يعرض 1 - 20 نتائج من 123 نتيجة بحث عن '"V A, Tsyrlin"', وقت الاستعلام: 0.50s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Financing from the funds of the State Assignment No. 056-00119-22-00., Финансирование из средств Государственного задания № 056-00119-22-00.

    المصدر: Translational Medicine; Том 10, № 3 (2023); 183-208 ; Трансляционная медицина; Том 10, № 3 (2023); 183-208 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/856/518; WHO. Hypertension. https://www.who.int/ru/news-room/fact-sheets/detail/hypertension (29.08.2022); Mehta AN, Fenves A. Current opinions in renovascular hypertension. Proc (Bayl Univ Med Cent). 2010; 23(3):246–249. DOI:10.1080/08998280.2010.11928627.; Martinez-Maldonado M. Pathophysiology of renovascular hypertension. Hypertension. 1991; 17(5):707–719. DOI:10.1161/01.hyp.17.5.707.; Конради А.О. Взаимодействие между симпатической нервной системой и ренин-ангиотензиновой системой. Роль в повышении артериального давления. Артериальная гипертензия. 2012; 18(6):577–583.; Кузьменко Н.В., Цырлин В.А., Плисс М.Г. Ангиотензин II и предсердный натрийуретический пептид — един- ство и борьба противоположностей в модели реноваску- лярной гипертензии «2 почки, 1 зажим». Метаанализ. Артериальная гипертензия. 2022; 28(4):328–347. DOI:10.18705/1607-419X-2022-28-4-328-347.; Campos RR, Oliveira-Sales EB, Nishi EE, et al. The role of oxidative stress in renovascular hypertension. Clin Exp Pharmacol Physiol. 2011; 38(2):144–152. DOI:10.1111/j.1440-1681.2010.05437.x.; Reckelhoff JF, Romero JC. Role of oxidative stress in angiotensin-induced hypertension. Am J Physiol Regul Integr Comp Physiol. 2003; 284(4):R893–R912. DOI:10.1152/ajpregu.00491.2002.; Boonla O, Kukongviriyapan U, Pakdeechote P, et al. Peptides-Derived from Thai Rice Bran Improves Endothelial Function in 2K-1C Renovascular Hypertensive Rats. Nutrients. 2015; 7(7):5783–5799. DOI:10.3390/nu7075252.; Rezazadeh H, Hosseini Kahnouei M, Hassanshahi G, et al. Regulatory effects of chronic low-dose morphine on nitric oxide level along with baroreflex sensitivity in twokidney one-clip hypertensive rats. Iran J Kidney Dis. 2014; 8(3):194–200.; Zhang S, Li H, Li Y, et al. Nicousamide normalizes renovascular hypertension in two-kidney one-clip hypertensive rats. Biomed Rep. 2013; 1(1):89–92. DOI:10.3892/br.2012.26.; Nandwani A, KherV. Renovascular Hypertension. Hypertension Journal. 2016; 2(2): 86–95. DOI:10.5005/jpjournals-10043-0037.; Ohnishi A, Li P, Branch RA, et al. Adenosine in renin-dependent renovascular hypertension. Hypertension. 1988; 12(2):152–161. DOI:10.1161/01.hyp.12.2.152.; Van Twist DJ, Houben AJ, De Haan MW, et al. Angiotensin-(1-7)-induced renal vasodilation is reduced in human kidneys with renal artery stenosis. J Hypertens. 2014; 32(12):2428–2432; discussion 2432. DOI:10.1097/HJH.0000000000000351.; Olin JW. Renal artery disease: diagnosis and management. Mt Sinai J Med. 2004; 71(2):73–85.; Tsyrlin VA, Galagudza MM, Kuzmenko NV, et al. Arterial baroreceptor reflex counteracts long-term blood pressure increase in the rat model of renovascular hypertension. PLoS One. 2013; 8(6):e64788. DOI:10.1371/journal.pone.0064788.; Цырлин В.А., Кузьменко Н.В., Плисс М.Г. Участие артериального барорецепторного рефлекса в долговременной регуляции артериального давления. Артериальная гипертензия. 2009; 15(6):679–682 DOI:10.18705/1607-419X-2009-15-6-679-682.; Borenstein M, Hedges LV, Higgins JPT, et al. Introduction to Meta-analysis. Wiley: Chichester, 2009. p. 456. DOI:10.1002/9780470743386.; Beyer AM, Fredrich K, Lombard JH. AT1 receptors prevent salt-induced vascular dysfunction in isolated middle cerebral arteries of 2 kidney-1 clip hypertensive rats. Am J Hypertens. 2013; 26(12):1398–1404. DOI:10.1093/ajh/hpt129.; de Simone G, Devereux RB, Camargo MJ, et al. Influence of sodium intake on in vivo left ventricular anatomy in experimental renovascular hypertension. Am J Physiol. 1993; 264(6 Pt 2):H2103–H2110. DOI:10.1152/ajpheart.1993.264.6.H2103.; Jackson CA, Navar LG. Arterial pressure and renal function in two-kidney, one clip Goldblatt hypertensive rats maintained on a high-salt intake. J Hypertens. 1986; 4(2):215–221. DOI:10.1097/00004872-198604000-00012.; Lee J, Kim JK, Choi KC, et al. High salt intake attenuates the development of hypertension in two-kidney, one-clip Goldblatt rats. Proc Soc Exp Biol Med. 1991; 197(2):181–185. DOI:10.3181/00379727-197-43243.; Liu DT, Birchall I, Kincaid-Smith P, et al. Effect of dietary sodium chloride on the development of renal glomerular and vascular lesions in hypertensive rats. Clin Exp Pharmacol Physiol. 1993; 20(12):763–772. DOI:10.1111/j.1440-1681.1993.tb03014.x.; Morgan T, Aubert JF, Brunner H. Interaction between sodium intake, angiotensin II, and blood pressure as a cause of cardiac hypertrophy. Am J Hypertens. 2001; 14(9 Pt 1):914–920. DOI:10.1016/s0895-7061(01)02135-5.; Ozaykan B, Doğan A. Effects of salt loading on sympathetic activity and blood pressure in anesthetized two-kidney, one clip hypertensive rats. Bosn J Basic Med Sci. 2011; 11(4):228–233. DOI:10.17305/bjbms.2011.2555.; Sato Y, Ando K, Ogata E, et al. Salt sensitivity in Goldblatt hypertensive rats--role of extracellular fluid volume and renin-angiotensin system. Jpn Circ J. 1991; 55(2):165–173. DOI:10.1253/jcj.55.165.; Shimoura CG, Lincevicius GS, Nishi EE, et al. Increased Dietary Salt Changes Baroreceptor Sensitivity and Intrarenal Renin-Angiotensin System in Goldblatt Hypertension. Am J Hypertens. 2017; 30(1):28–36. DOI:10.1093/ajh/hpw107.; Alam S, Johnson AG. A meta-analysis of randomised controlled trials (RCT) among healthy normotensive and essential hypertensive elderly patients to determine the effect of high salt (NaCl) diet of blood pressure. J Hum Hypertens. 1999; 13(6):367–374. DOI:10.1038/sj.jhh.1000817.; Blaustein MP, Leenen FH, Chen L, et al. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am J Physiol Heart Circ Physiol. 2012; 302(5):H1031–H1049. DOI:10.1152/ajpheart.00899.2011.; Katayama IA, Pereira RC, Dopona EP, et al. High-salt intake induces cardiomyocyte hypertrophy in rats in response to local angiotensin II type 1 receptor activation. J Nutr. 2014; 144(10):1571–1578. DOI:10.3945/jn.114.192054.; Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2011; (11):CD004022. DOI:10.1002/14651858.CD004022.pub3.; Roncari CF, Barbosa RM, Vendramini RC, et al. Enhanced angiotensin II induced sodium appetite in renovascular hypertensive rats. Peptides. 2018; 101:82–88. DOI:10.1016/j.peptides.2017.12.02.; Kimura G, Saito F, Kojima S, et al. Renal function curve in patients with secondary forms of hypertension. Hypertension. 1987; 10(1):11–15. DOI:10.1161/01.hyp.10.1.11.; Osborn JW, Fink GD. Region-specific changes in sympathetic nerve activity in angiotensin II-salt hypertension in the rat. Exp Physiol. 2010; 95(1):61–68. DOI:10.1113/expphysiol.2008.046326.; Montenegro MF, Amaral JH, Pinheiro LC, et al. Sodium nitrite downregulates vascular NADPH oxidase and exerts antihypertensive effects in hypertension. Free Radic Biol Med. 2011; 51(1):144–152. DOI:10.1016/j.freeradbiomed.2011.04.005.; Rizzi E, Amaral JH, Guimarães DA, et al. Nitrite treatment downregulates vascular MMP-2 activity and inhibits vascular remodeling in hypertension independently of its antihypertensive effects. Free Radic Biol Med. 2019; 130:234–243. DOI:10.1016/j.freeradbiomed.2018.11.002.; Liu DT, Wang MX, Kincaid-Smith P, et al. The effects of dietary potassium on vascular and glomerular lesions in hypertensive rats. Clin Exp Hypertens. 1994; 16(4):391–414. DOI:10.3109/10641969409067953.; Othman HK, Mahmud AMR. Effects of Potassium and Magnesium on Some Hemodynamic and Renal Function Related Parameters in 2k1c Hypertensive Rats. IOSR Journal of Pharmacy. 2012; 2(6): 33–42 DOI:10.9790/3013-26303342.; Suzuki H, Kondo K, Saruta T. Effect of potassium chloride on the blood pressure in two-kidney, one clip Goldblatt hypertensive rats. Hypertension. 1981; 3(5):566–573. DOI:10.1161/01.hyp.3.5.566.; Zhang HY, Li HQ, Lu MW. Effects of dietary K on blood pressure, prostaglandin, and kallikrein in renovascular hypertensive rats. Zhongguo Yao Li Xue Bao. 1989; 10(5):418–421.; Aburto NJ, Hanson S, Gutierrez H, et al. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ. 2013; 346:f1378. DOI:10.1136/bmj.f1378.; Houston MC, Harper KJ. Potassium, magnesium, and calcium: their role in both the cause and treatment of hypertension. J Clin Hypertens (Greenwich). 