoked potentials, OCT, ДНК-диагностика, электроретинография, зрительные вызванные потенциалы
وصف الملف: application/pdf
Relation: https://www.ophthalmojournal.com/opht/article/view/1450/812; Meyer-Schwickerath G., Gruterich E., Weyers H. Mikrophthalmussyndrome. Klin. Monatsbl. Augenheilkd. 1957;131:18–30.; Judisch G.F., Martin-Casals A., Hanson J.W., Olin W.H. Oculodentodigital dysplasia: four new reports and a literature review. Arch. Ophthal. 1979;97:878– 884.; Gutmann D.H., Zackai E.H. McDonald-McGinn D.M., Fischbeck K.H., Kamholz J. Oculodentodigital dysplasia syndrome associated with abnormal cerebral white matter. Am. J. Med. Genet. 1991;41:18–20. DOI:10.1002/ajmg.1320410106; De Bock M., Kerrebrouck M., Wang N., Leybaert L. Neurological manifestations of oculodentodigital dysplasia: a Cx43 channelopathy of the central nervous system? Front. Pharm. 2013;4:120. Note: Electronic Article. DOI:10.3389/fphar.2013.00120; Brice G., Ostergaard P., Jeffery S. A novel mutation in GJA1 causing oculodentodigital syndrome and primary lymphoedema in a three generation family. Clin. Genet. 2013;84:378–381. DOI:10.1111/cge.12158; Corcos I.A., Meese E.U., Loch-Caruso R. Human connexin 43 gene locus, GJA1, sublocalized to band 6q21-q23.2. Cytogenet. Cell Genet. 1993;64:31–32. DOI:10.1159/000133554; Gabriel L.A.R., Sachdeva R., Marcotty A. Oculodentodigital dysplasia: new ocular findings and a novel connexin 43 mutation. Arch. Ophthal. 2011;129:781–784. DOI:10.1001/archophthalmol.2011.113; Paznekas W.A., Karczeski B., Vermeer S. GJA1 mutations, variants, and connexin 43 dysfunction as it relates to oculodentodigital dysplasia phenotype. Hum. Mutat. 2009;30:724–733. DOI:10.1002/humu.20958; Paznekas W.A., Boyadjiev S.A., Shapirob R.E. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 2003;72:408–418. DOI:10.1086/346090; Boyadjiev S.A., Jabs E.W., LaBuda M. Linkage analysis narrows the critical region for oculodentodigital dysplasia to chromosome 6q22-q23. Genomics. 1999;58:34– 40. DOI:10.1006/geno.1999.5814; Dasgupta C., Martinez A.-M., Zuppan C.W. Identification of connexin43 (alpha-1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat. Res. 2001;479:173–186.; Hu Y., Chen I., de Almeida S. A novel autosomal recessive GJA1 missense mutation linked to craniometaphyseal dysplasia. PLoS One. 2013;8:e73576. Note: Electronic Article. DOI:10.1371/journal.pone.0073576; Boyden L.M., Craiglow B.G., Zhou J. Dominant de novo mutations in GJA1 cause erythrokeratodermia variabilis et progressiva, without features of oculodentodigital dysplasia. J. Invest. Derm. 2015;135:1540–1547. DOI:10.1038/jid.2014.485; Wang H., Cao X., Lin Z. Exome sequencing reveals mutation in GJA1 as a cause of keratoderma-hypotrichosis-leukonychia totalis syndrome. Hum. Molec. Genet. 2015;24(1):243–250. DOI:10.1093/hmg/ddu442; Richardson R.R., Donnai D., Meire F., Dixon M.J. Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly. J. Med. Genet. 2004;41:60–67. DOI:10.1136/jmg.2003.012005; Van Steensel M.A.M., Spruijt L., van der Burgt I. A 2-bp deletion in the GJA1 gene is associated with oculo-dento-digital dysplasia with palmoplantar keratoderma. Am. J. Med. Genet. 2005;132A:171–174. DOI:10.1002/ajmg.a.30412; Traboulsi E.I., Parks M.M. Glaucoma in oculo-dento-osseous dysplasia. Am. J. Ophthal. 1990;109:310–313.; Himi M., Fujimaki T., Yokoyama T. A case of oculodentodigital dysplasia syndrome with novel GJA1 gene mutation. Japanese Journal of Ophthalmology 2009;53(5):541– 545. DOI:10.1007/s10384-009-0711-6; Tsui E., Hill K.A., Laliberte A.M. Ocular pathology relevant to glaucoma in a Gja1(Jrt/+) mouse model of human oculodentodigital dysplasia. Invest. Ophthal. Vis. Sci. 2011;52:3539–3547. DOI:10.1167/iovs.10-6399; van Genderen M.M., Kinds G.F., Riemslag F.C., Hennekam R.C. Ocular features in Rubinstein-Taybi syndrome: investigation of 24 patients and review of the literature. Br J Ophthalmol. 2000;84(10):1177–1184. DOI:10.1136/bjo.84.10.1177; https://www.ophthalmojournal.com/opht/article/view/1450
-
7Academic Journal
المؤلفون: M. E. Weener, D. S. Atarshchikov, V. V. Kadyshev, I. V. Zolnikova, A. M. Demchinsky, D. Barh, L. M. Balashova, J. M. Salmasi
المصدر: Российский офтальмологический журнал, Vol 14, Iss 1, Pp 80-88 (2021)
مصطلحات موضوعية: retinitis pigmentosa, tapetoretinal abiotrophy, pathophysiology, genetics, visual cycle, metabolic pathways, Ophthalmology, RE1-994
