-
1Academic Journal
المصدر: Revista de la Facultad de Medicina Veterinaria y de Zootecnia; Vol. 69 Núm. 1 (2022) ; Revista de la Facultad de Medicina Veterinaria y de Zootecnia; Vol. 69 No. 1 (2022) ; Revista de la Facultad de Medicina Veterinaria y de Zootecnia; v. 69 n. 1 (2022) ; 2357-3813 ; 0120-2952
مصطلحات موضوعية: IMTA, nutrientes, organismos, producción, sostenibilidad, acuicultura, nutrients, organisms, production, sustainability, aquaculture
وصف الملف: application/pdf
Relation: https://revistas.unal.edu.co/index.php/remevez/article/view/101539/82904; Al-Hafedh YS, Alami A, Beltagi MS. 2008. Food production and water conservation in a recirculating aquaponic system in Saudi Arabia at different ratios of fish feed to plants. J. World Aquacult Soc. 39 (4):510-520. https://doi.org/10.1111/j.1749-7345.2008.00181.x Alonso MÁ, Crespo MB. 2008. Taxonomic and nomenclatural notes on South American taxa of Sarcocornia. (Chenopodiaceae). Ann. Bot. Fenn. 45:241-254. https://doi.org/10.5735/085.045.0401 Álvarez D, Rodríguez S, Maulvault, AL, Tediosi A, Fernández M, Van den Heuvel F. 2015. Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. Environl Res. 143(Part B):56-64. https://doi.org/10.1016/j.envres.2015.09.018 Amato BA, Rocha JL, Oliveira PH, Zacheu AC,Caio FM, Vinicius C, Vinatea LA. 2020. Integrated culture of white shrimp Litopenaeus vannamei and mullet Mugil liza on biofloc technology: Zootechnical performance, sludge generation, and Vibrio spp. Reduction. Aquaculture. https://doi.org/10.1016/j.aquaculture.2020.735234 Avnimelech Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture. 264:140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025 Avnimelech Y. 2009. Biofloc Technology: A practical Guide Book. Baton Rouge, Louisiana, USA: World Aquaculture Society. Avnimelech Y. 2015. Biofloc technology: A practical Guide Book. 3rd edition. Baton Rouge, Louisiana, USA: World Aquaculture Society. Avnimelech Y, Ritvo G. 2003. Shrimp and fish pond soils: processes and management. Aquaculture 220:549-567. https://doi.org/10.1016/S0044-8486(02)00641-5 Barrington K, Chopin T & Robinson S. 2009. Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In Integrated mariculture: a global review. 529:7-46. Bertin RL, Gonzaga LV, Borges G, Azevedo MS, Maltez HF, Heller M, Micke GA, Tavares LBB, Fett R. 2014. Nutrient composition and identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC–ESI–MS/MS. Food Res. Int. 55:404-411. https://doi.org/10.1016/j.foodres.2013.11.036 Billard R, Servrin J. 1992. Les impacts negatifs de la piscicultured’ étang sur l’environnment. En: G Barnabe, P Kestemont, editores. Production, Environment and Quality. Europ. Aquaculture Soc. 18:17-29. Brown N, Eddy S, Plaud S. 2011. Utilization of waste from a marine recirculating fish culture system as a feed source for the polychaete worm, Nereis virens. Aquaculture. 322-323(C): 177-183. https://doi.org/10.1016/j.aquaculture.2011.09.017 Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche JA, Yarish C, Neefus C. 2001. Integrating seaweeds into marine aquaculture systems: A key toward sustainability. J. Phycol. 37:975-986. https://doi.org/10.1046/j.1529-8817.2001.01137.x Chopin T. 2006. Integrated Multi-Trophic Aquaculture. What it is and why you should care and don’t confuse it with polyculture. North. Aquaculture. 1-2. Chopin T, Robinson SMC, Troell M, Neori A,Fang J. 2008. Multitrophic Integration for Sustainable Marine Aquaculture. En: Jorgensen SE, Fath BD, editores. The Encyclopedia of Ecology, Ecological Engineering. Vol. 3. Oxford: Elsevier. p. 2463-2475. Chopin T, Cooper JA, Reid G, Cross S, Moore C. 2012. Open-water integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Aquaculture. 4(4):209- 220. https://doi.org/10.1111/j.1753-5131.2012.01074.x Chopin T. 2013. Integrated Multi-Trophic (IMTA). Marine Fisheries Enhancement: Coming of Age in the New Millennium. New Brunswick. 542-564 p. https://doi.org/10.1007/978-1-4614-5797-8_173 Chopin T. 2015. Marine Aquaculture in Canada: Well-Established Monocultures of Finfish and Shellfish and an Emerging Integrated Multi-Trophic Aquaculture (IMTA) Approach Including Seaweeds, Other Invertebrates, and Microbial Communities. Fisheries. 40(1):28-31. https://doi.org/10.1080/03632415.2014.986571 Cook EJ, Kelly MS. 2007. Enhanced production of the sea urchin Paracentrotus lividus in integrated open-water cultivation with Atlantic salmon Salmo salar. Aquaculture. 273: 573-585. https://doi.org/10.1016/j.aquaculture.2007.10.038 Corral-Rosales C, Ricque-Marie D, Cruz-Suárez LE, Arjona O, Palacios E. 2019. Fatty acids, sterols, phenolic compounds, and carotenoid changes in response to dietary inclusion of Ulva clathrata in shrimp Litopenaeus vannamei broodstock. J. Appl. Phycol. 31: 4009-4020. https://doi.org/10.1007/s10811-019-01829-2 Cortez GEP, Araújo JAC, Bellingieri PA, Dalri, AB. 2009. Qualidade química da água residual da criação de peixes para cultivo de alface em hidroponia. RBEAA. 13(4): 494-498 Cortés C, Gómez J, Santos M. 2011. Erizos de mar como control biológico del fouling en un cultivo de Nodipecten nodosus en el área de Santa Marta, Caribe colombiano. Bol. Invest. Mar. Cost. 40(2):233-247. Costa CS, Armstrong R, Detres Y, Koch EW, Bertiller M, Beeskow A, Neves LS, Tourn G.M, Bianciotto OA, Pinedo LB, Blessio AY, San Roman N. 2006. Effect of ultraviolet-B radiation on salt marsh vegetation: trends of the genus Salicornia along the Americas. Photochem. Photobiol. 