2008; 10(7 Suppl 2):3–11. DOI:10.1111/j.1751-7176.2008.08575.x.; Webb RC, Cohen DM, Bohr DF. Potassiuminduced vascular relaxation in two kidney-one clip, renal hypertensive rats. Pflugers Arch. 1983; 396(1):72–78. DOI:10.1007/BF00584701.; Barbagallo M, Resnick LM, Sosa RE, et al. Renal divalent cation excretion in secondary hypertension. Clin Sci (Lond). 1992; 83(5):561–565. DOI:10.1042/cs0830561.; Benedetti RG, Wise KJ, Massey LK. The hemodynamic effect of dietary calcium supplementation on rat renovascular hypertension. Basic Res Cardiol. 1993; 88(1):60–71. DOI:10.1007/BF00788531.; Kageyama Y, Suzuki H, Arima K, et al. Oral calcium treatment lowers blood pressure in renovascular hypertensive rats by suppressing the renin-angiotensin system. Hypertension. 1987; 10(4):375–382. DOI:10.1161/01.hyp.10.4.375.; Liu DT, Birchall I, Hewitson T, et al. Effect of dietary calcium on the development of hypertension and hypertensive vascular lesions in DOCA-salt and two-kidney, one clip hypertensive rats. J Hypertens. 1994; 12(2):145–153.; Hatton DC, McCarron DA. Dietary calcium and blood pressure in experimental models of hypertension. A review. Hypertension. 1994; 23(4):513–530. DOI:10.1161/01.hyp.23.4.513.; Jayedi A, Zargar MS. Dietary calcium intake and hypertension risk: a dose-response meta-analysis of prospective cohort studies. Eur J Clin Nutr. 2019; 73(7):969–978. DOI:10.1038/s41430-018-0275-y.; Griffith LE, Guyatt GH, Cook RJ, et al. The influence of dietary and nondietary calcium supplementation on blood pressure: an updated metaanalysis of randomized controlled trials. Am J Hypertens. 1999; 12(1 Pt 1):84–92. DOI:10.1016/s0895-7061(98)00224-6.; Cormick G, Ciapponi A, Cafferata ML, et al. Calcium supplementation for prevention of primary hypertension. Cochrane Database Syst Rev. 2015; 2015(6):CD010037. DOI:10.1002/14651858.CD010037.pub2.; Kostov K, Halacheva L. Role of Magnesium Deficiency in Promoting Atherosclerosis, Endothelial Dysfunction, and Arterial Stiffening as Risk Factors for Hypertension. Int J Mol Sci. 2018; 19(6):1724. DOI:10.3390/ijms19061724.; Valdivielso JM. Calcificación vascular: tipos y mecanismos Vascular calcification: types and mechanisms. Nefrologia. 2011; 31(2):142–147. DOI:10.3265/Nefrologia.pre2010.Nov.10754.; EFSA Panel on Dietetic Products, Nutrition and Allergies Scientific opinion on dietary reference values for calcium. EFSA J. 2015; 13(5):4101. DOI:10.2903/J.EFSA.2015.4101; Liu DT, Turner SW, Wang MX, et al. Effects of dietary magnesium on blood pressure and vascular lesions in hypertensive rats. Pathology. 1994; 26(4):365–369. DOI:10.1080/00313029400169022.; DiPette DJ, Simpson K, Rogers A, et al. Haemodynamic response to magnesium administration in mineralocorticoid-salt and two-kidney, one clip renovascular hypertension. J Hypertens. 1988; 6(5):413–417.; Han H, Fang X, Wei X, et al. Dose-response relationship between dietary magnesium intake, serum magnesium concentration and risk of hypertension: a systematic review and meta-analysis of prospective cohort studies. Nutr J. 2017; 16(1):26. DOI:10.1186/s12937-017-0247-4.; Zhang X, Li Y, Del Gobbo LC, et al. Effects of Magnesium Supplementation on Blood Pressure: A Meta-Analysis of Randomized Double-Blind Placebo-Controlled Trials. Hypertension. 2016; 68(2):324–333. DOI:10.1161/HYPERTENSIONAHA.116.07664.; Rosanoff A, Costello RB, Johnson GH. Effectively Prescribing Oral Magnesium Therapy for Hypertension: A Categorized Systematic Review of 49 Clinical Trials. Nutrients. 2021; 13(1):195. DOI:10.3390/nu13010195.; Ismail AA, Ismail NA. Magnesium: A mineral essential for health yet generally underestimated or even ignored. J. Nutr. Food Sci. 2016; 6:2. DOI:10.4172/2155-9600.1000523.; Khalili A, Alipour S, Fathalipour M, et al. Liposomal and Non-Liposomal Formulations of Vitamin C: Comparison of the Antihypertensive and Vascular Modifying Activity in Renovascular Hypertensive Rats. Iran J Med Sci. 2020; 45(1):41–49. DOI:10.30476/ijms.2019.45310.; Nishi EE, Oliveira-Sales EB, Bergamaschi CT, et al. Chronic antioxidant treatment improves arterial renovascular hypertension and oxidative stress markers in the kidney in Wistar rats. Am J Hypertens. 2010; 23(5):473–480. DOI:10.1038/ajh.2010.11.; Oliveira-Sales EB, Dugaich AP, Carillo BA, et al. Oxidative stress contributes to renovascular hypertension. Am J Hypertens. 2008; 21(1):98–104. DOI:10.1038/ajh.2007.12.; Juraschek SP, Guallar E, Appel LJ, et al. Effects of vitamin C supplementation on blood pressure: a metaanalysis of randomized controlled trials. Am J Clin Nutr. 2012; 95(5):1079–1088. DOI:10.3945/ajcn.111.027995.; Guan Y, Dai P, Wang H. Effects of vitamin C supplementation on essential hypertension: A systematic review and meta-analysis. Medicine (Baltimore). 2020; 99(8):e19274. DOI:10.1097/MD.0000000000019274.; García-Saura MF, Galisteo M, Villar IC, et al. Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol Cell Biochem. 2005; 270(1–2):147–155. DOI:10.1007/s11010-005-4503-0.; Kaur S, Muthuraman A. Therapeutic evaluation of rutin in two-kidney one-clip model of renovascular hypertension in rat. Life Sci. 2016;150:89–94. DOI:10.1016/j.lfs.2016.02.080.; Mendes-Junior Ld, Monteiro MM, Carvalho Ados S, et al. Oral supplementation with the rutin improves cardiovagal baroreflex sensitivity and vascular reactivity in hypertensive rats. Appl Physiol Nutr Metab. 2013; 38(11):1099–1106. DOI:10.1139/apnm-2013-0091.; Montenegro MF, Neto-Neves EM, Dias-Junior CA, et al. Quercetin restores plasma nitrite and nitroso species levels in renovascular hypertension. Naunyn Schmiedebergs Arch Pharmacol. 2010; 382(4):293–301. DOI:10.1007/s00210-010-0546-1.; Pereira SC, Parente JM, Belo VA, et al. Quercetin decreases the activity of matrix metalloproteinase-2 and ameliorates vascular remodeling in renovascular hypertension. Atherosclerosis. 2018; 270:146–153. DOI:10.1016/j.atherosclerosis.2018.01.031.; Serban MC, Sahebkar A, Zanchetti A, et al. Effects of Quercetin on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2016; 5(7):e002713. DOI:10.1161/JAHA.115.002713.; Showing all foods in which the polyphenol Quercetin 3-O-rutinoside. http://phenol-explorer.eu/contents/polyphenol/296 (16.01.2023); Ellwood L, Torun G, Bahar Z, et al. Effects of flavonoid-rich fruits on hypertension in adults: a systematic review. JBI Database System Rev Implement Rep. 2019; 17(10):2075–2105. DOI:10.11124/JBISRIR-D-19-00050.; Choi KC, Lee J, Moon KH, et al. Chronic caffeine ingestion exacerbates 2-kidney, 1-clip hypertension and ameliorates deoxycorticosterone acetate-salt hypertension in rats. Nephron. 1993; 65(4):619–622. DOI:10.1159/000187574.; Kohno M, Murakawa K, Horio T, et al. Plasma immunoreactive endothelin-1 in experimental malignant hypertension. Hypertension. 1991; 18(1):93–100. DOI:10.1161/01.hyp.18.1.93.; Kost CK Jr, Li P, Pfeifer CA, et al. Telemetric blood pressure monitoring in benign 2-kidney, 1-clip renovascular hypertension: effect of chronic caffeine ingestion. J Pharmacol Exp Ther. 1994; 270(3):1063–1070.; Ohnishi A, Branch RA, Jackson K, et al. Chronic caffeine administration exacerbates renovascular, but not genetic, hypertension in rats. J Clin Invest. 1986; 78(4):1045–1050. DOI:10.1172/JCI112659.; Postma CT, Smits P, Rosenbusch G, et al. The effect of caffeine on renal vein renin concentration in patients with renal arterial disease. Am J Hypertens. 1991; 4(12 Pt 1):951–954. DOI:10.1093/ajh/4.12.951.; Nieber K. The Impact of Coffee on Health. Planta Med. 2017; 83(16):1256–1263. DOI:10.1055/s-0043-115007.; Mesas AE, Leon-Muñoz LM, Rodriguez-Artalejo F, et al. The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: a systematic review and meta-analysis. Am J Clin Nutr. 2011; 94(4):1113–1126. DOI:10.3945/ajcn.111.016667.; Grosso G, Micek A, Godos J, et al. Long-Term Coffee Consumption Is Associated with Decreased Incidence of New-Onset Hypertension: A Dose-Response Meta-Analysis. Nutrients. 2017; 9(8):890. DOI:10.3390/nu9080890.; Higdon JV, Frei B. Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr. 2006; 46(2):101–123. DOI:10.1080/10408390500400009.; Yu H, Yang T, Gao P, et al. Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling. Sci Rep. 2016; 6:25746. DOI:10.1038/srep25746.; Mahdavi-Roshan M, Salari A, Ghorbani Z, et al. The effects of regular consumption of green or black tea beverage on blood pressure in those with elevated blood pressure or hypertension: A systematic review and metaanalysis. Complement Ther Med. 2020; 51:102430. DOI:10.1016/j.ctim.2020.102430.; Mao W, Song Y, Han C, et al. Molecular mechanism by which green tea and tea extract inhibits left ventricle hypertrophy induced by renovascular hypertension in rats. Wei Sheng Yan Jiu. 2008; 37(1):43–46.; Ried K, Fakler P, Stocks NP. Effect of cocoa on blood pressure. Cochrane Database Syst Rev. 2017; 4(4):CD008893. DOI:10.1002/14651858.CD008893.pub3.; Boissiere J, Lemaire MC, Antier D, et al. Exercise and vasorelaxing effects of CO-releasing molecules in hypertensive rats. Med Sci Sports Exerc. 2006; 38(4):652–659. DOI:10.1249/01.mss.0000210205.17823.74.; Korzick DH, Moore RL. Chronic exercise enhances cardiac alpha 1-adrenergic inotropic responsiveness in rats with mild hypertension. Am J Physiol. 1996; 271(6 Pt 2):H2599–2608. DOI:10.1152/ajpheart.1996.271.6.H2599.; Lima TC, Barbosa MA, Costa DC, et al. Fitness is improved by adjustments in muscle intracellular signaling in rats with renovascular hypertension 2K1C undergoing voluntary physical exercise. Life Sci. 2020; 250:117549. DOI:10.1016/j.lfs.2020.117549.; Marcus KD, Tipton CM. Exercise training and its effects with renal hypertensive rats. J Appl Physiol (1985). 1985; 59(5):1410–1415. DOI:10.1152/jappl.1985.59.5.1410.; Oliveira PR, Oliveira PB, Rossignoli PS, et al. Exercise training attenuates angiotensin II-induced vasoconstriction in the aorta of normotensive but not hypertensive rats. Exp Physiol. 2020; 105(4):732–742. DOI:10.1113/EP088139.; Qi J, Yu XJ, Fu LY, et al. Exercise Training Attenuates Hypertension Through TLR4/MyD88/NF-κB Signaling in the Hypothalamic Paraventricular Nucleus. Front Neurosci. 2019; 13:1138. DOI:10.3389/fnins.2019.01138.; Rossi NF, Chen H, Maliszewska-Scislo M. Paraventricular nucleus control of blood pressure in two-kidney, one-clip rats: effects of exercise training and resting blood pressure. Am J Physiol Regul Integr Comp Physiol. 2013; 305(11):R1390–1400. DOI:10.1152/ajpregu.00546.2012.; Waldman BM, Augustyniak RA, Chen H, et al. Effects of voluntary exercise on blood pressure, angiotensin II, aldosterone, and renal function in two-kidney, one-clip hypertensive rats. Integr Blood Press Control. 2017; 10:41–51. DOI:10.2147/IBPC.S147122.; Zhang Y, Yu XJ, Chen WS, et al. Exercise training attenuates renovascular hypertension partly via RAS- ROSglutamate pathway in the hypothalamic paraventricular nucleus. Sci Rep. 2016; 6:37467. DOI:10.1038/srep37467.; Buttrick PM, Kaplan M, Leinwand LA, et al. Alterations in gene expression in the rat heart after chronic pathological and physiological loads. J Mol Cell Cardiol. 1994; 26(1):61–67. DOI:10.1006/jmcc.1994.1008.; de Sousa Lima EB, de Oliveira LCS, da Silva Cardoso G, et al. Moderate-intensity exercise and renin angiotensin system blockade improve the renovascular hypertension (2K1C)-induced gastric dysmotility in rats. Life Sci. 2018; 210:55–64. DOI:10.1016/j.lfs.2018.08.053.; Kumral ZN, Sener G, Ozgur S, et al. Regular exercise alleviates renovascular hypertension-induced cardiac/endothelial dysfunction and oxidative injury in rats. J Physiol Pharmacol. 2016; 67(1):45–55.; Locatelli J, Monteiro de Assis LV, et al. Swimming training promotes cardiac remodeling and alters the expression of mRNA and protein levels involved in calcium handling in hypertensive rats. Life Sci. 2014; 117(2):67–74. DOI:10.1016/j.lfs.2014.09.024.; Maia RC, Sousa LE, Santos RA, et al. Timecourse effects of aerobic exercise training on cardiovascular and renal parameters in 2K1C renovascular hypertensive rats. Braz J Med Biol Res. 2015; 48(11):1010–1022. DOI:10.1590/1414-431X20154499.; Malhotra A, Schaible TF, Capasso J, et al. Correlation of myosin isoenzyme alterations with myocardial function in physiologic and pathologic hypertrophy. Eur Heart J. 1984; 5 Suppl F:61–67. DOI:10.1093/eurheartj/5.suppl_f.61.; Moreno Júnior H, Cezareti ML, Piçarro IC, et al. The influence of isotonic exercise on cardiac hypertrophy in arterial hypertension: impact on cardiac function and on the capacity for aerobic work. Comp Biochem Physiol A Physiol. 1995; 112(2):313–320. DOI:10.1016/0300-9629(95)00103-4.; Rakusan K, Wicker P, Abdul-Samad M, et al. Failure of swimming exercise to improve capillarization in cardiac hypertrophy of renal hypertensive rats. Circ Res. 1987; 61(5):641–647. DOI:10.1161/01.res.61.5.641.; Rodrigues MC, Campagnole-Santos MJ, Machado RP, et al. Evidence for a role of AT(2) receptors at the CVLM in the cardiovascular changes induced by low-intensity physical activity in renovascular hypertensive rats. Peptides. 2007; 28(7):1375–1382. DOI:10.1016/j.peptides.2007.06.001.; Schaible TF, Malhotra A, Ciambrone GJ, et al. Chronic swimming reverses cardiac dysfunction and myosin abnormalities in hypertensive rats. J Appl Physiol (1985). 1986; 60(4):1435–1441. DOI:10.1152/jappl.1986.60.4.1435.; Shah A, Oh YB, Lee SH, et al. Angiotensin-(1-7) attenuates hypertension in exercise-trained renal hypertensive rats. Am J Physiol Heart Circ Physiol. 2012; 302(11):H2372–H2380. DOI:10.1152/ajpheart.00846.2011.; Schlüter KD, Schreckenberg R, da Costa Rebelo RM. Interaction between exercise and hypertension in spontaneously hypertensive rats: a meta-analysis of experimental studies. Hypertens Res. 2010; 33(11):1155–1161. DOI:10.1038/hr.2010.155.; Liu X, Zhang D, Liu Y, et al. Dose-Response Association Between Physical Activity and Incident Hypertension: A Systematic Review and Meta-Analysis of Cohort Studies. Hypertension. 2017; 69(5):813–820. DOI:10.1161/HYPERTENSIONAHA.116.08994.; Lopes S, Afreixo V, Teixeira M, et al. Exercise training reduces arterial stiffness in adults with hypertension: a systematic review and meta-analysis. J Hypertens. 2021; 39(2):214–222. DOI:10.1097/HJH.0000000000002619.; Lin X, Zhang X, Guo J, et al. Effects of Exercise Training on Cardiorespiratory Fitness and Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2015; 4(7):e002014. DOI:10.1161/JAHA.115.002014.; Saco-Ledo G, Valenzuela PL, Ruiz-Hurtado G, et al. Exercise Reduces Ambulatory Blood Pressure in Patients With Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2020; 9(24):e018487. DOI:10.1161/JAHA.120.018487.; Cao L, Li X, Yan P, et al. The effectiveness of aerobic exercise for hypertensive population: A systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2019; 21(7):868–876. DOI:10.1111/jch.13583.; Igarashi Y, Nogami Y. The effect of regular aquatic exercise on blood pressure: A meta-analysis of randomized controlled trials. Eur J Prev Cardiol. 2018; 25(2):190–199. DOI:10.1177/2047487317731164.; Bjornstad P, Eckel RH. Pathogenesis of Lipid Disorders in Insulin Resistance: a Brief Review. Curr Diab Rep. 2018; 18(12):127. DOI:10.1007/s11892-018-1101-6.; Imamura F, Micha R, Wu JH, et al. Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-analysis of Randomised Controlled Feeding Trials. PLoS Med. 2016; 13(7):e1002087. DOI:10.1371/journal.pmed.1002087.; Te Morenga LA, Howatson AJ, Jones RM, et al. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am J Clin Nutr. 2014; 100(1):65–79. DOI:10.3945/ajcn.113.081521.; Jovanovski E, de Castro Ruiz Marques A, Li D, et al. Effect of high-carbohydrate or high-monounsaturated fatty acid diets on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2019; 77(1):19–31. DOI:10.1093/nutrit/nuy040.; Rasmussen BM, Vessby B, Uusitupa M, et al. Effects of dietary saturated, monounsaturated, and n-3 fatty acids on blood pressure in healthy subjects. Am J Clin Nutr. 2006; 83(2):221–226. DOI:10.1093/ajcn/83.2.221.; Soltani S, Shirani F, Chitsazi MJ, et al. The effect of dietary approaches to stop hypertension (DASH) diet on weight and body composition in adults: a systematic review and meta-analysis of randomized controlled clinical trials. Obes Rev. 2016; 17(5):442–454. DOI:10.1111/obr.12391.; Shah M, Adams-Huet B, Garg A. Effect of highcarbohydrate or high-cis-monounsaturated fat diets on blood pressure: a meta-analysis of intervention trials. Am J Clin Nutr. 2007; 85(5):1251–1256. DOI:10.1093/ajcn/85.5.1251.; Norton GR, Woodiwiss AJ, Trifunovic B. Renal effects of a high unsaturated fat diet in renal artery stenosis in rats. Experientia. 