Relation: https://roj.igb.ru/jour/article/view/588; https://doaj.org/toc/2072-0076; https://doaj.org/toc/2587-5760; https://doaj.org/article/859c3bbf08444417af37921d6045973e
-
8Academic Journal
المؤلفون: V. V. Neroev, L. A. Katargina, V. V. Kadyshev, I. V. Zolnikova, S. I. Kutsev
المصدر: Российский офтальмологический журнал, Vol 14, Iss 3, Pp 78-82 (2021)
مصطلحات موضوعية: leber congenital amaurosis, gene therapy, retinitis pigmentosa, genetics, heterogeneity, rpe65, voretigene neparvovec, Ophthalmology, RE1-994
Relation: https://roj.igb.ru/jour/article/view/722; https://doaj.org/toc/2072-0076; https://doaj.org/toc/2587-5760; https://doaj.org/article/ec6b24b014894703822a2852f186d87f
-
9Academic Journal
المؤلفون: I. V. Zolnikova, S. V. Milash, A. B. Chernyak, D. V. Levina, I. V. Egorova, E. V. Rogatina, E. A. Eremeeva, S. Y. Rogova, И. В. Зольникова, С. В. Милаш, А. Б. Черняк, Д. В. Левина, И. В. Егорова, Е. В. Рогатина, Е. А. Еремеева, С. Ю. Рогова
المصدر: Ophthalmology in Russia; Том 17, № 1 (2020); 81-87 ; Офтальмология; Том 17, № 1 (2020); 81-87 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2020-1
مصطلحات موضوعية: слой нервных волокон сетчатки, retinitis pigmentosa, electroretinogram, macular ERG, OCT, segmentation of the retina, RNFL, GCL, INL, пигментный ретинит, электроретинограмма, макулярная ЭРГ, ОКТ, сегментация сетчатки, внутренний ядерный слой, слой ганглиозных клеток сетчатки
وصف الملف: application/pdf
Relation: https://www.ophthalmojournal.com/opht/article/view/1136/674; Шамшинова А.М. Пигментный ретинит или тапеторетинальная абиотрофия. В кн.: Шамшинова А.М., ред. Наследственные и врожденные заболевания сетчатки и зрительного нерва. М.: Медицина; 2001. С. 134–151.; Шамшинова А.М., Зольникова И.В. Молекулярные основы наследственных дегенераций сетчатки. Медицинская генетика. 2004;4:160–169.; Зольникова И.В. Мультифокальная и хроматическая макулярная электроретинограмма в диагностике пигментного ретинита. Вестник новых медицинских технологий. 2009;16(3):171–174.; Зольникова И.В. Современные электрофизиологические и психофизические методы диагностики при дистрофиях сетчатки (обзор литературы). Офтальмохирургия и терапия. 2004;2:30–40.; Зольникова И.В., Деменкова О.Н., Рогатина Е.В., Левина Д.В., Егорова И.В., Рогова С.Ю. Биоэлектрическая активность макулярной области сетчатки и световая чувствительность при пигментном ретините с атрофической макулопатией и кистозным макулярным отеком. Российский офтальмологический журнал. 2016;1:12–18.; Зольникова И.В., Левина Д.В., Охоцимская Т.Д., Фадеева В.А., Егорова И.В., Рогатина Е.В., Еремеева Е.А., Деменкова О.Н., Рогова С.Ю. Электроретинография и ОКТ-ангиография сетчатки и зрительного нерва при пигментном ретините. Российский офтальмологический журнал. 2017;3:22–28. DOI:10.21516/2072-0076-2017-10-3-22-28; Berson E.L., Sandberg M.A., Rosner B., Birch D.G., Hanson A.H. Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol. 1985;99(3):240– 251. DOI:10.1016/0002-9394(85)90351-4; Birch D.G., Anderson J.L., Fish G.E. Yearly rates of rod and cone functional loss in retinitis pigmentosa and cone-rod dystrophy. Ophthalmology. 1999;106(2):258– 268. DOI:10.1016/S0161-6420(99)90064-7; Hartong D.T., Berson E.L., Dryja T.P. Retinitis Pigmentosa. Lancet. 2006;368(9549):1795–1809. DOI:10.1016/S0140-6736(06)69740-7; Barber A.C. Hippert C., Duran Y., West E.L., Bainbridge J.W., Warre-Cornish K., Luhmann U.F., Lakowski J., Sowden J.C., Ali R.R., Pearson R.A. Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci USA. 2013;110:354–359. DOI:10.1073/pnas.1212677110; Jacobson S.G., Cideciyan A.V. Treatment possibilities for retinitis pigmentosa. N Engl J Med. 2010;363:1669–1671. DOI: 10.56/NAJMcibr1007685; Bertolotti E., Neri A., Camparini M., Macaluso C., Marigo V. Stem cells as source for retinal pigment epithelium transplantation. Prog Retin Eye Res. 2014;42:130– 144. DOI:10.1016/j.preteyers.2014.06.002; Weiland J.D., Cho A.K., Humayun M.S. Retinal prostheses: current clinical results and future needs. Ophthalmology. 2011;118:2227–2237. DOI:10.1016/j.ophta.2011.08.042; Weiland J.D. Humayun M.S. Retinal prosthesis. IEEE Trans Biomed Eng. 2014;61:1412–1424. DOI:10.1109/TBME.2014.2314733; Stone J.L., Barlow W.E., Humayun M.S., de Juan E., Milam A.H. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol. 1992;110:1634–1639.; Santos A., Humayun M.S., de Juan E., Greenburg R.J., Marsh M.J., Klock I.B., Milam A.H. Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol. 1997;115:511–515. DOI:10.1001/archopht.1997.01100150513011; Walia S., Fishman G.A., Edward D., Lindeman M. Retinal nerve fiber layer defects in RP patients. Invest Ophthalmol Vis Sci. 2007;48:4748–4752. DOI:10.1167/iovs.07-0404; Walia S., Fishman G.A. Retinal nerve fiber layer analysis in RP patients using Fourier-domain OCT. Invest Ophthalmol Vis Sci. 2008;49:3525–3528. DOI:10.1167/iovs.08-1842; Oishi A., Otani A., Sasahara М., Kurimoto M., Nakamura H., Kojima H., Yoshimura N. Retinal nerve fiber layer thickness in patient with retinitis pigmentosa. Eye (Lond). 2009;23:561–566. DOI:10.1038/eye.2008.63; Oishi A., Ogino K., Nakagava S., Makiyama Y., Kurimoto M., Otani A., Yoshimura N. Longitudinal analysis of the peripapillary retinal nerve fiber layer thinning in patients with retinitis pigmentosa. Eye (Lond). 2013;27:597–604. DOI:10.1038/eye.2008.63; Hood D.C., Lin C.E., Lazow M.A., Locke K.G., Zhang X., Birch D.G. Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50(5):2328–2336. DOI:10.1167/iovs.08-2936; Anastasakis A., Genead M.A., McAnany J.J., Fishman G.A. Evaluation of retinal nerve fiber layer thickness in patients with retinitis pigmentosa using spectraldomain optical coherence tomography. Retina. 2012; 32: 358–363. DOI:10.1097/ IAE.0b013e31821a891a; Vamos R., Tátrai E., Németh J., Holder G.E., DeBuc D.C., Somfai G.M. The structure and function of the macula in patients with advanced retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011;52(11):8425–8432. DOI:10.1167/iovs.11-7780; Nagasaka Y., Ito Y., Ueno S., Terasaki H. Increased aqueous flare is associated with thickening of inner retinal layers in eyes with retinitis pigmentosa. Sci Rep. 2016;6:33921. DOI:10.1038/srep33921; Liu G., Li H., Liu X., Xu D., Wang F. Structural analysis of retinal photoreceptor ellipsoid zone and postreceptor retinal layer associated with visual acuity in patients with retinitis pigmentosa by ganglion cell analysis combined with OCT imaging. Medicine. 2016;95(52) e5785. DOI:10.1097/MD.0000000000005785; Aleman T.S., Cideciyan A.V., Sumaroka A., Schwartz S.B., Roman A.J., Windsor E.A., Steinberg J.D., Branham K, Othman M., Swaroop A., Jacobson S.G. Inner retinal abnormalities X-linked retinitis pigmentosa with RPGR mutations. Invest Ophthalmol Vis Sci. 2007;48:4759–4765. DOI:10.1167/iovs.07-0453; García-Ayuso D., Salinas-Navarro M., Nadal-Nicolás F.M., Ortín-Martínez A., Agudo-Barriuso M., Vidal-Sanz M., Villegas-Pérez M.P. Sectorial loss of retinal ganglion cells in inherited photoreceptor degeneration is due to RGC death. Br J Ophthalmol. 2014;98:396–340. DOI:10.1136/bjophthalmol-2013-303958; Yoshida N., Ikeda Y., Notomi S., Ishikawa K., Murakami Y., Hisatomi T., Enaida H., Ishibashi T. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120:100–105. DOI:10.1016/j.ophtha.2012.07.006; https://www.ophthalmojournal.com/opht/article/view/1136
-
10Academic Journal
المؤلفون: I. V. Zolnikova, V. V. Kadyshev, A. V. Marakhonov, R. A. Zinchenko, И. В. Зольникова, В. В. Кадышев, А. В. Марахонов, Р. А. Зинченко
المصدر: Medical Genetics; Том 19, № 8 (2020); 42-43 ; Медицинская генетика; Том 19, № 8 (2020); 42-43 ; 2073-7998
مصطلحات موضوعية: генетическая гетерогенность, genetics, ophthalmology, Stargardt’s disease, retinitis pigmentosa, clinical polymorphism, genetic heterogeneity, генетика, офтальмология, болезнь Штаргардта, пигментный ретинит, клинический полиморфизм
وصف الملف: application/pdf
-
11Academic Journal
المؤلفون: S. V. Milash, I. V. Zolnikova, V. V. Kadyshev
المصدر: Российский офтальмологический журнал, Vol 13, Iss 4, Pp 75-82 (2020)
مصطلحات موضوعية: adult-onset foveomacular vitelliform dystrophy, stargardt disease, fundus flavimaculatus, retinitis pigmentosa, сslo, faf, oct, retro mode, Ophthalmology, RE1-994
Relation: https://roj.igb.ru/jour/article/view/523; https://doaj.org/toc/2072-0076; https://doaj.org/toc/2587-5760; https://doaj.org/article/6d04339d061e460db0a404a732200d82
-
12Academic Journal
المؤلفون: M. E. Ivanova, I. V. Zolnikova, I. E. Khatsenko, V. V. Strelnikov, F. A. Konovalov, E. R. Lozier, M. A. Ampleeva, A. V. Antonets, I. V. Kanivets, K. V. Gorgisheli, D. S. Atarshchikov, D. V. Pyankov, S. A. Korostelev, E. B. Kuznetsova, D. Bar, L. M. Balashova, Zh. M. Salmasi
المصدر: Российский офтальмологический журнал, Vol 13, Iss 1, Pp 12-22 (2020)
مصطلحات موضوعية: achromatopsia, achm, genes cnga3, cngb3, russian cohort, Ophthalmology, RE1-994