82: 878-886. https://doi.org/10.1562/200510-30-RA-729 Crab R, Avnimelech Y, Defoirdt T, Bossier P, Verstraete W. 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture. 270:1-14. https://doi.org/10.1016/j.aquaculture.2007.05.006 Cubillo AM, Ferreira JG, Robinson SMC, Pearce CM, Corner RA, Johansen J. 2016. Role of deposit feeders in integrated multi-trophic aquaculture-A model analysis. Aquaculture. 453:54-66. https://doi.org/10.1016/j.aquaculture.2015.11.031 Diana JS. 2009. Aquaculture Production and Biodiversity Conservation. Bioscience, 59(1):27-38. https://doi.org/10.1525/bio.2009.59.1.7 Diver S. 2006. Aquaponics-Integration of Hydroponics with Aquaculture. ATTRA National Sustainable Agriculture Information Service. NCAT. 1-25. Ebeling JM, Timmons MB, Bisogni JJ. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic control of ammonia-nitrogen in aquaculture production systems. Aquaculture. 257(1-4):346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019 El-Sayed AFM. 2006. Tilapia Culture. Walling-ford (UK): CAB International. Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt, https://doi.org/10.1079/9780851990149.0000 Endut A, Jusoh A, Ali N, Nik WBW, Hassan A. 2010. A study on the optimal hydraulic loading rate and plant ratios in recirculation. Bioresour. Technol. 101(5):1511-1517. https://doi.org/10.1016/j.biortech.2009.09.040 Fernando CH, Halwart M. 2000. Possibilities for integration of fish farming into irrigation systems. Fisheries. Manag. Ecol. 7:45-54. https://doi.org/10.1046/j.1365-2400.2000.00188.x Fierro-Sañudo JF, Rodríguez-Montes de Oca GA, León-Cañedo JA, Alarcón-Silvas SG, Mariscal-Lagarda MM, Díaz-Valdés T, Páez-Osuna F. 2018. Production and management of shrimp (Penaeus vannamei) in co-culture with basil (Ocimum basilicum) using two sources of low salinity water. Lat. Am. J. Aquat. Ress. 46(1): 63-71. Flaherty M, Szuster BW, Mille P. 2000. Low salinity shrimp farming in Thailand. Ambio. 29: 174-179. Fleurence J. 1999. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Techno. 10(1):25-28. https://doi.org/10.1016/S0924-2244(99)000151 Fleurence J, Morançais M, Dumay J, Decottignies P, Turpin V, Munier M, Garcia-Bueno N, Jaouen P. 2012. What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci. Technol. 27:57-61. https://doi.org/10.1016/j.tifs.2012.03.004 Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytol. 179:945-963. https://doi.org/10.1111/j.1469-8137.2008.02531.x Food and Agriculture Organization of the United Nations (FAO). 2006-2018. Cultured Aquatic Species Information Programme. Mugilcephalus. Cultured Aquatic Species Information Programme. Text by Saleh, M. A. En: FAO Fisheries and Aquaculture Department [Internet, actualizado 2006, 7 abril]. Rome. [Consultado 2018, 14 de noviembre] Disponible en: http://www.fao.org/fishery/culturedspecies/Mugil_cephalus/en. Food and Agriculture Organization of the United Nations (FAO). 2009b. Integrated Mariculture: A Global Review. FAO, Fisheries and Aquaculture Technical Paper. 529:1-194. Food and Agriculture Organization of the United Nations (FAO), Fisheries and Aquaculture Department. 2014. The State of World Fisheries and Aquaculture, Roma: FAO. 1-243 p. Food and Agriculture Organization of the United Nations (FAO). 2016. The state of world fisheries and aquaculture. 4 p. Food and Agriculture Organization of the United Nations (FAO). 2018. The state of world fisheries and aquaculture, Contributing to Food Security and Nutrition for all. Roma: FAO. 76 p. Food and Agriculture Organization of the United Nations (FAO). 2020. The state of world fisheries and aquaculture. Roma: FAO. Gaona CA, Poersch LH, Krummenauer D, Foes GK, Wasielesky WJ. 2011. The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int. J. Recirc. Aquaculture. 12:54-73. https://doi.org/10.21061/ijra.v12i1.1354 Granada L, Sousa N, Lopes, Lemos MFL. 2016. Is integrated multitrophic aquaculture the solution to the sectors’ major challenges?: A review. Rev. Aquac. 8(3):283-300. https://doi.org/10.1111/raq.12093 Handa A, Ranheim A, Olsen AJ, Altin D, Reitan KI, Olsen Y. 2012. Incorporation of salmon fish feed and feces components in mussels (Mytilusedulis): implications for integrated multi-trophic aquaculture in cool-temperate North Atlantic waters. Aquaculture. 370-371:40-53. https://doi.org/10.1016/j.aquaculture.2012.09.030 Hannah L, Pearce CM, Cross SF. 2013. Growth and survival of California Sea cucumbers (Parastichopus californicus) cultivated with sablefish (Anoplopoma fimbria) at an integrated multi-trophic aquaculture site. Aquaculture. 406-407:34-42. https://doi.org/10.1016/j.aquaculture.2013.04.022 Kibria ASM, Haque MM. 2018. Potentials of integrated multi-trophic aquaculture (IMTA) in freshwater ponds in Bangladesh. Aquac Reports. 11:8-16. https://doi.org/10.1016/j.aqrep.2018.05.004 Kleitou P, Kletou D, David J. 2018. Is Europe ready for integrated multi-trophic aquaculture? A survey on the perspectives of European farmers and scientists with IMTA experience. Aquaculture. 490:136-148. https://doi.org/10.1016/j.aquaculture.2018.02.035 Knowler D, Chopin T, Martínez-Espiñeira R, Neori A, Nobre A, Noce A, Reid G. 2020. The economics of integrated multi-trophic aquaculture: where are we now and where do we need to go? Aquaculture. 1-16. https://doi.org/10.1111/raq.12399 Kümmerer K. 2009a. Antibiotics in the aquatic environment: A review-Part I. Chemosphere. 