1996; 52(1):34–41. DOI:10.1007/BF01922413.; Reaven GM, Ho H. Renal vascular hypertension does not lead to hyperinsulinemia in Sprague-Dawley rats. Am J Hypertens. 1992; 5(5 Pt 1):314–317. DOI:10.1093/ajh/5.5.314.; Кузьменко Н.В., Плисс М.Г., Цырлин В.А. Cвязь между временем года и развитием вазоренальной гипертензии. Артериальная гипертензия. 2017; 23(6):561–573. DOI:10.18705/1607-419X-2017-23-6-561-573.; Ramalho RJ, de Oliveira PS, Cavaglieri RC, et al. Hyperbaric oxygen therapy induces kidney protection in an ischemia/reperfusion model in rats. Transplant Proc. 2012; 44(8):2333–2336. DOI:10.1016/j.transproceed.2012.07.020.; Hermida-Dominguez RC, Halberg F. Assessment of the risk of mesor-hypertension. Chronobiologia. 1984; 11(3):249–262.; Richards J, Cheng KY, All S, et al. A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na+ retention. Am J Physiol Renal Physiol. 2013; 305(12):F1697–F1704. DOI:10.1152/ajprenal.00472.2013.; Sumová A, Sládek M, Jác M, et al. The circadian rhythm of Per1 gene product in the rat suprachiasmatic nucleus and its modulation by seasonal changes in daylength. Brain Res. 2002; 947(2):260–270. DOI:10.1016/s0006-8993(02)02933-5.; Erşahin M, Sehirli O, Toklu HZ, et al. Melatonin improves cardiovascular function and ameliorates renal, cardiac and cerebral damage in rats with renovascular hypertension. J Pineal Res. 2009; 47(1):97–106. DOI:10.1111/j.1600-079X.2009.00693.x.; Nishi EE, Almeida VR, Amaral FG, et al. Melatonin attenuates renal sympathetic overactivity and reactive oxygen species in the brain in neurogenic hypertension. Hypertens Res. 2019; 42(11):1683–1691. DOI:10.1038/s41440-019-0301-z.; Qiao YF, Guo WJ, Li L, et al. Melatonin attenuates hypertension-induced renal injury partially through inhibiting oxidative stress in rats. Mol Med Rep. 2016; 13(1):21–26. DOI:10.3892/mmr.2015.4495.; Hadi A, Ghaedi E, Moradi S, et al. Effects of Melatonin Supplementation On Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Horm Metab Res. 2019; 51(3):157–164. DOI:10.1055/a-0841-6638.; Ishigaki S, Ohashi N, Isobe S, et al. Impaired endogenous nighttime melatonin secretion relates to intrarenal renin-angiotensin system activation and renal damage in patients with chronic kidney disease. Clin Exp Nephrol. 2016; 20(6):878–884. DOI:10.1007/s10157-015-1224-x.; Petrova A, Kondratiuk V, Karpenko O, et al. The effectiveness of melatonin in the complex treatment of hypertension in patients with stage 5 chronic kidney disease. Georgian Med News. 2020; (299):87–93.; Gamboa Madeira S, Fernandes C, Paiva T, et al. The Impact of Different Types of Shift Work on Blood Pressure and Hypertension: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2021; 18(13):6738. DOI:10.3390/ijerph18136738.; Valentine JC, Pigott TD, Rothstein HR. How Many Studies Do You Need?: A Primer on Statistical Power for Meta-Analysis // Journal of Educational and Behavioral Statistics. 2010; 35 (2): 215–247. DOI:10.3102/1076998609346961.; https://transmed.almazovcentre.ru/jour/article/view/856

  2. 2
    Academic Journal

    المساهمون: The work was funded from the funds of the State Task No. 05600109-21-02

    المصدر: Translational Medicine; Том 9, № 3 (2022); 35-58 ; Трансляционная медицина; Том 9, № 3 (2022); 35-58 ; 2410-5155 ; 2311-4495

    وصف الملف: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/686/471; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/686/1435; Zygmunt A, Stanczyk J. Methods of evaluation of autonomic nervous system function. Arch Med Sci. 2010; 6(1):11–18. DOI:10.5114/aoms.2010.13500.; Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2014; 5:1040. DOI:10.3389/fpsyg.2014.01040.; Hayano J, Yuda E. Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol. 2019; 38(1):3. DOI:10.1186/s40101-019-0193-2.; American Heart Association. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation. 1996; 93(5): 1043–1065.; Japundzic N, Grichois ML, Zitoun P, et al. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J Auton Nerv Syst. 1990; 30(2):91–100. DOI:10.1016/0165-1838(90)90132-3.; Monfredi O, Lyashkov AE, Johnsen AB, et al. Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension. 2014; 64(6):1334–1343. DOI:10.1161/HYPERTENSIONAHA.114.03782.; Кузьменко Н.В., Плисс М.Г., Рубанова Н.С. Симпатическая активность и вариабельность сердечного ритма при экспериментальной реноваскулярной гипертензии у крыс с интактными и денервированными барорецепторными зонами. Бюллетень Федерального центра сердца, крови и эндокринологии им. В.А. Алмазова. 2011; 3(8): 31–38.; Zavodna E, Honzikova N, Hrstkova H, et al. Can we detect the development of baroreflex sensitivity in humans between 11 and 20 years of age? Can J Physiol Pharmacol. 2006; 84(12):1275–1283. DOI:10.1139/y06-060.; Buñag RD, Teräväinen TL. Tail-cuff detection of systolic hypertension in different strains of ageing rats. Mech Ageing Dev.; 59(1-2):197–213. DOI:10.1016/00476374(91)90085-e.; Li Y, Zhao Z, Cai J, et al. The FrequencyDependent Aerobic Exercise Effects of Hypothalamic GABAergic Expression and Cardiovascular Functions in Aged Rats. Front Aging Neurosci. 2017; 9:212. DOI:10.3389/fnagi.2017.00212.; Thunhorst RL, Xue B, Beltz TG, et al. Age-related changes in thirst, salt appetite, and arterial blood pressure in response to aldosterone-dexamethasone combination in rats. Am J Physiol Regul Integr Comp Physiol. 2015; 308(10):R807–815. DOI:10.1152/ajpregu.00490.2014.; Werner A, Rosa NR, Oliveira AR, et al. Changes in blood pressure control in aged rats. Braz J Med Biol Res. 1995; 28(5):603–607.; Irigoyen MC, Moreira ED, Werner A, et al. Aging and baroreflex control of RSNA and heart rate in rats. Am J Physiol Regul Integr Comp Physiol. 2000; 279(5):R1865– 1871. DOI:10.1152/ajpregu.2000.279.5.R1865.; Toyoda K, Fujii K, Takata Y, et al. Effect of aging on regulation of brain stem circulation during hypotension. J Cereb Blood Flow Metab. 1997; 17(6):680–685. DOI:10.1097/00004647-199706000-00009.; McCarty R. Sympathetic-adrenal medullary and cardiovascular responses to acute cold stress in adult and aged rats. J Auton Nerv Syst. 1985; 12(1):15–22. DOI:10.1016/0165-1838(85)90037-2.; Avakian EV, Horvath SM, Colburn RW. Influence of age and cold stress on plasma catecholamine levels in rats. J Auton Nerv Syst. 1984; 10(2):127–133. DOI:10.1016/01651838(84)90051-1.; Kawano S, Ohmori S, Kambe F, et al. Catecholamine response to stress: age related modifications in tail-suspended rats. Environ Med. 1995; 39(2):107–111.; Milakofsky L, Harris N, Vogel WH. Effect of repeated stress on plasma catecholamines and taurine in young and old rats. Neurobiol Aging. 1993; 14(4):359–366. DOI:10.1016/0197-4580(93)90122-r.; Franchini KG, Moreira ED, Ida F, et al. Alterations in the cardiovascular control by the chemoreflex and the baroreflex in old rats. Am J Physiol. 1996; 270(1 Pt 2):R310– 313. DOI:10.1152/ajpregu.1996.270.1.R310.; Sei H, Sano A, Ohno H, et al. Age-related changes in control of blood pressure and heart rate during sleep in the rat. Sleep. 2002; 25(3):279–285. DOI:10.1093/sleep/25.3.279.; Rossi S, Fortunati I, Carnevali L, et al. The effect of aging on the specialized conducting system: a telemetry ECG study in rats over a 6 month period. PLoS One. 2014; 9(11):e112697. DOI:10.1371/journal.pone.0112697.; Кузьменко Н.В., Плисс М.Г., Цырлин В.А. Изменение вегетативного контроля сердечно-сосудистой системы при старении человека: метаанализ. Успехи геронтологии. 2020; 33(4): 748–760. DOI:10.34922/AE.2020.33.4.018.; Shan ZZ, Dai SM, Fang F, et al. Changes of central norepinephrine, beta-endorphin, LEU-enkephalin, peripheral arginine-vasopressin, and angiotensin II levels in acute and chronic phases of sino-aortic denervation in rats. J Cardiovasc Pharmacol. 2004; 43(2):234–241. DOI:10.1097/00005344-200402000-00011.; Alexander N, Velasquez MT, Decuir M, et al. Indices of sympathetic activity in the sinoaortic-denervated hypertensive rat. Am J Physiol. 1980; 238(4):H521–526. DOI:10.1152/ajpheart.1980.238.4.H521.; Barres C, Lewis SJ, Jacob HJ, et al. Arterial pressure lability and renal sympathetic nerve activity are dissociated in SAD rats. Am J Physiol. 1992; 263(3 Pt 2):R639–646. DOI:10.1152/ajpregu.1992.263.3.R639.; Irigoyen MC, Moreira ED, Ida F, et al. Changes of renal sympathetic activity in acute and chronic conscious sinoaortic denervated rats. Hypertension. 1995; 26(6 Pt 2):1111–1116. DOI:10.1161/01.hyp.26.6.1111.; Murasato Y, Hirakawa H, Harada Y, et al. Effects of systemic hypoxia on R-R interval and blood pressure variabilities in conscious rats. Am J Physiol. 