Relation: https://roj.igb.ru/jour/article/view/378; https://doaj.org/toc/2072-0076; https://doaj.org/toc/2587-5760; https://doaj.org/article/92260456696c478c91e15c42a02ce1d3
-
13
المؤلفون: E. P. Tarutta, R. R. Khubieva, S. V. Milash, A. V. Apaev, N. A. Aklaeva, I. V. Zolnikova
المصدر: Russian Ophthalmological Journal. 15:109-119
مصطلحات موضوعية: Ophthalmology
-
14Academic Journal
المؤلفون: I. V. Zolnikova, S. V. Milash, V. V. Kadyshev, A. B. Chernyak, D. V. Levina, R. A. Zinchenko, I. V. Egorova, E. A. Eremeeva, S. Y. Rogova, И. В. Зольникова, С. В. Милаш, В. В. Кадышев, А. В. Черняк, Д. В. Левина, Р. А. Зинченко, И. В. Егорова, Е. А. Еремеева, С. Ю. Рогова
المصدر: Ophthalmology in Russia; Том 16, № 1 (2019); 124-130 ; Офтальмология; Том 16, № 1 (2019); 124-130 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2019-1
مصطلحات موضوعية: ОКТ, CHM, electroretinography, OCT, электроретинография
وصف الملف: application/pdf
Relation: https://www.ophthalmojournal.com/opht/article/view/869/570; Щербатова О.И., Зуева М.В. Наследственные заболевания хориоидеи. В кн.: Шамшинова А.М., ред. Наследственные и врожденные заболевания сетчатки и зрительного нерва. М.: Медицина; 2001. С. 447–455.; Шамшинова А.М., Зольникова И.В. Молекулярные основы наследственных дегенераций сетчатки. Медицинская генетика. 2004;4:160–169.; McСulloch C., McСulloch R.J. A hereditary and clinical study of choroideremia. Trans Am Acad Ophthalmol Otolaryngol. 1948;52:160–190.; Bonilha V., Trzupek K., Li Y, Choroideremia: Analysis of the retina from a female symptomatic carrier. Ophthalmic Genet. 2008.29:99–110. DOI:10.1080/13816810802206499; MacDonald I.M., Russell L., Chan C.C. Choroideremia: New findings from ocular pathology and review of recent literature. Surv Ophthalmol. 2009;54:401–407. DOI:10.1016/j.survophthal.2009.02.008; Krill A.E., Archer D. Classification of the choroidal atrophies. Am J Ophthal. 1971;72:562–585. DOI:10.1016/0002-9394(71)90854-3; Jacobson S.G., Cideciyan A.V., Sumaroka A., et al. Remodeling of the human retina in choroideremia: Rab escort protein 1 (REP-1) mutations. Invest Ophthalmol Vis Sci. 2006;47:4113–4120. DOI:10.1167/iovs.06-0424; Seabra M.C., Brown, M.S., Goldstein J.L. Retinal degeneration in choroideremia: deficiency of Rab geranylgeranyl transferase. Science. 1993;259:377–381. DOI:10.1126/science.8380507; Seabra M.C., Brown M.S., Slaughter C.A., Sudhof T.C., Goldstein J.L. Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell. 1992;70:1049–1057. DOI:10.1016/0092-8674(92)90253-9; Rak A., Structure of the Rab7: REP-1 complex: insights into the mechanism of Rab prenylation and choroideremia disease. Cell. 2004;117(6):749–760. DOI:10.1016/j.cell.2004.05.017; Bolasco G., Tracey-White D.C., Tolmachova T. Loss of Rab27 function results in abnormal lung epithelium structure in mice. Am J Physiol Cell Physiol. 2011;300(3):466–476. DOI:10.1152/ajpcell.00446.2010; Köhnke M., Delon C., Hastie M.L., et al. Rab GTPase prenylation hierarchy and its potential role in choroideremia disease. PLoS One. 2013;8(12):e81758. DOI:10.1371/journal.pone.0081758; Larijani B., Hume A.N., Tarafder A.K., Seabra M.C. Multiple factors contribute to inefficient prenylation of Rab27a in Rab prenylation diseases. J Biol Chem. 2003;278(47):46798–804. DOI:10.1074/jbc.M307799200; Тolmachova T., Anders R., Abrink M., Bugeon L., Dallman M.J., Futter C.E., Ramalho J.S., Tonagel F., Tanimoto N., Seeliger M.W. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia. J Clin Invest. 2006;116:386–394. DOI:10.1172/JCI26617; Tolmachova T., Wavre-Shapton S.T., Barnard A.R., MacLaren R.E., Futter C.E., Seabra M.C. Retinal pigment epithelium defects accelerate photoreceptor degeneration in cell type-specific knockout mouse models of choroideremia. Invest Ophthalmol Vis Sci. 2010;51:4913–4920. DOI:10.1167/iovs.09-4892; Imani S., Ijaz I., Shasaltaneh M.D., Fu S., Cheng J., Fu J. Molecular genetics characterization and homology modeling of the CHM gene mutation: A study on its association with choroideremia. Mutat Res. 2018;775:39–50. DOI:10.1016/j.mrrev.2018.02.001; Duong T.T., Vasireddy V., Ramachandran P., Herrera P.S., Leo L., Merkel C., Bennett J., Mills J.A. Use of induced pluripotent stem cell models to probe the pathogenesis of Choroideremia and to develop a potential treatment. Stem Cell Res. 2018;27:140–150. DOI:10.1016/j.scr.2018.01.009; MacLaren RE. An analysis of retinal gene therapy clinical trials. Curr Opin Mol Ther. 2009;11(5):540–546.; MacLaren R., Groppe M., Barnard A.R., et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129–1137. DOI:10.1016/S0140-6736(13)62117-0; Groppe M., MacLaren R.E. Gene Therapy for Choroideremia Using an Adeno-Associated Viral (AAV) Vector. Cold Spring Harb Perspect Med. 2014; 5(3): a017293. DOI:10.1101/cshperspect.a017293; Tolmachova T., Tolmachov O.E., Barnard A.R., de Silva S.R., Lipinski D.M., Walker N.J., Maclaren R.E., Seabra M.C. Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. J Mol Med. 2013;91(7):825–837. DOI:10.1007/s00109-013-1006-4; Vasireddy V., Mills J.A., Gaddameedi R., et al. AAV-mediated gene therapy for choroideremia: preclinical studies in personalized models. PLoS One. 2013;8(5):e61396. DOI:10.1371/journal.pone.0061396; Yang L., Ijaz I., Cheng J., Wei C., Tan X., Khan M.A., Fu X., Fu J. Evaluation of amplification refractory mutation system (ARMS) technique for quick and accurate prenatal gene diagnosis of CHM variant in choroideremia. Appl Clin Genet. 2017; 11:1–8. DOI:10.2147/TACG.S144383; https://www.ophthalmojournal.com/opht/article/view/869
-
15Academic Journal
المؤلفون: N. I . Kurysheva, E. V. Maslova, I. V. Zolnikova, A. V. Fomin, M. B. Lagutin, Н. И. Курышева, Е. В. Маслова, И. В. Зольникова, А. В. Фомин, М. Б. Лагутин
المصدر: National Journal glaucoma; Том 18, № 4 (2019); 15-34 ; Национальный журнал Глаукома; Том 18, № 4 (2019); 15-34 ; 2311-6862 ; 2078-4104
مصطلحات موضوعية: паттерн ЗВП, open-angle glaucoma, ocular blood flow, optical coherence tomography angiography, оптическая когерентная томография (ОКТ), ОКТ с функцией ангиографии, микроциркуляция макулы, ДЗН и перипапиллярная сетчатка, паттерн ЭРГ
وصف الملف: application/pdf
Relation: https://www.glaucomajournal.ru/jour/article/view/239/247; Hood D.C., Anderson S.C., Wall M., Kardon R.H., Raza A.S. A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurement. Invest Ophthalmol Vis Sci. 2009; 50:4254-4255. https://doi. org/10.1167/iovs.08-2697; Ojima T., Tanabe T., Hangai M., Yu.S., Morishita S., Yoshimura N. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Japan J Ophthalmol. 2007; 51:197-203. https://doi.org/10.1007/ s10384-006-0433-y; Nakatani Y., Higashide T., Ohkubo S., Hisashi T.H., Sugiya K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. Glaucoma. 2011; 20:252-259. https://doi. org/10.1097/IJG.0b013e3181e079ed; Kurysheva N.I., Parshunina O.A., Shatalova E.O., Kiseleva T.N., Lagutin M.B., et al. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr Eye Res. 2016; 24:1-7. https://doi.org/10.1080/02713683.2016.1184281; Hayreh S.S. Blood flow in the optic head and factors that may influence it. Progress in Retinal and Eye Research. 2001; 20(5):595-624. https://doi.org/10.1016/S1350-9462(01)00005-2; Grieshaber M.C., Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005; 16:79-83. https://doi.org/10.1136/bjo.2006.103010; Kurysheva N.I., Kiseleva T.N., Hodak N.A. The study of bioelectricactivity and regional hemodynamics in glaucoma. Klinicheskaya oftalmologiya. 2012; 3:91-94. https://doi.org/10.1371/journal. pone.0201599; Flammer J., Orgul S. Optic nerve blood-flow abnormalities in glaucoma. Progress in Retinal and Eye Research. 1998; 17:267-289. https:// doi.org/10.21037/qims.2016.03.05; Grunwald J.E., Piltz J., Hariprasad S.M., DuPont J. Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci. 1998; 39:232-233.; Tobe L.A., Harris A., Hussain R.M., Eckert G., Huck A., Park J., et al. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fiber layer structure in subjects with open-angle glaucoma over an 18-month period. Brit J Ophthalmol. 2005; 99:609-612. http://dx.doi.org/10.1136/bjophthalmol-2014-305780; Martinez A., Sanchez M. Predictive value of colour Doppler imaging in a prospective study of visual field progression in primary open-angle glaucoma. Acta Ophthalmol Scand. 2005; 83:716-722. https://doi. org/10.1111/j.1600-0420.2005.00567.x; Mokbel T.H., Ghanem A.A. Diagnostic value of color doppler imaging and pattern visual evoked potential in primary open-angle glaucoma. J Clin Exper Ophthalmol/ 20112:127. https://doi.org/10.4172/21559570.1000127; Jia Y., Morrison J.C., Tokayer J., Tan O., Lombardi L., Baumann B. et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Optics Exp. 2012; 3:3127-3137. https://doi.org/10.1364/ BOE.3.003127; Jia Y., Wei E., Wang X., Zhang X., Morrison J.C., Parikh M. et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7):1322-1332. https://doi.org/10. 