75(4):417-434. https://doi.org/10.1016/j.chemosphere.2008.11.086 Lamprianidou F, Telfer T, Ross L. 2015. A model for optimization of the productivity and bioremediation efficiency of marine integrated multitrophic aquaculture. Estuar. Coast. Shelf Sci.164: 253-264. https://doi.org/10.1016/j.ecss.2015.07.045 Lander TR, Robinson SMC, MacDonald BA, Martin JD. 2013. Characterization of the suspended organic particles released from salmon farms and their potential as a food supply for the suspension feeder, Mytilus edulis in integrated multitrophic aquaculture (IMTA) systems. Aquaculture. 406-407:160-171. https://doi.org/10.1016/j.aquaculture.2013.05.001 Legarda E, Poli MA, Martins-Aranha M, Pereira S, Martins M, Machado C, De Lorenzo M, Vieira FN. 2019. Integrated recirculating aquaculture system for mullet and shrimp using biofloc technology. Aquaculture. 512. https://doi.org/10.1016/j.aquaculture.2019.734308 Legarda E, Aranha M, Pereira S, Siqueira, RF, Pinheiro IC, Seiffert WQ, Vieira, FN. 2020. Shrimp rearing in biofloc integrated with different mullet stocking densities. Aquac. Res. https://doi.org/10.1111/are.14694 Legarda E, Viana MT, Del Río Zaragoza OB, Skrzynska AK, Braga A, De Lorenzo MA, Vieira FN. 2021. Effects on fatty acids profile of Seriola dorsalis muscle tissue fed diets supplemented with different levels of Ulva fasciata from an Integration Multi-Trophic Aquaculture system. Aquaculture. 535: 736414. https://doi.org/10.1016/j.aquaculture.2020.736265 Leston S, Nunes M, Viegas I, Lemos MFL, Freitas A, Barbosa J. 2011. The effects of the nitrofuran furaltadone on Ulva lactuca. Chemosphere. 82(7):1010-1016. https://doi.org/10.1016/j.chemosphere.2010.10.067 Leston S, Freitas A, Rosa J, Barbosa J, Lemos MFL, Pardal MÂ, Ramos, F. 2016. A multiresidue approach for the simultaneous quantification of antibiotics in macroalgae by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 1033-1034:61-367. https://doi.org/10.1016/j.jchromb.2016.09.009 Liang J, Chien Y. 2013. Effects of feeding frequency and photoperiod on water quality and crop production in a tilapia-water spinach raft aquaponics system. Int. Biodeterior. Biodegrad. 85:693-700. https://doi.org/10.1016/j.ibiod.2013.03.029 Licciano M, Stabili L, Giangrande A. 2005. Clearance rates of Sabella spallanzanii and Branchiomma luctuosum (Annelida: Polychaeta) on a pure culture of Vibrio alginolyticus. Water Res. 39: 4375-4384. https://doi.org/10.1016/j.watres.2005.09.003 Lodeiros C, García N. 2004. The use of sea urchins to control “fouling” during suspended culture of bivalves. Aquaculture. 231(1-4):293-298. https://doi.org/10.1016/j.aquaculture.2003.10.022 López C, Ponce JT, Castillo S, Puga D, Castillo LF, García M. 2017. Evaluation of two mix-cultures of white shrimp (Litopenaeus vannamei) with red tilapia hybrid and spotted rose snapper (Lutjanus guttatus) in intensive indoor brackish water tanks. Lat. Am. J. Aquac. Res. 45:922-929. https://doi.org/10.3856/vol45-issue5-fulltext-7 Love DC, Fry JP, Li X, Hill ES, Genello L, Semmens K, Thompson RE. 2015. Commercial aquaponics production and profitability: findings from an international survey. Aquaculure. 435:67-74. https://doi.org/10.1016/j.aquaculture.2014.09.023 Lupatsch I, Katz T, Angel DL. 2003. Assessment of the removal efficiency of fish farm effluents by grey mullets: a nutritional approach. Aquac. Res. 34(15):1367-1377. https://doi.org/10.1111/j.1365-2109.2003.00954.x McCauley JI, Meyer BJ, Winberg PC, Skropeta D. 2016. Parameters affecting the analytical profile of fatty acids in the macroalgal genus Ulva. Food Chem. 209: 332-340. https://doi.org/10.1016/j.foodchem.2016.04.039 MacDonald BA, Robinson SMC, Barrington KA. 2011. Feeding activity of mussels (Mytilus edulis) held in the field at an integrated multi-trophic aquaculture (IMTA) site (Salmosalar) and exposed to fish food in the laboratory. Aquaculture. 314(1-4):244-251. https://doi.org/10.1016/j.aquaculture.2011.01.045 McIntosh RP, Fitzsimmons K. 2003. Characterization of effluent from an inland, low salinity shrimp farm: what contribution could this water make if used for irrigation. Aquac. Eng. 27(2):147-156. https://doi.org/10.1016/S0144-8609(02)00054-7 Maehre HK, Malde MK, Eilertsen KE, Elvevoll EO. 2014. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric. 94(15):3281-3290. https://doi.org/10.1002/jsfa.6681 Marinho E, Azevedo CAA, Trigueiro TG, Pereira DC, Carneiro MAA, Camara MR. 2011. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int. Biodeterior. Biodegrad. 65(1):253–257. https://doi.org/10.1016/j.ibiod.2010.10.001 Mariscal MM, Páez F, Esquer JL, Guerrero I, Del Vivar AR, Félix R. 2012. Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: management and production. Aquaculture. 366-367:76-84. https://doi.org/10.1016/j.aquaculture.2012.09.003 Martínez ER, Chopin T, Robinson S, Noce A, Knowler D, Yip W. 2015. Estimating the biomitigation benefits of integrated multi-trophic aquaculture: acontingent behavior analysis. Aquaculture. 43718: 2–194. https://doi.org/10.1016/j.aquaculture.2014.11.034 Martínez L R, Martínez M, López JA, Campaña A, Miranda A, Ballester E, Porchas MA. 2010. Natural food in aquaculture: An updated review. En: Cruz Suarez LE, Ricque-Marie D, Tapia Salazar M, Nieto-López MG, Villarreal-Cavazos DA, Gamboa-Delgado J, editores. Memorias del X Simposio Internacional de Nutrición Acuícola, San Nicolás de los Garza, N. L., México. México: Universidad Autónoma de Nuevo León, Monterrey, México, p. 668-669. Melo EP, Oshiro LMY, Fugimura MMS, da Costa TV, Flor HR, Sant’ana NF. 2016. Monocultivo e policultivo do camarão Litopenaeus schmitti edo parati Mugil curema em sistema de bioflocos e água clara. Boletim do Instituto de Pesca. 