1998; 275(3):H797–804. DOI:10.1152/ajpheart.1998.275.3.H797.; Zhong Y, Jan KM, Ju KH, et al. Quantifying cardiac sympathetic and parasympathetic nervous activities using principal dynamic modes analysis of heart rate variability. Am J Physiol Heart Circ Physiol. 2006; 291(3):H1475–1483. DOI:10.1152/ajpheart.00005.2006.; Montano N, Cogliati C, Porta A, et al. Central vagotonic effects of atropine modulate spectral oscillations of sympathetic nerve activity. Circulation. 1998; 98(14):1394– 1399. DOI:10.1161/01.cir.98.14.1394.; Martinmäki K, Rusko H, Kooistra L, et al. Intraindividual validation of heart rate variability indexes to measure vagal effects on hearts. Am J Physiol Heart Circ Physiol. 2006; 290(2):H640–647. DOI:10.1152/ajpheart.00054.2005.; Wang YP, Cheng YJ, Huang CL. Spontaneous baroreflex measurement in the assessment of cardiac vagal control. Clin Auton Res. 2004; 14(3):189–193. DOI:10.1007/s10286-004-0192-0.; Chen X, Mukkamala R. Selective quantification of the cardiac sympathetic and parasympathetic nervous systems by multisignal analysis of cardiorespiratory variability. Am J Physiol Heart Circ Physiol. 2008; 294(1):H362–371. DOI:10.1152/ajpheart.01061.2007.; Poller U, Nedelka G, Radke J, et al. Age-dependent changes in cardiac muscarinic receptor function in healthy volunteers. J Am Coll Cardiol. 1997; 29(1):187–193. DOI:10.1016/s0735-1097(96)00437-8.; Parlow J, Viale JP, Annat G, et al. Spontaneous cardiac baroreflex in humans. Comparison with druginduced responses. Hypertension. 1995; 25(5):1058–1068. DOI:10.1161/01.hyp.25.5.1058.; de Souza Neto EP, Abry P, Loiseau P, et al. Empirical mode decomposition to assess cardiovascular autonomic control in rats. Fundam Clin Pharmacol. 2007; 21(5):481–496. DOI:10.1111/j.1472-8206.2007.00508.x.; Pereira de Souza Neto E, Custaud M, Somody L, et al. Assessment of autonomic cardiovascular indices in non-stationary data in rats. Comp Biochem Physiol A Mol Integr Physiol. 2001; 128(1):105–115. DOI:10.1016/s10956433(00)00285-3.; Hong Y, Cechetto DF, Weaver LC. Spinal cord regulation of sympathetic activity in intact and spinal rats. Am J Physiol. 1994; 266(4 Pt 2):H1485–1493. DOI:10.1152/ajpheart.1994.266.4.H1485.; Beckers F, Verheyden B, Ramaekers D, et al. Effects of autonomic blockade on non-linear cardiovascular variability indices in rats. Clin Exp Pharmacol Physiol. 2006; 33(5–6):431–439. DOI:10.1111/j.1440-1681.2006.04384.x.; Silva LEV, Geraldini VR, de Oliveira BP, et al. Comparison between spectral analysis and symbolic dynamics for heart rate variability analysis in the rat. Sci Rep. 2017; 7(1):8428. DOI:10.1038/s41598-017-08888-w.; Silva GJ, Ushizima MR, Lessa PS, et al. Critical analysis of autoregressive and fast Fourier transform markers of cardiovascular variability in rats and humans. Braz J Med Biol Res. 2009; 42(4):386–396. DOI:10.1590/s0100-879x2009000400012.; Waki H, Katahira K, Polson JW, et al. Automation of analysis of cardiovascular autonomic function from chronic measurements of arterial pressure in conscious rats. Exp Physiol. 2006; 91(1):201–213. DOI:10.1113/expphysiol.2005.031716.; Dabiré H. Relationship between noradrenaline and nonlinear indexes of blood pressure dynamics in normotensive and spontaneously hypertensive rats. Fundam Clin Pharmacol. 2004; 18(6):643–648. DOI:10.1111/j.14728206.2004.00283.x.; Durkot M, Martinez O, Pease V, et al. Atropine: effects on glucose metabolism. Aviat Space Environ Med. 1990; 61(5):424–429.; Miller AW, Sims JJ, Canavan A, et al. Impaired vagal reflex activity in insulin-resistant rats. J Cardiovasc Pharmacol. 1999; 33(5):698–702. DOI:10.1097/00005344199905000-00004.; Souza HC, Ballejo G, Salgado MC, et al. Cardiac sympathetic overactivity and decreased baroreflex sensitivity in L-NAME hypertensive rats. Am J Physiol Heart Circ Physiol. 2001; 280(2):H844–850. DOI:10.1152/ajpheart.2001.280.2.H844.; Formes KJ, Wray DW, O-Yurvati AH, et al. Sympathetic cardiac influence and arterial blood pressure instability. Auton Neurosci. 2005; 118(1–2):116–124. DOI:10.1016/j.autneu.2005.01.002.; Haberthür C, Schächinger H, Langewitz W, et al. Effect of beta blockade with and without sympathomimetic activity (ISA) on sympathovagal balance and baroreflex sensitivity. Clin Physiol. 1999; 19(2):143–152. DOI:10.1046/j.1365-2281.1999.00162.x.; Joannides R, Moore N, Iacob M, et al. Comparative effects of ivabradine, a selective heart rate-lowering agent, and propranolol on systemic and cardiac haemodynamics at rest and during exercise. Br J Clin Pharmacol. 2006; 61(2):127–137. DOI:10.1111/j.1365-2125.2005.02544.x.; Hart EC, Charkoudian N, Wallin BG, et al. Sex and ageing differences in resting arterial pressure regulation: the role of the β-adrenergic receptors. J Physiol. 2011; 589(Pt 21):5285–5297. DOI:10.1113/jphysiol.2011.212753.; Nagata Y. Flecainide augments muscle sympathetic nerve activity in humans. Circ J. 2002; 66(4):377–381. DOI:10.1253/circj.66.377.; Jacobsen TN, Converse RL Jr, Victor RG. Contrasting effects of propranolol on sympathetic nerve activity and vascular resistance during orthostatic stress. Circulation. 1992; 85(3):1072–1076. DOI:10.1161/01.cir.85.3.1072.; Pichot V, Gaspoz JM, Molliex S, et al. Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. J Appl Physiol (1985). 1999; 86(3):1081–1091. DOI:10.1152/jappl.1999.86.3.1081.; Limberg JK, Malterer KR, Matzek LJ, et al. Resting sympathetic activity is associated with the sympathetically mediated component of energy expenditure following a meal. Physiol Rep. 2017; 5(16):e13389. DOI:10.14814/phy2.13389.; Machackova J, Sanganalmath SK, Barta J, et al. Amelioration of cardiac remodeling in congestive heart failure by beta-adrenoceptor blockade is associated with depression in sympathetic activity. Cardiovasc Toxicol. 2010; 10(1):9–16. DOI:10.1007/s12012-009-9058-y.; Keeton TK, Biediger AM. Propranolol and atenolol inhibit norepinephrine spillover rate into plasma in conscious spontaneously hypertensive rats.Naunyn Schmiedebergs Arch Pharmacol. 1991; 344(1):47–55. DOI:10.1007/BF00167382.; Majcherczyk S, Mikulski A, Sjölander M, et al. Increase of renal sympathetic nerve activity by metoprolol or propranolol in conscious spontaneously hypertensive rats. Br J Pharmacol. 1987; 91(4):711–714. DOI:10.1111/j.14765381.1987.tb11267.x.; Han P, Shen FM, Xie HH, et al. The combination of atenolol and amlodipine is better than their monotherapy for preventing end-organ damage in different types of hypertension in rats. J Cell Mol Med. 2009; 13(4):726–734. DOI:10.1111/j.1582-4934.2008.00365.x.; Ling G, Liu AJ, Shen FM, et al. Effects of combination therapy with atenolol and amlodipine on blood pressure control and stroke prevention in stroke-prone spontaneously hypertensive rats. Acta Pharmacol Sin. 2007; 28(11):1755–1760. DOI:10.1111/j.1745-7254.2007.00630.x.; Xie HH, Shen FM, Zhang XF, et al. Blood pressure variability, baroreflex sensitivity and organ damage in spontaneously hypertensive rats treated with various antihypertensive drugs. Eur J Pharmacol. 2006; 543(1– 3):77–82. DOI:10.1016/j.ejphar.2006.05.034.; Latini R, Masson S, Jeremic G, et al. Comparative efficacy of a DA2/alpha2 agonist and a beta-blocker in reducing adrenergic drive and cardiac fibrosis in an experimental model of left ventricular dysfunction after coronary artery occlusion. J Cardiovasc Pharmacol. 1998; 31(4):601–608. DOI:10.1097/00005344-199804000-00020.; Tank J, Diedrich A, Szczech E, et al. Alpha-2 adrenergic transmission and human baroreflex regulation. Hypertension. 2004; 43(5):1035–1041. DOI:10.1161/01.HYP.0000125729.90521.94.; Furlan R, Ardizzone S, Palazzolo L, et al. Sympathetic overactivity in active ulcerative colitis: effects of clonidine. Am J Physiol Regul Integr Comp Physiol. 2006; 290(1):R224–232. DOI:10.1152/ajpregu.00442.2005.; Taittonen MT, Aantaa R, Kirvelä OA. Effect of clonidine on changes in plasma catecholamine concentrations and oxygen consumption caused by the cold pressor test. Br J Anaesth. 1998; 81(2):140–144. DOI:10.1093/bja/81.2.140.; Lazzeri C, La Villa G, Mannelli M, et al. Effects of clonidine on power spectral analysis of heart rate variability in mild essential hypertension. J Auton Nerv Syst. 1998; 74(2-3):152–159. DOI:10.1016/s0165-1838(98)00148-9.; Muzi M, Goff DR, Kampine JP, et al. Clonidine reduces sympathetic activity but maintains baroreflex responses in normotensive humans. Anesthesiology. 