1016/j.ophtha.2014.01.021; Wang X., Jiang C., Ko T., Kong X., Yu X., Min W. et al. Correlation between optic disc perfusion and glaucomatous severity in subjects with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015; 253:15571564. https://doi.org/10.1007/s00417- 015-3095-y; Liu L., Jia Y., Takusagawa H.L., Morrison J.C., Huang D. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015; 133(9):1045-1052. https://doi.org/10. 1001/jamaophthalmol.2015.2225; Lee E.J., Lee K.M., Lee S.H., Kim T.W. OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016; 57:6265-6270. https://doi.org/10.1167/iovs.16-20287 18. Kurysheva N.I. Macula in Glaucoma: Vascularity Evaluated by OCT Angiography. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016; 7(5):651-662.; Levêque P.M. Optic disc vascularization in glaucoma: value of spectral domain optical coherence tomography angiography. Ophthalmol. 2016, Article ID 6956717. https://doi.org/10.1155/2016/6956717; Yarmohammadi A., Zangwill L.M., Diniz-Filho A., Suh M.H., Manalastas P.I., Fatehee N. et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016; 57:451-459. https://doi.org/10.1167/ iovs.15-18944; Rao H.L., Kadambi S.V., Weinreb R.N., Puttaiah N.K., Pradhan Z.S., Rao D.A. et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017; 101(8):1066-1070. https://doi.org/10.1136/bjophthalmol-2016- 309377; Hood D. Improving our understanding, and detection, of glaucomatous damage: An approach based upon optical coherence tomography (OCT). Progress in Retinal and Eye Research. 2017; 57:46-75. doi:10.1016/j.preteyeres.2016.12.002; Hood D.C., Raza A.S., de Moraes C.G.V., Johnson C.A., Liebmann J.M., Ritch R. The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Trans Vis Sci Tech. 2012; 1:1-15. https://doi.org/10.1167/tvst.1.1.3; Bowd C., Tafreshi A., Zangwill L.M., Medeiros F.A., Sample P.A., Weinreb R.N. Pattern electroretinogram association with spectral domain-OCT structural measurements in glaucoma. Eye (Lond). 2011; 25(2):224-232. https://doi.org/10.1038/eye.2010.203; May J.G., Ralston J.V., Reed J.L., Van Dyk H.J.L. Loss in pattern-elicited electroretinograms in optic nerve dysfunction. Am J Ophthalmol. 1982; 93:418-422. https://doi.org/10.1016/0002-9394(82)90131-3 26. Bobak P., Bodis W.I, Harnois C., Maffei L., Mylin L. Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple sclerosis. Am J Ophthalmol. 1983; 96:72-83. https://doi. org/10.1016/0002-9394(83)90457-9; Wanger P., Persson H.E. Pattern-reversal electroretinograms in unilateral glaucoma. Invest Ophthalmol Vis Sci. 1983; 24:749-753. https:// doi.org/10.1007/978-94-009-7275-9_41; Bach M., Hiss P., Ro êver J. Check-size specific changes of pattern electroretinogram in subjects with early open-angle glaucoma. Doc Ophthalmol. 1988; 69:315-322.; Parisi V., Miglior S., Manni G., Centofanti M., Bucci M.G. Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma. Ophthalmology. 2016; 113:216-228. https://doi.org/10.1016/j.ophtha.2005.10.044; Rejdak R., Toczolowski J., Kurkowski J., Kaminski M.L., Rejdak K., Stelmasiak Z. et al. Oral citicoline treatment improves visual pathway function in glaucoma. Med Sci Monit. 2003; 9:124-128.; Tong Y., Wang P., Xia Z., Xia X., Xu X. Color pattern reversal visual evoked potentials in primary open angle and angle closure glaucoma. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2009; 34:771-775.; Mills R.P., Budenz D.L., Lee P.P., Noecker R.J., Walt J.G., Evans S.J. et al. Categorizing the stage of glaucoma from pre-diagnosis to endstage disease. Am J Ophthalmol. 2006; 141:24-30. https://doi. org/10. 1016/j.ajo.2005.07.044; Chang E., Goldberg J. Glaucoma 2.0: Neuroprotection, Neuroregeneration, Neuroenhancement. Ophthalmology. 2012; 119(5):979-986. https://doi.org/10.1016/j.ophtha.2011.11.003; Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia. 1988; 8(1):96. https://doi.org/10.1177/0333102417738202; Garway-Heath D.F., Poinoosawmy D., Fitzke F.W., Hitchings R.A. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000; 107(10):1809-1815. https://doi. org/10.1016/S0161-6420(00)00284-0; Odom J.V., Bach M., Brigell M., Holder G.E., McCulloch D.L.L., Mizota A. et al. ISCEV standard for clinical visual evoked potentials. Doc Ophthalmol. 