42, 3, 532-547. https://doi.org/10.20950/1678-2305.2016v42n3p532 Miranda FR, Lima RN, Crisóstomo LA, Santana MGS. 2008. Reuse of inland low-salinity shrimp farm effluent for melon irrigation. Aquac. Eng. 39:1-5. https://doi.org/10.1016/j.aquaeng.2008.04.001 Mondal A, Chakravortty D, Mandal S, Bhattacharyya SB, Mitra A. 2015. Feeding ecology and prey preference of grey mullet, Mugil cephalus (Linneaus, 1758) in extensive brackish wáter farming system. J Marine Sci Res Dev. 6(1): 1-5. https://doi.org/10.4172/2155-9910.1000178 Moreira ASP, Costa E, Melo T, Sulpice R, Cardoso SM, Pitarma B, Pereira R, Abreu MH, Domingues P, Calado R, Domingues MR. 2020. Seasonal plasticity of the polar lipidome of Ulvarigida cultivated in a sustainable integrated multi-trophic aquaculture. Algal Res. 49. https://doi.org/10.1016/j.algal.2020.101958 Moya EAE, Sahagún CAA, Carrillo JMM, Alpuche PJA, Álvarez CA, Martínez R. 2014. Herbaceous plants as part of biological filter for aquaponics system. Aquac. Res. 1-11. https://doi.org/10.1111/are.12626 Nelson EJ, MacDonald BA, Robinson SMC. 2012. The absorption efficiency of the suspensión feeding sea cucumber, Cucumaria frondosa, and its potential as an extractive integrated multi-trophic aquaculture (IMTA). Aquaculture. 370-371: 19-25. https://doi.org/10.1016/j.aquaculture.2012.09.029 Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shpigel M, Charles Y. 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture. 231(1-4):361-391. https://doi.org/10.1016/j.aquaculture.2003.11.015 Nobre AM, Robertson-Andersson D, Neori A, Sankar K. 2010. Ecological-economic assessment of aquaculture options: Comparison between abalone monoculture and integrated multitrophic aquaculture of abalone and seaweeds. Aquaculture. 306:116-126. https://doi.org/10.1016/j.aquaculture.2010.06.002 Odum WE. 1970. Utilization of the direct grazingand plant detritus food chains by the striped mullet Mugil cephalus. En: J. H. Steele, editor, Marine food chains. Oliver and Boyd, Edinburgh, 222-240 p. Paiva L, Lima E, Patarra RF, Neto AI, Baptista J. 2014. Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chem. 164(C):128-135. https://doi.org/10.1016/j.foodchem.2014.04.119 Palmer PJ. 2010. Polychaete-assisted sand filters. Aquaculture. 306(1-4):369-377. https://doi.org/10.1016/j.aquaculture.2010.06.011 Park M, Shin SK, Do YH, Yarish C, Kim JK. 2018. Application of open water integrated multitrophic aquaculture to intensive monoculture: a review of the current status and challenges in Korea. Aquaculture. 497: 174-183. https://doi.org/101016/j.aquaculture.2018.07.051 Peña-Rodríguez A, Mawhinney TP, Ricque-Marie D, Cruz-Suárez LE. 2011. Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chemistry. 129: 491-498. https://doi.org/10.1016/j.foodchem.2011.04.104 Perea Román C, Garcés Caicedo YJ, Muñoz Arboleda LS, Hoyos Concha JL, Gómez Peñaranda JA. 2018. Valoración económica del uso de ensilaje de residuos piscícolas en la alimentación de Oreochromis spp. Biotecnol Sector Agropecuario Agroind. 16(1):43-51. https://doi.org/10.18684/BSAA(16)43-51 Pinheiro I, Arantes R, Espírito CM, Vieira FN, Lapa KR, Gonzaga LV, Fett R, Barcelos JL, Seiffert WQ. 2017. Production of the halophyte Sarcocornia ambigua and Pacific white shrimp in an aquaponic system with biofloc technology. Ecol. Eng. 100:261-267. https://doi.org/10.1016/j.ecoleng.2016.12.024 Pinheiro I, Siqueira RF, Vieira F do N, Valdeiro F, Fett R, Oliveira AC, Magallon FJ, Quadros SW. 2019. Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities. Aquaculture. 519. https://doi.org/10.1016/j.aquaculture.2019.734918 Pinho SM, Molinari D, de Mello G L, Fitzsimmons KM, Emerenciano MGC. 2017. Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol. Engin. 103(A):146-153. https://doi.org/10.1016/j.ecoleng.2017.03.009 Prinsloo JF, Schoonbee HJ. 1993. The utilization of agricultural byproducts and treated effluent water for aquaculture in developing areas of South África. Suid Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie, 12(3):72-79. https://doi.org/10.4102/satnt.v12i3.566 Poli MA, Schveitzer R, Nuñer APO. 2015. The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: effect of suspended solids in the performance of larvae. Aquac. Eng. 66:17-21. https://doi.org/10.1016/j.aquaeng.2015.01.004 Poli MA, Legarda EC, Lorenzo MA, Martins MA, Vieira F do N. 2018. Pacific white shrimp and Nile tilapia integrated in a biofloc system under different fish-stocking densities. Aquaculture 498:83-89 https://doi.org/10.1016/j.aquaculture.2018.08.045 Poli MA, Legarda EC, Lorenzo MA, Pinheiro I, Martins MA, Quadros W, Vieira FN. 2019. Integrated multitrophic aquaculture applied to shrimp rearing in a biofloc system. Aquaculture. 511:2-6. https://doi.org/10.1016/j.aquaculture.2019.734274 Rakocy JE, Masser MP, Losoro TM. 2006. Recirculating aquaculture tank production systems: aquaponics-integrating fish and plant culture. Southern Regional Aquaculture Center Publication. 454:16. Rakocy J.E. 2012. Aquaponics-integrating fish and plant culture. En: Tidwell JH, editor. Aquaculture Production Systems. 1.a ed. Oxford: Wiley-Blackwell. 343-386 p. Rao RK, Babu KR. 2013. Studies on food and feeding habits on Mugil cephalus (Linnaeus, 1758) east coast off Andhra Pradesh, India. CJPAS. 7(3):2499-2504 Ratcliff JJ, Wan AHL, Edwards MD, Soler-Vila A, Johnson MP, Abreu MH, Morrison L. 2016. Metal content of kelp (Laminaria digitata) co-cultivated with Atlantic salmon in an integrated multi-trophic aquaculture system. Aquaculture. 