1992; 77(5):864–871. DOI:10.1097/00000542-199211000-00005.; Harron DW, Riddell JG, Shanks RG. Effects of azepexole and clonidine on baroreceptor mediated reflex bradycardia and physiological tremor in man. Br J Clin Pharmacol. 1985; 20(5):431–436. DOI:10.1111/j.13652125.1985.tb05093.x.; Guthrie GP Jr, Kotchen TA. Effects of prazosin and clonidine on sympathetic and baroreflex function in patients with essential hypertension. J Clin Pharmacol. 1983; 23(8–9):348–354. DOI:10.1002/j.1552-4604.1983.tb02747.x.; King KA, Pang CC. Differential cardiovascular effects of central clonidine and B-HT 920 in conscious rats. Can J Physiol Pharmacol. 1988; 66(11):1455–1460. DOI:10.1139/y88-237.; Kawasaki H, Yamamoto R, Takasaki K. Possible mechanisms underlying the hypertensive response to clonidine in freely moving, normotensive rats. Jpn J Pharmacol. 1986; 42(3):405–417. DOI:10.1254/jjp.42.405.; Chang AP, Dillard M, Dixon WR. Effect of naloxone on blood pressure responses and plasma catecholamine levels following clonidine injection in conscious, unrestrained rats. J Cardiovasc Pharmacol. 1989; 13(2):277–282. DOI:10.1097/00005344-19890200000016.; Szabo B, Fritz T, Wedzony K. Effects of imidazoline antihypertensive drugs on sympathetic tone and noradrenaline release in the prefrontal cortex. Br J Pharmacol. 2001; 134(2):295–304. DOI:10.1038/sj.bjp.0704237.; Wang WZ, Wang LG, Gao L, et al. Contribution of AMPA/kainate receptors in the rostral ventrolateral medulla to the hypotensive and sympathoinhibitory effects of clonidine. Am J Physiol Regul Integr Comp Physiol. 2007; 293(3):R1232–1238. DOI:10.1152/ajpregu.00233.2007.; Yamazato M, Sakima A, Nakazato J, et al. Hypotensive and sedative effects of clonidine injected into the rostral ventrolateral medulla of conscious rats. Am J Physiol Regul Integr Comp Physiol. 2001; 281(6):R1868– 1876. DOI:10.1152/ajpregu.2001.281.6.R1868.; Цырлин В.А., Кузьменко Н.В., Плисс М.Г. Адренергические и имидазолиновые механизмы центральной регуляции кровообращения у крыс разных линий. Российский физиологический журнал. 2016; 102(4): 442–453.; Ma XJ, Shen FM, Liu AJ, et al. Clonidine, moxonidine, folic acid, and mecobalamin improve baroreflex function in stroke-prone, spontaneously hypertensive rats. Acta Pharmacol Sin. 2007; 28(10):1550–1558. DOI:10.1111/j.1745-7254.2007.00644.x.; El-Mas MM. Facilitation of reflex bradycardia does not contribute to the enhanced hypotensive effect of clonidine in aortic barodenervated rats. J Cardiovasc Pharmacol. 1998; 31(6):869–875. DOI:10.1097/00005344199806000-00010.; Garty M, Deka-Starosta A, Chang P, et al. Effects of clonidine on renal sympathetic nerve activity and norepinephrine spillover. J Pharmacol Exp Ther. 1990; 254(3):1068–1075.; Tank J, Jordan J, Diedrich A, et al. Clonidine improves spontaneous baroreflex sensitivity in conscious mice through parasympathetic activation. Hypertension. 2004; 43(5):1042–1047. DOI:10.1161/01.HYP.0000125884.49812.72.; El-Mas MM, Abdel-Rahman AA. Intermittent clonidine regimen abolishes tolerance to its antihypertensive effect: a spectral study. J Cardiovasc Pharmacol. 2007; 49(3):174–181. DOI:10.1097/FJC.0b013e3180318afb.; Robertson D, Goldberg MR, Tung CS, et al. Use of alpha 2 adrenoreceptor agonists and antagonists in the functional assessment of the sympathetic nervous system. J Clin Invest. 1986; 78(2):576–581. DOI:10.1172/JCI112611.; Le Corre P, Parmer RJ, Kailasam MT, et al. Human sympathetic activation by alpha2-adrenergic blockade with yohimbine: Bimodal, epistatic influence of cytochrome P450-mediated drug metabolism. Clin Pharmacol Ther. 2004; 76(2):139–153. DOI:10.1016/j.clpt.2004.04.010.; Tank J, Heusser K, Diedrich A, et al. Yohimbine attenuates baroreflex-mediated bradycardia in humans. Hypertension. 2007; 50(5):899–903. DOI:10.1161/HYPERTENSIONAHA.107.095984.; Lenders JW, Golczynska A, Goldstein DS. Glucocorticoids, sympathetic activity, and presynaptic alpha 2-adrenoceptor function in humans. J Clin Endocrinol Metab. 1995; 80(6):1804–1808. DOI:10.1210/jcem.80.6.7775627.; Grossman E, Rea RF, Hoffman A, et al. Yohimbine increases sympathetic nerve activity and norepinephrine spillover in normal volunteers. Am J Physiol. 1991; 260(1 Pt 2):R142–147. DOI:10.1152/ajpregu.1991.260.1.R142.; Bharucha AE, Charkoudian N, Andrews CN, et al. Effects of glucagon-like peptide-1, yohimbine, and nitrergic modulation on sympathetic and parasympathetic activity in humans. Am J Physiol Regul Integr Comp Physiol. 2008; 295(3):R874–880. DOI:10.1152/ajpregu.00153.2008.; Moak JP, Goldstein DS, Eldadah BA, et al. Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm. 2007; 4(12):1523–1529. DOI:10.1016/j.hrthm.2007.07.019.; Maignan E, Legrand M, Aboulfath I, et al. Norepinephrine kinetics in freely moving rats. Am J Physiol Endocrinol Metab. 2001; 281(4):E726–735. DOI:10.1152/ajpendo.2001.281.4.E726.; Tjurmina OA, Goldstein DS, Palkovits M, et al. Alpha2-adrenoceptor-mediated restraint of norepinephrine synthesis, release, and turnover during immobilization in rats. Brain Res. 1999; 826(2):243–252. DOI:10.1016/s00068993(99)01281-0.; Kuo YJ, Keeton TK. Is the sympathoexcitatory effect of yohimbine determined by brain yohimbine concentration? Naunyn Schmiedebergs Arch Pharmacol. 1991; 344(3):308–313. DOI:10.1007/BF00183005.; Purkayastha S, Saxena A, Eubank WL, et al. α1-Adrenergic receptor control of the cerebral vasculature in humans at rest and during exercise. Exp Physiol. 2013; 98(2):451–461. DOI:10.1113/expphysiol.2012.066118.; Grassi G, Seravalle G, Stella ML, et al. Sympathoexcitatory responses to the acute blood pressure fall induced by central or peripheral antihypertensive drugs. Am J Hypertens. 2000; 13(1 Pt 1):29–34. DOI:10.1016/s0895-7061(99)00150-8.; Moore N, Fresel J, Joannidès R, et al. A comparison of the hemodynamic effects of urapidil, prazosin, and clonidine in healthy volunteers. Blood Press Suppl. 1994; 4:7–12.; Mazzeo RS, Dubay A, Kirsch J, et al. Influence of alpha-adrenergic blockade on the catecholamine response to exercise at 4,300 meters. Metabolism. 2003; 52(11):1471– 1477. DOI:10.1016/s0026-0495(03)00259-2.; Keeton TK, Biediger AM. The differential effects of prazosin and hydralazine on sympathoadrenal activity in conscious rats. Eur J Pharmacol. 1989; 164(3):479–486. DOI:10.1016/0014-2999(89)90255-0.; Zhang ZH, Felder RB. Hypothalamic corticotrophin-releasing factor and norepinephrine mediate sympathetic and cardiovascular responses to acute intracarotid injection of tumour necrosis factor-alpha in the rat. J Neuroendocrinol. 2008; 20(8):978–87. DOI:10.1111/j.1365-2826.2008.01750.x.; Farah VM, Joaquim LF, Morris M. Stress cardiovascular/autonomic interactions in mice. Physiol Behav. 2006; 89(4):569–575. DOI:10.1016/j.physbeh.2006.07.015.; Laude D, Baudrie V, Elghozi JL. Applicability of recent methods used to estimate spontaneous baroreflex sensitivity to resting mice. Am J Physiol Regul Integr Comp Physiol. 2008; 294(1):R142–150. DOI:10.1152/ ajpregu.00319.2007.; Jones PP, Spraul M, Matt KS, et al. Gender does not influence sympathetic neural reactivity to stress in healthy humans. Am J Physiol. 1996; 270(1Pt2):H350–357. DOI:10.1152/ajpheart.1996.270.1.H350.; Ng AV, Callister R, Johnson DG, et al. Sympathetic neural reactivity to stress does not increase with age in healthy humans. Am J Physiol. 1994; 267(1 Pt 2):H344–353. DOI:10.1152/ajpheart.1994.267.1.H344.; Trico D, Fanfani A, Varocchi F, et al. Endocrine and haemodynamic stress responses to an arithmetic cognitive challenge. Neuro Endocrinol Lett. 2017; 38(3):182– 186.; Punita P, Saranya K, Kumar SS. Gender difference in heart rate variability in medical students and association with the level of stress. Natl J Physiol Pharm Pharmacol. 2016; 6:431–437. DOI:10.5455/njppp.2016.6.0102325042016; Goldstein DS, Kopin IJ. Adrenomedullary, adrenocortical, and sympathoneural responses to stressors: a meta-analysis. Endocr Regul. 2008; 42(4):111–119.; Dampney RAL. Resetting of the Baroreflex Control of Sympathetic Vasomotor Activity during Natural Behaviors: Description and Conceptual Model of Central Mechanisms. Front Neurosci. 2017; 11:461. DOI:10.3389/fnins.2017.00461.; Järvelin-Pasanen S, Sinikallio S, Tarvainen MP. Heart rate variability and occupational stress-systematic review. Ind Health. 