2016; 133(1):1-9. https://doi.org/10.1007/s10633-016- 9553-y; Bach M., Brigell M.G., Hawlina M., Holder G.E., Johnson M.A., McCulloch D.L. et al. ISCEV standard for clinical pattern electroretinography (PERG) – 2012 update. Doc Ophthalmol. 2013; 126:1-7. https://doi.org/ 10.1007/s10633-012-9353; Ventura L.M., Porciatti V. Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction: a pilot study. Ophthalmology. 2005; 112(1):20-27. https://doi.org/10.1016/j. ophtha.2004.09.002; Bach M., Hoffmann M.B. Update on the pattern electroretinogram in glaucoma. Optom Vis Sci. 2008; 85:386-395. https://doi. org/10.1097/OPX.0b013e318177ebf3; Bach M., Poloschek C.M. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res. 2013; 353:287-296. https://doi.org/10.1007/s00441-013-1598-6; Bach M., Ramharter-Sereinig A. Pattern electroretinogram to detect glaucoma: comparing the PERGLA and the PERG Ratio protocols. Doc Ophthalmol. 2013; 127:227-238. https://doi.org/10.1007/ s10633- 013-9412-z; Porciatti V. Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res. 2015; 141:164-170. https://doi.org/10.1016/j. exer.2015.05.008; Bode S.F., Jehle T., Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest Ophthalmol Vis Sci. 2011; 52:4300-4306. https://doi.org/10.1167/iovs.10-6381 44. Porciatti V., Bosse B., Parekh P.K., Shuf O.A., Feuer W.J., Venture L.M. Adaptation of the Steady-state PERG in early glaucoma. J Glaucoma. 2014; 23(8):494-500. https://doi.org/10.1097/IJG. 0b013e318285fd95; Pfeiffer N., Tillmon B., Bach M. Predictive value of the pattern electroretinogram in high risk ocular hypertension. Invest Ophthalmol Vis Sci. 1993; 34:1710-1715; He Z.J. The qualitative and quantitative diagnostic significance of P-VEP in the evaluation of glaucomatous visual function damage. Zhonghua Yan KeZaZhi. 1991; 27(1):25-29.; Holder G.E. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res. 2001; 20:531-561. https://doi.org/10.1016/S1350-9462(00)00030-6; Viswanathan S., Frishman L.J., Robson J.G. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci. 2000; 41:2797-2810.; Luo X., Frishman L. Retinal pathway origins of the pattern electroretinogram (PERG). Invest Ophthalmol Vis Sci. 2011; 52(12):8571-8584. https://doi.org/10.1167/iovs.11-8376; Xu H., Yu J., Kong X., Sun X., Jiang C. Macular microvasculature alterations in subjects with primary open-angle glaucoma. Medicine (Baltimore). 2016; 95(33):e434. https://doi.org/10.1097/ MD.0000000000004341; Kurysheva N.I., Maslova E.V., Trubilina A.V., Fomin A.V., Likhvantseva V.G., Lagutin M.B. OCT angiography and color doppler imaging in glaucoma diagnostics. J Pharm Sci Res. 2017; 9(5):527-536.; Chihara E., Dimitrova G., Amano H., Chihara T. Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci. 2017; 58:690-697. https://doi. org/10.1167/iovs.16-20709; Yu D.Y., Cringle S.J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res. 2001; 20:175-208. https://doi. org/10.1016/S1350-9462(00)00027-6; Takusagawa H.L., Liu L., Ma K., Jia Y., Zhang M., Gao S., et al. Projection-resolved optical coherence angiography of macular retinal circulation in glaucoma. Ophthalmology. 2017; 124(11):1589-1599. doi:10.1016/j.ophtha.2017.06.002; Rao H.L., Pradhan Z.S., Weinreb R.N., Reddy H.B., Riyazuddin M., Dasari S. et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol. 2016; 171:75-83. https://doi.org/10.1016/j. ajo.2016.08.030; Hollo G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma. 2017; 26:7-10. https://doi.org/10.1097/ IJG.0000000000000527; Scripsema N.K., Garcia P.M., Bavier R.D., Chui T.Y., Krawitz B.D., Mo S., et al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal — tension glaucoma. Invest Ophthalmol Vis Sci. 2016; 57:611620. https://doi.org/10.1167/iovs.15-18783; Bowd C., Zangwill L.M., Berry C.C., Blumenthal E.Z., Vasile C., Snachez-Galeana C. et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci. 2001; 42:1993-2003.; Quigley H.A., Addicks E.M., Green W.R., Maumenee A.E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol Chic. 1981; 99:635-649. https://doi. org/10.1001/archopht.1981.03930010635009; Pechauer A.D., Jia Y., Liu L., Gao S., Jiang C., Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sci. 2015; 56:3287-3291. https://doi.org/10.1167/iovs.15-16655; Falsini B., Colotto A., Porciatti V., Bolzani R., Porrello G., Giudiceandrea A. Follow-up study with pattern ERG in ocular hypertension and glaucoma subjects under timolol maleate treatment. Clin Vis Sci. 1992; 7:341-347.; Ventura L., Porciatti V., Ishida K., Feuer W.J., Parrish R.K. Pattern electroretinogram abnormality and glaucoma. Ophthalmology. 