450: 234–243. https://doi.org/10.1016/j.aquaculture.2015.07.032 Ray AJ, Lewis BL, Browdy CL, Leffler JW. 2010. Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture. 299(1-4):89-98. https://doi.org/10.1016/j.aquaculture.2009.11.021 Reid GK, Liutkus M, Bennett A, Robinson SMC, MacDonald B, Page F. 2010. Absorption efficiency of blue mussels (Mytilus edulis and M. trossulus) feeding on Atlantic salmon (Salmo salar) feed and fecal particulates: Implications for integrated multitrophic aquaculture. Aquaculture. 299(1-4):165-169. https://doi.org/10.1016/j.aquaculture.2009.12.002 Ren JS, Stenton J, Plew DR, Fang J, Gall M. 2012. An ecosystem model for optimising production in integrated multitrophic aquaculture systems. Ecol. Model. 246:34-46. https://doi.org/10.1016/j.ecolmodel.2012.07.020 Ridler N, Wowchuk M, Robinson B, Barrington K, Chopin T, Robinson S, Page F, Reid G, Szemerda M, Sewuster J, Boyne-Travis S. 2007. Integrated multi-trophic aquaculture (IMTA): A potential strategic choice for farmers. Aquac. Econ. Manag. 11(1): 99-110. https://doi.org/10.1080/13657300701202767 Robertson-Andersson DV. 2007. Biological and economical feasibility studies of using Ulva lactuca (Chlorophyta) in recirculating systems in abalone farming [tesis doctoral]. Universidad de Cape Town, Sur África. Rocha AF. 2012. Avaliação do potencial de criação de juvenis de tainhas Mugil hospes e Mugil liza em sistema de bioflocos. [Tesis doctoral]. Brasil, Universidad Federal de Río Grande. Río Grande. Rocha AF. 2012. Avaliação do potencial de criação de juvenis de tainhas Mugil hospes e Mugil liza em sistema de bioflocos. [Tesis doctoral]. Brasil, Universidad Federal de Río Grande. Río Grande. Rocha AF, Biazzeti ML, Stech MR, Silva R. 2017. Lettuce production in aquaponic and biofloc systems with silver CATFISH Rhamdia quelen. Bol. Inst. Pesca, São Paulo. 44: 64-73. https://doi.org/10.20950/1678-2305.2017.64.73 Samocha TM, Schveitzer R, Krummenaeur D, Morris TC. 2012. Recent advances in superintensive, zero-exchange shrimp raceway systems. Global Aquac. Advoc. 15:70-71. Sará G, Zenone A, Tomasello A. 2009. Growth of Mytilus galloprovincialis (mollusca, bivalvia) close to fish farms: a case of integrated multitrophic aquaculture within the Tyrrhenian Sea. Hydrobiologia. 636(1):129-136. https://doi.org/10.1007/s10750-009-9942-2. Schleder DD, Blank M, Peruch LGB, Poli MA, Gonçalves P, Rosa KV, Fracalossi, DM, Vieira FN, Andreatta ER, Hayashi L. 2018. Effect of brown seaweeds on Pacific white shrimp growth performance, gut morphology, digestive enzymes activity and resistance to White spot virus. Aquaculture. 495:359-365. https://doi.org/10.1016/j.aquaculture.2018.06.020 Schleder DD, Blank M, Peruch LGBP, Poli MA, Gonçalves P, Rosa KV, Fracalossi DM, Vieira FN, Andreatta ER, Hayashi L. 2020. Impact of combinations of brown seaweeds on shrimp gut microbiota and response to thermal shock and white spot disease. Aquaculture. 519:734-779. https://doi.org/10.1016/j.aquaculture.2019.734779 Schmid M, Kraft LGK, Loos LM, Kraft GT, Virtue P, Nichols PD, Hurd CL. 2018. Southern Australian seaweeds: a promising resource for omega-3 fatty acids. Food Chem. 265. https://doi.org/10.1016/j.foodchem.2018.05.060 Schveitzer R, Arantes R, Costódio PFS, Santo CME, Vinatea LA, Seiffert WQS, Andreatta ER. 2013. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank systemoperated with no water exchange. Aquac. Eng. 56:59-70. https://doi.org/10.1016/j.aquaeng.2013.04.006 Silva R, Borges CMS, Bezerra F. 2006. Increasing cherry tomato yield using fish effluent as irrigation water in Northeast Brazil. Sci. Hort. 110(1):44-50. http://dx.doi.org/10.1016/j.scienta.2006.06.00 Slater MJ, Carton AG. 2009. Effect of sea cucumber (Australostichopus mollis) grazing on coastal sediments impacted by mussel farm deposition. Mar. Pollut. Bull. 58(8):1123-1129. https://doi.org/10.1016/j.marpolbul.2009.04.008 Soto D, Mena G.1999. Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture, 171(1-2):65-81. https://doi.org/10.1016/S0044-8486(98)00420-7 Stabili L, Schirosi R, Licciano M, Mola E, Giangrande A. 2006. Bioremediation of bacteria in aquaculture waste using the polychaete Sabella spallanzanii. New Biotech. 27(6):774-781. https://doi.org/10.1016/j.nbt.2010.06.018 Timmons MB, Ebeling JM, Wheaton FW, Sommerfelt ST, Vinci BJ. 2002. Microbial biofloc and protein levels in green tiger shrimp. Recirculating aquaculture systems. New York: Caruga Aqua Ventures. Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT, Colepicolo P. 2008. Biochemical biomarkers in algae and marine pollution: a review. Ecotox. Environ. Safe. 71(1):1-15. https://doi.org/10.1016/j.ecoenv.2008.05.009 Troell M, Halling C, Neori A, Chopin T, Buschmann AH, Kautsky N, Yarish C. 2003. Integrated mariculture: asking the right questions. Aquaculture. 226(1-4):69-90. https://doi.org/10.1016/S0044-8486(03)00469-1 Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang J. 2009. Ecological engineering in aquaculture-Potential for integrated multitrophic aquaculture (IMTA) in marine offs hore systems. Aquaculture. 297(1-4):1-9. https://doi.org/10.1016/j.aquaculture.2009.09.010 Troell M, Kautsky N, Beveridge M, Henriksson P, Primavera J, Rönnbäck P. 2017. Aquaculture. En: Reference Module in Life Sciences. Elsevier. p. 189-201. http://dx.doi.org/.10.1016/B978-0-12-809633-8.02007-0 Tyson RV, Treadwel DD, Simonne EH. 2011. Opportunities and challenges to sustainability in aquaponic systems. HortTechnology. 