2018; 56(6):500–511. DOI:10.2486/ indhealth.2017-0190.; Crestani CC. Emotional Stress and Cardiovascular Complications in Animal Models: A Review of the Influence of Stress Type. Front Physiol. 2016;7:251. DOI:10.3389/fphys.2016.00251.; Kanbar R, Oréa V, Barrès C, et al. Baroreflex control of renal sympathetic nerve activity during air-jet stress in rats. Am J Physiol Regul Integr Comp Physiol. 2007; 292(1):R362–367. DOI:10.1152/ajpregu.00413.2006.; Mayorov DN, Head GA. Ionotropic glutamate receptors in the rostral ventrolateral medulla mediate sympathetic responses to acute stress in conscious rabbits. Auton Neurosci. 2002 Jun 28;98(1-2):20–3. DOI:10.1016/s1566-0702(02)00024-3.; Inagaki H, Kuwahara M, Tsubone H. Effects of psychological stress on autonomic control of heart in rats. Exp Anim. 2004; 53(4):373–378. DOI:10.1538/expanim.53.373.; Franzini de Souza CC, Maccariello CE, Dias DP, et al. Autonomic, endocrine and behavioural responses to thunder in laboratory and companion dogs. Physiol Behav. 2017; 169:208–215. DOI:10.1016/j.physbeh.2016.12.006.; Iellamo F, Pizzinelli P, Massaro M, et al. Muscle metaboreflex contribution to sinus node regulation during static exercise: insights from spectral analysis of heart rate variability. Circulation. 1999; 100(1):27–32. DOI:10.1161/01.cir.100.1.27.; Kingsley JD, Figueroa A. Acute and training effects of resistance exercise on heart rate variability. Clin Physiol Funct Imaging. 2016; 36(3):179–187. DOI:10.1111/cpf.12223.; Yeung PK, Feng JD, Fice D. Exercise hemodynamic and neurohormone responses as sensitive biomarkers for diltiazem in rats. J Pharm Pharm Sci. 2006; 9(2):245–251.; Koba S, Yoshida T, Hayashi N. Renal sympathetic and circulatory responses to activation of the exercise pressor reflex in rats. Exp Physiol. 2006; 91(1):111–119. DOI:10.1113/expphysiol.2005.031666.; Jamurtas AZ, Goldfarb AH, Chung SC, et al. Beta-endorphin infusion during exercise in rats: blood metabolic effects. Med Sci Sports Exerc. 2000; 32(9):1570– 1575. DOI:10.1097/00005768-200009000-00007.; Maeda S, Miyauchi T, Kobayashi T, et al. Exercise causes tissue-specific enhancement of endothelin-1 mRNA expression in internal organs. J Appl Physiol (1985). 1998; 85(2):425–431. DOI:10.1152/jappl.1998.85.2.425.; Tadjoré M, Bergeron R, Latour M, et al. Effects of dietary manipulations and glucose infusion on glucagon response during exercise in rats. J Appl Physiol (1985). 1997; 83(1):148–152. DOI:10.1152/jappl.1997.83.1.148.; Miki K, Kosho A, Hayashida Y. Method for continuous measurements of renal sympathetic nerve activity and cardiovascular function during exercise in rats. Exp Physiol. 2002; 87(1):33–39. DOI:10.1113/eph8702281.; Кузьменко Н.В., Цырлин В.А., Плисс М.Г. Предикторы и маркеры развития экспериментальной вазоренальной гипертензии в модели «2 почки, 1 зажим». Артериальная гипертензия. 2018; 24(4):416–426. DOI:10.18705/1607-419X-2018-24-4-416426; Кузьменко Н.В., Князева А.А., Головкин А.С. и др. К анализу возможных механизмов развития унилатеральной вазоренальной гипертензии. Российский физиологический журнал. 2017; 103 (12): 1377–1394.; Liu Y, Tao T, Li W, et al. Regulating autonomic nervous system homeostasis improves pulmonary function in rabbits with acute lung injury. BMC Pulm Med. 2017; 17(1):98. DOI:10.1186/s12890-017-0436-0.; Taylor JA, Myers CW, Halliwill JR, et al. Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans. Am J Physiol Heart Circ Physiol. 2001; 280(6):H2804–2814. DOI:10.1152/ajpheart.2001.280.6.H2804.; Cohen MA, Taylor JA. Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. J Physiol. 2002; 542(Pt 3):669–683. DOI:10.1113/jphysiol.2002.017483.; Hayano J, Mukai S, Sakakibara M, et al. Effects of respiratory interval on vagal modulation of heart rate. Am J Physiol. 1994; 267(1Pt2):H33–40. DOI:10.1152/ajpheart.1994.267.1.H33.; Плисс М.Г., Кузьменко Н.В., Князева А.А. и др. Влияние качества лабораторных крыс на динамику параметров при развитии вазоренальной гипертензии в модели «2 почки, 1 зажим». Трансляционная медицина. 2018; 5(5):53–61.] DOI:10.18705/2311-4495-2018-5-5-53-61.; Кузьменко Н.В., Щербин Ю.И., Плисс М.Г. и др. Характер изменения симпатической активности к сердцу и сосудам при развитии экспериментальной вазоренальной гипертензии (2 почки — 1 зажим). Артериальная гипертензия. 2014; 20(6): 513–521.] DOI:10.18705/1607-419X-2014-20-6-515-521.; Mann MC, Exner DV, Hemmelgarn BR, et al. Impact of gender on the cardiac autonomic response to angiotensin II in healthy humans. J Appl Physiol (1985). 2012; 112(6):1001–1007. DOI:10.1152/japplphysiol.01207.2011.; Bonaduce D, Marciano F, Petretta M, et al. Effects of converting enzyme inhibition on heart period variability in patients with acute myocardial infarction. Circulation. 1994; 90(1):108–113. DOI:10.1161/01.cir.90.1.108.; Polson JW, Dampney RA, Boscan P, et al. Differential baroreflex control of sympathetic drive by angiotensin II in the nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol. 2007; 293(5):R1954–1960. DOI:10.1152/ajpregu.00041.2007.; Zimmerman JB, Robertson D, Jackson EK. Angiotensin II-noradrenergic interactions in renovascular hypertensive rats. J Clin Invest. 1987; 80(2):443–457. DOI:10.1172/JCI113092.; Kurjanova EV, Teplyj DL. Influence of central neurotransmitters on heart rate variability in outbred rats at rest and during acute stress: nature of very-low-wave spectrum component revisited. Bull Exp Biol Med. 2010; 149(1):10–13. English, Russian. DOI:10.1007/s10517-0100862-y.; Баевский Р.М., Иванов Г.Г., Чирейкин Л.В и др. Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем (методические рекомендации). Вестник аритмологии. 2001; 24: 65–87.; Coote JH, Chauhan RA. The sympathetic innervation of the heart: Important new insights. Auton Neurosci. 2016; 199:17–23. DOI:10.1016/j.autneu.2016.08.014.; Montano N, Cogliati C, da Silva VJ, et al. Effects of spinal section and of positive-feedback excitatory reflex on sympathetic and heart rate variability. Hypertension. 2000; 36(6):1029–1034. DOI:10.1161/01.hyp.36.6.1029.; Barman SM, Gebber GL, Calaresu FR. Differential control of sympathetic nerve discharge by the brain stem. Am J Physiol. 1984; 247(3Pt2):R513–519. DOI:10.1152/ajpregu.1984.247.3.R513.; Kamiya A, Kawada T, Yamamoto K, et al. Dynamic and static baroreflex control of muscle sympathetic nerve activity (SNA) parallels that of renal and cardiac SNA during physiological change in pressure. Am J Physiol Heart Circ Physiol. 2005; 289(6):H2641–2648. DOI:10.1152/ajpheart.00642.2005.; Henderson LA, James C, Macefield VG. Identification of sites of sympathetic outflow during concurrent recordings of sympathetic nerve activity and fMRI. Anat Rec (Hoboken). 2012; 295(9):1396–1403. DOI:10.1002/ar.22513.; Osborn JW, Jacob F, Guzman P. A neural set point for the long-term control of arterial pressure: beyond pressor reflex in rats. Exp Physiol. 2006; 91(1):111–119. DOI:10.1113/expphysiol.2005.031666.; Behar JA, Rosenberg AA, Weiser-Bitoun I, et al. PhysioZoo: A Novel Open Access Platform for Heart Rate Variability Analysis of Mammalian Electrocardiographic Data. Front Physiol. 2018;9:1390. DOI:10.3389/fphys.2018.01390.; Behar JA, Rosenberg AA, Shemla O, et al. A Universal Scaling Relation for Defining Power Spectral Bands in Mammalian Heart Rate Variability Analysis. Front Physiol. 2018; 9:1001. DOI:10.3389/fphys.2018.01001.; von Borell E, Langbein J, Després G, et al. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals — a review. Physiol Behav. 2007; 92(3):293–316. DOI:10.1016/j.physbeh.2007.01.007.; Mahdiani S, Jeyhani V, Peltokangas M, et al. Is 50 Hz high enough ECG sampling frequency for accurate HRV analysis? Annu Int Conf IEEE Eng Med Biol Soc. 2015; 2015:5948–5951. DOI:10.1109/EMBC.2015.7319746.; Kwon O, Jeong J, Kim HB, et al. Electrocardiogram Sampling Frequency Range Acceptable for Heart Rate Variability Analysis. Healthc Inform Res. 2018; 24(3):198– 206. DOI:10.4258/hir.2018.24.3.198.; Hintsala H, Kenttä TV, Tulppo M, et al. Cardiac repolarization and autonomic regulation during shortterm cold exposure in hypertensive men: an experimental study. PLoS One. 2014; 9(7):e99973. DOI:10.1371/journal.pone.0099973.; Liu YP, Lin YH, Chen YC, et al. Spectral analysis of cooling induced hemodynamic perturbations indicates involvement of sympathetic activation and nitric oxide production in rats. Life Sci. 2015; 136:19–27. DOI:10.1016/j. lfs.2015.06.011.; Кузьменко Н.