2005; 1:20-27. https://doi.org/10.1016/j.ophtha.2004.07.018; Papst N., Bopp M., Schnaudigel O. The pattern evoked electroretinogram associated with elevated intraocular pressure. Graefes Arch Clin Exp Ophthalmol. 1984; 222:34-37. https://doi.org/10.1007/ BF02133775; Nesher R., Trick G.L., Kass M.A., Gordon M.O. Steady-state pattern electroretinogram following long term unilateral administration of timolol to ocular hypertensive subjects. Doc Ophthalmol. 1990; 75:101-109. https://doi.org/10.1007/BF00146546; Colotto A., Salgarello T., Giudiceandrea A., De Luca L.A., Coppe A., Buzzonetti L. et al. Pattern electroretinogram in treated ocular hypertension: a cross-sectional study after timolol maleate the- rapy. Ophthalmic Res. 1995; 27:168-177. https://doi.org/10.1159/ 000267663; Banitt M., Ventura L., Feuer W.J., Savatovsky E., Luna G., Shif O. et al. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci. 2013; 54:2346-2352. https://doi.org/10.1167/iovs.12-11026; Kremmer S., Tolksdorf-Kremmer A., Stodtmeister R. Simultaneous registration of VECP and pattern ERG during artificially raised intraocular pressure. Ophthalmologica. 1995; 209(5):233-241 https://doi. org/10.1159/000310622; Bowd C., Tafreshi A., Zangwill L.M., Medeiros F.A., Sample P.A., Weinreb R.N. Pattern electroretinogram association with spectral domainOCT structural measurements in glaucoma. 2011; 25:224. https:// doi.org/10.1038/eye.2010.203 Поступила / Received / 18.07.2019; https://www.glaucomajournal.ru/jour/article/view/239
-
16Academic Journal
المؤلفون: M. E. Ivanova, K. V. Gorgisheli, I. V. Zolnikova, D. S. Atarshchikov, D. Barh, Zh. M. Salmasi, L. M. Balashova
المصدر: Российский офтальмологический журнал, Vol 12, Iss 3, Pp 77-84 (2019)
مصطلحات موضوعية: csnb1a, nyx, congenital stationary night blindness, gene therapy, leucine-rich domain, Ophthalmology, RE1-994
Relation: https://roj.igb.ru/jour/article/view/304; https://doaj.org/toc/2072-0076; https://doaj.org/toc/2587-5760; https://doaj.org/article/01aeb942b8a8469a9671f5327953e5ec
-
17Academic Journal
المؤلفون: I. V. Zolnikova, O. N. Demenkova, E. V. Rogatina, D. V. Levina, I. V. Egorova, S. Yu. Rogova
المصدر: Российский офтальмологический журнал, Vol 9, Iss 1, Pp 12-18 (2018)
مصطلحات موضوعية: пигментный ретинит, кистозный макулярный отек, электроретинография, световая чувствительность, периметрические индексы, retinitis pigmentosa, cystoid macular oedema, electroretinography, light sensitivity, perimetric indices, Ophthalmology, RE1-994
Relation: https://roj.igb.ru/jour/article/view/3; https://doaj.org/toc/2072-0076; https://doaj.org/toc/2587-5760; https://doaj.org/article/aa22abd163b745039d931438924733b9
-
18
المؤلفون: N.P. Akchurina, Llc 'Oftalmic', N.K. Serova, J.M. Salmasi, L.M. Balashova, F.A. Konovalov, M.E. Ivanova, D.S. Atarshchikov, N.V. Vetrova, E.A. Pomerantseva, E.R. Lozier, V. V. Kadyshev, I. V. Zolnikova, Applied Biotechnology, D. Barh
المصدر: Clinical ophthalmology. :32-36
مصطلحات موضوعية: Ophthalmology, medicine.medical_specialty, Pathology, business.industry, Neurodegeneration, Mutation (genetic algorithm), medicine, Optic nerve atrophy, medicine.disease, business, Gene, Phenotype
-
19
المؤلفون: Ketevan V. Gorgisheli, Dmitry S. Atarshchikov, Inna V. Zolnikova, Marianna E. Ivanova, Preetam Ghosh, Debmalya Barh
المصدر: Ophthalmic Genetics. 40:558-563
مصطلحات موضوعية: Genetics, Congenital stationary night blindness, Ophthalmology, Pediatrics, Perinatology and Child Health, Mutation (genetic algorithm), Complete congenital stationary night blindness, Biology, Gene, Novel mutation, Genetics (clinical), X-linked recessive inheritance, Frameshift mutation
-
20
المصدر: Офтальмологические ведомости, Vol 11, Iss 4, Pp 93-98 (2018)
مصطلحات موضوعية: 0301 basic medicine, medicine.medical_specialty, genetic structures, GOLDMANN-FAVRE SYNDROME, Pathogenesis, 03 medical and health sciences, 0302 clinical medicine, lcsh:Ophthalmology, Medicine, nr2e3 mutation, goldmann-favre syndrome, General Environmental Science, business.industry, Retinal vasculitis, medicine.disease, Dermatology, enhanced s-cone syndrome, 030104 developmental biology, lcsh:RE1-994, Enhanced S-Cone Syndrome, retinal vasculitis, 030221 ophthalmology & optometry, Etiology, General Earth and Planetary Sciences, sense organs, Clinical case, business