21(1):6-13. https://doi.org/10.21273/HORTTECH.21.1.6 Ventura Y, Sagi M. 2013. Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environ. Exp. Bot. 92:144-153. https://doi.org/10.1016/j.envexpbot.2012.07.010 Wan AHL, Davies SJ, Soler-Vila A, Fitzgerald R, Johnson MP. 2018. Macroalgae as a sustainable aquafeed ingredient. Aquaculture. 11(3): 458-492. https://doi.org/10.1111/raq.12241 Wang X, Broch O, Forbord S, Hand A, Skjermo J, Reitan K. 2014. Assimilation of inorganic nutrients from salmon (Salmo salar) farmin by the macroalgae (Saccharina latissima) in an exposed coastal environment: implications for integrated multi-trophic aquaculture. J. Appl. Phycol. 26: 1869-1878. https://doi.org/10.1007/s10811-013-0230-1 Yang H, Hamel JF, Mercier A. 2015. The Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture. 1st ed. Cambridge: Academic Press. Yu Z, Zhou Y, Yang H, Ma Y, Hu C. 2014. Survival, growth, food availability and assimilation efficiency of the sea cucumber Apostichopus japonicus bottom-cultured under a fish farm in southern China. Aquaculture. 426/427: 238-248. https://doi.org/10.1016/j.aquaculture.2014.02.013 Zamora LN, Jeffs AG. 2011. Feeding, selection, digestion, and absorption of the organic matter from mussel waste by juveniles of the deposit-feeding sea cucumber Australostichopus mollis. Aquaculture. 317: 223-228. http://dx.doi.org/10.1016/j.aquaculture.2011.04.011 Zamora LN, Jeffs AG. 2012. The ability of the deposit-feeding sea cucumber Australostichopus mollis to use natural variation in the biodeposits beneath mussel farms. Aquaculture. 326-329:116-122. https://doi.org/10.1016/j.aquaculture.2011.11.015 Zamora LN, Yuan X, Carton AG, Slater MJ. 2018. Role of deposit-feeding sea cucumbers in integrated multitrophic aquaculture: progress, problems, potential and future challenges. Rev. Aquac. 10: 57-74. https://doi.org/10.1111/raq.12147; https://revistas.unal.edu.co/index.php/remevez/article/view/101539
-
2Academic Journal
المؤلفون: COLLAZOS LASSO, LUIS, Ueno–Fukura, M., Jiménez–Moreno (Q.E.P.D.), Y., Suárez–Contento, L., Aya–Baquero, E.
المصدر: Revista de la Facultad de Medicina Veterinaria y de Zootecnia; Vol. 69 Núm. 3 (2022) ; Revista de la Facultad de Medicina Veterinaria y de Zootecnia; Vol. 69 No. 3 (2022) ; Revista de la Facultad de Medicina Veterinaria y de Zootecnia; v. 69 n. 3 (2022) ; 2357-3813 ; 0120-2952
مصطلحات موضوعية: Biofloc, solids, establishment, zooplankton, ammonium, sólidos, establecimiento, zooplancton, amonio, Producción animal, Biofloco, estabelecimento, zooplâncton, amônio
وصف الملف: application/pdf
Relation: https://revistas.unal.edu.co/index.php/remevez/article/view/99968/85232; Aboal M, Alvares–Troncoso R, Corrochano–Codorníu A. 2012. ID-impuesto. Catálogo y claves de identificación de organismos fitoplanctónicos como elementos de calidad en las redes de control del estado ecológico. Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, España. Arcos–Pulido MDP, Gómez Prieto AC. 2006. Microalgas perifíticas como indicadoras del estado de las aguas de un humedal urbano: Jaboque, Bogotá DC, Colombia. Nova. 5(6):60-79. APHA. 1998. Standard methods for the examination of water and wastewater. 20th edition. American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC. APHA. 2017. Standard methods for the examination of water and wastewater. 23rd Edition, American Public Health Association, American Water Works Association, Water Environment Federation, Denver. Atencio GV. 2001. Producción de alevinos de especies nativas. Revista MVZ Córdoba. 6(1): 9-14. https://doi.org/10.21897/rmvz.1060 Avnimelech Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture. 264(1-4): 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025 Avnimelech Y. 2009. Biofloc Technology – A practical guide book. Baton Rouge, Louisiana, USA: World Aquaculture Society. Avnimelech Y. 2015. Biofloc technology: a practical guide book. 3rd edition. Baton Rouge, Louisiana, USA: World Aquaculture Society. Ayazo–Genes J, Pertuz–Buelvas V, Jiménez–Velásquez C, Espinosa–Araujo J, Atencio–García V, Prieto–Guevara M. 2019. Comunidades planctónicas y bacterianas asociadas al cultivo de bocachico Prochilodus magdalenae con tecnología biofloc. Rev MVZ Córdoba. 24(2): 7209-7217. https://doi.org/10.21897/rmvz.1648 Azim ME, Little DC, Bron JE. 2008. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresour Technol. 99(9):3590-3599. https://doi.org/10.1016/j.biortech.2007.07.063 Bakar NSA, Nasir NM, Lananan F, Hamid SHA, Lam SS, Jusoh A. 2015. Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology. Int Biodeterior Biodegradation. 102:100-106. https://doi.org/10.1016/j.ibiod.2015.04.001 Bakhshi F, Najdegerami EH, Manaffar R, Tukmechi A, Farah KR. 2018. Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture. 484:259-267. https://doi.org/10.1016/j.aquaculture.2017.11.036 Barbieri E, Vigliar Bondioli AC. 2015. Acute toxicity of ammonia in Pacu fish (Piaractus mesopotamicus, Holmberg, 1887) at different temperatures levels. Aquac Res. 46(3):565-571. https://doi.org/10.1111/are.12203 Betancur Gonzáles EM, David Ruales CA, Gutiérrez LA. 2016. Diversidad del perifiton presente en un sistema de producción de tilapia en biofloc. Rev Lasallista Investig. 13(2): 163-177. https://doi.org/10.22507/rli.v13n2a15 Boyd CE. 2015. Water quality: an introduc¬tion. Springer Publisher. 