В., Рубанова Н.С., Плисс М.Г. и др. Адаптивные способности сердечно-сосудистой системы нормотензивных крыс разного возраста при колебаниях температуры воздуха и атмосферного давления. Авиакосмическая и экологическая медицина. 2022; 56 (3): 25–32. DOI:10.21687/0233-528X-2022-56-3-25-32.; Palmer SJ, Rycroft MJ, Cermack M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys. 2006; 27(5): 557–595. DOI:10.1007/S10712006-9010-7.; Bilan A, Witczak A, Palusiński R, et al. Circadian rhythm of spectral indices of heart rate variability in healthy subjects. J Electrocardiol. 2005; 38(3):239–243. DOI:10.1016/j.jelectrocard.2005.01.012.; Markov A, Solonin I, Bojko E. Heart rate variability in workers of various professions in contrasting seasons of the year. Int J Occup Med Environ Health. 2016; 29(5):793–800. DOI:10.13075/ijomeh.1896.00276.; Кузьменко Н.В., Рубанова Н.С., Плисс М.Г. и др. Функционирование сердечно-сосудистой системы лабораторных крыс в условиях сезонных колебаний атмосферного давления и геомагнитной активности. Российский физиологический журнал. 2018; 104 (4): 477–492.; Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci Biobehav Rev. 2016; 64:288–310. DOI:10.1016/j.neubiorev.2016.03.007.; Drenjancevic I, Grizelj I, Harsanji-Drenjancevic I, et al. The interplay between sympathetic overactivity, hypertension and heart rate variability (review, invited). Acta Physiol Hung. 2014; 101(2):129–142. DOI:10.1556/APhysiol.101.2014.2.1.; Spallone V. Update on the Impact, Diagnosis and Management of Cardiovascular Autonomic Neuropathy in Diabetes: What Is Defined, What Is New, and What Is Unmet. Diabetes Metab J. 2019; 43(1):3–30. DOI:10.4093/dmj.2018.0259.; Kohara K, Hara-Nakamura N, Hiwada K. Left ventricular mass index negatively correlates with heart rate variability in essential hypertension. Am J Hypertens. 1995; 8(2):183–188. DOI:10.1016/0895-7061(94)00190-M.; Кушкова Н.Е., Спицин А.П., Негодяева И.Л. Влияние дыхания с заданной частотой на вариабельность сердечного ритма у лиц с различным исходным вегетативным статусом. Пермский медицинский журнал. 2007; 4: 80–85.; Деваев Н.П., Суворов В.В. Влияние психоэмоционального стресса на регуляцию сердечного ритма у студенток. Российский медико-биологический вестник им. акад. И.П. Павлова. 2010; 1: 131–135.; Красникова И.В., Красников Г.В., Пискунова Г.М. Влияние ментального стресса на сердечный ритм студентов с различными вегетотипами. Известия ТулГУ. Естественные науки. 2017; 4: 73–81.; Porges SW. Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A Polyvagal Theory. Psychophysiology. 1995; 32(4):301–318. DOI:10.1111/j.1469-8986.1995.tb01213.x.; Porges SW. Cardiac vagal tone: a physiological index of stress. Neurosci Biobehav Rev. 1995; 19(2):225– 233. DOI:10.1016/0149-7634(94)00066-a.; https://transmed.almazovcentre.ru/jour/article/view/686

  3. 3
    Academic Journal
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    المصدر: Translational Medicine; Том 4, № 6 (2017); 13-21 ; Трансляционная медицина; Том 4, № 6 (2017); 13-21 ; 2410-5155 ; 2311-4495 ; 10.18705/2311-4495-2017-4-6

    وصف الملف: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/343/280; Palmer SJ, Rycroft MJ, Cermack M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fi elds and human health at the Earth’s surface. Surv Geophys. 2006; 27 (5): 557–595.; Otsuka K, Cornélissen G, Weydahl A, et al. Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed Pharmacother. 2001; 55 (1): 51–56.; Vencloviene J, Babarskiene R, Milvidaite I, et al. The effect of solar-geomagnetic activity during and after admission on survival in patients with acute coronary syndromes. Int J Biometeorol. 2014; 58 (6): 1295–1303.; Gmitrov J, Ohkubo C. Artifi cial static and geomagnetic fi eld interrelated impact on cardiovascular regulation. Bioelectromagnetics. 2002; 23 (5): 329–338.; Stoupel E. The effect of geomagnetic activity on cardiovascular parameters. Biomed Pharmacother. 2002; 56 (Suppl 2): 247s–256s.; Varakin YY, Ionova VG, Sazanova EA, Sergeenko NP. Changes of catecholamins and rheological characteristics of human blood under infl uence of heliogeophysical factors. Human Ecology journal. 2013; 7: 27–33. In Russian. [Варакин Ю.Я., Ионова В.Г., Сазанова Е.А., Сергеенко Н. П. Изменения катехоламинов и реологических характеристик крови людей под воздействием гелиогеофизических факторов. Экология человека. 2013; 7: 27–33].; Gurfi nkel’ IuI, Liubimov VV, Oraevskiĭ VN, et al. The effect of geomagnetic disturbances in capillary blood fl ow in ischemic heart disease patients. Biofi zika. 1995; 40 (4):793–799.; Ptitsyna NG, Villoresi G, Dorman LI, et al. Natural and man-made low-frequency magnetic fi elds as a potential health hazar. Phys. Usp. 1998; 168 (7): 767–791. In Russian. [Птицина Н.Г., Виллорези Д., Дорман Л.И., и др. Естественные и техногенные низкочастотные магнитные поля как факторы потенциально опасные для здоровья (обзор). Успехи физ. Наук. 1998; 168 (7): 767–791].; Space weather prediction center. http://www.swpc.noaa.gov/ Observation. Planetary K-index. Data. SWPC also maintains tables of geomagnetic indeces, including the Planetary K-index, back to 1994. ftp://ftp.swpc.noaa.gov/pub/indices/old_indices/; Currie RG. The geomagnetic spectrum: 40 days to 5.5 years. J. Geophys. Res. 1966; 71: 4579–4598.; Russell CT, McPherron RL. Semiannual variation of geomagnetic activity. J. Geophys. Res. 1973; 78: 92–108.; Clua de Gonzalez A, Silbergleit VM, Gonzalez WD, Tsurutani BT. Annual variation of geomagnetic activity. J. Atmos. Sol. Terr. Phys. 2001; 63 (4): 367–374.; Patowary R, Singh SB, Bhuyan K. A study of seasonal variation of geomagnetic activity. Res. J. Phy. And Appl. Sci. 2013; 2 (1): 001–011.; McIntosh DH. On the annual variation of magnetic disturbance. Phil.Trans. Roy. Soc. London. Ser. 1959; 251 (1001): 525–552.; Boller BR, Stolov R. Semiannual Variation of Geomagnetic Activity. J. Geophys. Res. 1970; 75(1): 92–108.; Карпин В.А., Шувалова О. И., Гудков А. Б. Клиническое течение артериальной гипертензии в экологических условиях урбанизированного Севера. Экология человека. 2011; 10: 48-52. [Karpin VA, Shuvalov OI, Gudkov AB. Essential hypertension course in ecological conditions of urban north. Human Ecology. 2011; 10: 48–52. In Russian].; Obridko VN, Kanonidi KD, Mitrofanova TA, Shelting BD. Solar activity and geomagnetic disturbations. Geomagnetism and aeronomy. 2013; 53 (2): 157–166. In Russian. [Обридко В.Н., Канониди Х.Д., Митрофанова Т.А., Шельтинг Б.Д. Солнечная активность и геомагнитные возмущения. Геомагнетизм и Аэрономия. 2013; 53 (2): 157–166.].; European health for all database. http://data.euro.who.int/hfadb/.; Lipa BJ, Sturrock PA, Rogot E. Search for correlation between geomagnetic disturbances and mortality. Nature. 1976; 259: 302–304.; Messner T, Haggstrom I, Sandahl I, Lundberg V. No covariation between the geomagnetic activity and the incidence of acute myocardial infarction in the polar area of northern Sweden. Int J Biometerol. 2002; 46 (2): 90–94.; Malin SRC, Srivastava BJ. Correlation between heart attacks and magnetic activity. Nature. 1979; 277: 646–648.; Stoupel E, Abramson E, Sulkes J, et al. Relationship between suicide and myocardial infarction with regard to changing physical environmental conditions. Int J Biometerol. 1995; 38 (4): 199–203.; Vencloviene J, Babarskiene R, Milvidaite I, et al. The effect of solar-geomagnetic activity during and after admission on survival in patients with acute coronary syndromes. Int J Biometeorol. 2014; 58 (6): 1295–303.; Gurfinkel’ IuI, Liubimov VV, Oraevskii VN, et al. The effect of geomagnetic disturbances in capilliary blood flow in ischemic heart disease patients (in Russian). Biofizika. 1995. 40 (4):793–799.; Corneґlissen G, Halberg F, Breus T, et al. Non-photic solar associations of heart rate variabilityand myocardial infarction. J Atmos Sol-Terr Phys. 2002; 64:707–720.; Shumilov OI, Kasatkina EA, Enykeev AV, Chramov AV. Study of geomagnetic activity influence on a fetal state using cardiotocography. Biophysics. 2003; 48 (2): 355–360.; Wilkins E, Wilson L, Wickramasinghe K, et al. European Cardiovascular Disease Statistics 2017. European Heart Network, Brussels. 2017; 188 р.; https://transmed.almazovcentre.ru/jour/article/view/343

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20