330 p. https://doi.org/10.1007/978-3-319-17446-4 Brú–Cordero SB, Pertuz–Buelvas V, Ayazo–Genes J, Atencio–García VJ, Pardo–Carrasco S. 2017. Bicultivo de cachama blanca Piaractus brachypomus y tilapia nilótica Oreochromis niloticus en biofloc alimentadas con dietas de origen vegetal. Rev Med Vet Zoot. 64(1):44- 60. https://doi.org/10.15446/rfmvz.v64n1.65824 Castro–Mejía G, De Lara AR, Monroy–Dosta MC, Maya–Gutiérrez S, Castro–Mejía J, Jiménez– Pacheco F. 2017. Presencia y abundancia de fitoplancton y zooplancton en un sistema de producción de Biofloc utilizando dos aportes de carbono: 1) Melaza y 2) Melaza + pulido de arroz cultivando al pez Oreochromis niloticus. Revista Digital del Departamento El Hombre y su Ambiente. 1(13):33-42. Collazos–Lasso LF, Arias–Castellanos JA. 2015. Fundamentos de la tecnología biofloc (BFT). Una alternativa para la piscicultura en Colombia. Una revisión. Orinoquia. 19(1):77-86. https://doi.org/10.22579/20112629.341 Crab R, Chielens B, Wille M, Bossier P, Verstraete W. 2010. The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquac Res. 41:559-567. https://doi.org/10.1111/j.1365-2109.2009.02353.x Crab R, Defoirdt T, Bossier P, Verstraete W. 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture. 356-357:351-356. https://doi.org/10.1016/j.aquaculture.2012.04.046 David–Ruales C, Machado–Fracalossi D, Vásquez– Torres W. 2018. Desarrollo temprano en larvas de peces. clave para el inicio de la alimentación exógena. Rev Lasallista Investig. 15(1):180-194. https://doi.org/10.22507/rli.v15n1a10 De Schryver P, Crab R, Defoirdt T, Boon N, Verstraete W. 2008. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture. 277(3-4):125-137. https://doi.org/10.1016/j.aquaculture.2008.02.019 Ebeling JM, Timmons MB, Bisogni JJ. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture. 257(1-4):346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019 Ekasari J, Hanif Azhar M, Surawidjaja EH, Nuryati S, De Schryver P, Bossier P. 2014. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunol. 41(2):332-339. https://doi.org/10.1016/j.fsi.2014.09.004 Ekasari J, Rivandi DR, Firdausi AP, Surawidjaja EH, Zairin M, Bossier P, De Schryver P. 2015. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture. 441:72-77. https://doi.org/10.1016/j.aquaculture.2015.02.019 Ekasari J, Suprayudi MA, Wiyoto W, Hazanah RF, Lenggara GS, Sulistiani R, Zairin M. 2016. Biofloc technology application in African catfish fingerling production: The effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquacul¬ture. 464:349-356. https://doi.org/10.1016/j.aquaculture.2016.07.013 Elmoor–Loureiro LMA. 1997. Manual de identificação de cladóceros límnicos do Brasil. Proyecto: Biodiversidade de Cladócera no Brasil. Editorial: Editora Universa – UCB. 156 p. Emerenciano MGC, Martínez–Córdova LR, Martínez-Porchas M, Miranda–Baeza A. 2017. Biofloc technology (BFT): A tool for water Quality management in aquaculture. In: Tutu H. (Ed.), Water Quality. InTechOpen, London, UK, pp. 91-109. https://doi.org/10.5772/66416 Emerson K, Russo RC, Lund RE, Thurston RV. 1975. Aqueous ammonia equilibrium calcu¬lations: effect of pH and temperature. J Fish Res Board Can. 32:2379-2383. https://doi.org/10.1139/f75-274 Fauji H, Budiardi T, Ekasari J. 2018. Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc-based nursery production with different stocking densities. Aquac Res. 49(3):1339-1346. https://doi.org/10.1111/are.13595 Fontaneto D, De Smet WH. 2014. Manual de Zoología, Gastrotricha, Cicloneuralia y Gnathifera. Vol 3, Gastrotricha y Gnathifera Cap: Rotifera, pp. 217-300. García–Ríos L, Miranda–Baeza A, Coelho–Emerenciano MG, Huerta–Rábago JA, Osuna–Amarillas P. 2019. Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture. 502:26-31. https://doi.org/10.1016/j.aquaculture.2018.11.05 Glime JM. 2017. Invertebrates: Rotifer Taxa – Monogononta. Chap. 4-7a. In: Glime JM (Ed.), Bryophyte Ecology. Vol 2: 4-7a-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Disponible en: http://digitalcommons.mtu.edu/bryophyte-ecology2/ Gomes Vilani F, Schveitzer R, da Fonseca Arantes R, do Nascimento Vieira F, Manoel do Espírito Santo C, Quadros Seiffert W. 2016. Strategies for water preparation in a biofloc system: Effects of carbon source and fertilization dose on water quality and shrimp performance. Aquac Eng. 74:70-75. https://doi.org/10.1016/j.aquaeng.2016.06.002 Hargreaves JA. 2013. Biofloc production systems for aquaculture. Southern Regional Aquaculture Center (SRAC). Publication No. 4503. 12 p. Hernández ER, Rodríguez MA, Ruíz MO, Monroy DMC. 2017. Ecological succession of plankton in a biofloc system with molasses as carbon source. Sci J Biol Sci. 6(7):222-228. https://doi.org/10.14196/sjbs.v6i7.2456 Jiménez–Ojeda YK, Collazos–Lasso LF, Arias– Castellanos JA. 2018. Dynamics and use of nitrogen in Biofloc Technology – BFT. AACL Bioflux. 11(4):1107-1129. Korovchinsky NM. 1992. Sididae and holopediidae: (Crustacea: Daphniiformes). In: Bayly IAE. (Ed.), Guides to the identification of the macroinvertebrates of the continental waters of the world. SPB Academic Pub., Hague, Netherlands. 82 p. Kubitza F. 2017. A relação entre pH, gás carbônico, alcalinidade e dureza sua influência no desempenho e saúde dos peixes e camarões. Rev Panorama de AQÜICULTURA. Disponible en: https://panoramadaaquicultura.com.br/a-agua-na-aquicultura-parte-2/ Li J, Liu G, Li C, Deng Y, Tadda MA, Lan L, Liu D. 2018. Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture. 495:919-931. https://doi.org/10.1016/j.aquaculture.2018.06.078 Lima PCM. 2017. Efeito da adição de Chlorella Vulgaris e melaço na qualidade da água e cresci¬mento de alevinos de tilápia do nilo (Oreochromis niloticus) em sistemas de bioflocs com baixa salinidade. Dissertação de mestrado. Programa de Pós-Graduação em Recursos Pesqueiros e Aquicultura, Universidade Federal Rural de Pernambuco, Recife. 62 p. Machado–Allison A. 1992. Larval Ecology of Fish of the Orinoco Basin. W. C. Hamlett (ed.). Reproductive Biology of South American Vertebrates. Springer-Verlag New York. Inc. pp. 45-48. Manrique L, Peláez M. 2013. Manual de análisis de calidad de aguas en ecosistemas acuáticos andino-amazónicos: análisis físicos y químicos. Vicerrectoría de investigaciones, Universidad de la Amazonia, Florencia, Colombia. 179 p. Martins GB, Tarouco F, Rosa CE, Robaldo RB. 2017. The utilization of sodium bicarbonate, calcium carbonate or hydroxide in biofloc system: water quality, growth performance and oxidative stress of Nile tilapia (O.niloticus). Aquaculture. 468:10-17. https://doi.org/10.1016/j.aquaculture.2016.09.046 Martins MA, Poli MA, Legarda EC, Pinheiro IC, Carneiro RFS, Pereira SA, do Nascimento Vieira F. 2020. Heterotrophic and mature biofloc systems in the integrated culture of Pacific white shrimp and Nile tilapia. Aquaculture. pp. 734517. https://doi.org/10.1016/j.aquaculture.2019.734517 Miranda–Baeza A, Nolasco–López M, Rivas–Vega ME, Huerta–Rábago KJA, Martínez–Córdova LR, Martínez–Porchas M. 2019. Short-term effect of the inoculation of probiotics in mature bioflocs: Water quality parameters and abun¬dance of heterotrophic and ammonia-oxidizing bacteria. Aquac Res. 51(2):255-264. https://doi.org/10.1111/are.14371 Monroy–Dosta MC, De Lara–Andrade R, Castro– Mejía J, Castro–Mejía G, Coelho-Emerenciano MG. 2013. Composición y abundancia de comunidades microbianas asociadas al biofloc en un cultivo de tilapia. Rev Biol Mar Ocea¬nogr. 48(3):511-520. https://doi.org/10.4067/S0718-19572013000300009 Moreno JR, Medina CD, Albarracín VH. 2012. Aspectos ecológicos y metodológicos del muestreo, identificación y cuantificación de cianobacterias y microalgas eucariotas. Reduca (Biología). 5(5):110-125. Poli MA, Schveitzer R, De Oliveira Nuñer AP. 2015. The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: Effect of suspended solids in the performance of larvae. Aquac Eng. 66:17-21. https://doi.org/10.1016/j.aquaeng.2015.01.004 Ray AJ, Seaborn G, Leffler JW, Wilde SB, Lawson A, Browdy CL. 2010. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture. 310(1-2):130-138. https://doi.org/10.1016/j.aquaculture.2010.10.019 Ray AJ, Lotz JM. 2014. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources. Aquac Eng. 63:54-61. https://doi.org/10.1016/j.aquaeng.2014.10.001 Rieradevall SM. 1987. Atlas de los Microorganismos de Agua dulce. La vida es una gota de agua dulce. Barcelona: Ediciones Omega, S.A. pp. 275-291. Rogers DC, Thorp JH (Eds.). 2019. Thorp and Covich’s Freshwater Invertebrates. Vol 3: Keys to Palaearctic Fauna. Amsterdam, USA. Elsevier. Stein LY, Klotz MG. 2016. The nitrogen cycle. Curr Biol. 26(3):R94–R98. https://doi.org/10.1016/j.cub.2015.12.021 Timmons MB, Ebeling JM, Wheaton FW, Sum¬merrfelt ST, Vinci BJ. 2002. Recirculating aquaculture systems. 2nd ed. New York: Cayuga Aqua Venture. 769 p. Xu WJ, Morris TC, Samocha TM. 2016. Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture. 453:169-175. https://doi.org/10.1016/j.aquaculture.2015.11.021 Zapata LK, Brito LO, Maciel De Lima PC, Vinatea ALA, Galvez AO, Cárdenas VJM. 2017. Cultivo de alevines de tilapia en sistema biofloc bajo diferentes relaciones carbono/nitrógeno. Bol Inst Pesca. 43(3):399-407. https://doi.org/10.20950/1678-2305.2017v43n3p399; https://revistas.unal.edu.co/index.php/remevez/article/view/99968
-
3Electronic Resource
Additional Titles: Perspectivas de una producción sostenible en acuicultura multitrófica integrada (IMTA): Una revisión
المصدر: Revista de la Facultad de Medicina Veterinaria y de Zootecnia; Vol. 69 Núm. 1 (2022); Revista de la Facultad de Medicina Veterinaria y de Zootecnia; Vol. 69 No. 1 (2022); Revista de la Facultad de Medicina Veterinaria y de Zootecnia; v. 69 n. 1 (2022); 2357-3813; 0120-2952
مصطلحات الفهرس: IMTA, nutrientes, organismos, producción, sostenibilidad, acuicultura, nutrients, organisms, production, sustainability, aquaculture, info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion
URL:
https://revistas.unal.edu.co/index.php/remevez/article/view/101539/82904 https://revistas.unal.edu.co/index.php/remevez/article/view/101539/82904
*ref*/Al-Hafedh YS, Alami A, Beltagi MS. 2008. Food production and water conservation in a recirculating aquaponic system in Saudi Arabia at different ratios of fish feed to plants. J. World Aquacult Soc. 39 (4):510-520. https://doi.org/10.1111/j.1749-7345.2008.00181.x Alonso MÁ, Crespo MB. 2008. Taxonomic and nomenclatural notes on South American taxa of Sarcocornia. (Chenopodiaceae). Ann. Bot. Fenn. 45:241-254. https://doi.org/10.5735/085.045.0401 Álvarez D, Rodríguez S, Maulvault, AL, Tediosi A, Fernández M, Van den Heuvel F. 2015. Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. Environl Res. 143(Part B):56-64. https://doi.org/10.1016/j.envres.2015.09.018 Amato BA, Rocha JL, Oliveira PH, Zacheu AC,Caio FM, Vinicius C, Vinatea LA. 2020. Integrated culture of white shrimp Litopenaeus vannamei and mullet Mugil liza on biofloc technology: Zootechnical performance, sludge generation, and Vibrio spp. Reduction. Aquaculture. https://doi.org/10.1016/j.aquaculture.2020.735234 Avnimelech Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture. 264:140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025 Avnimelech Y. 2009. Biofloc Technology: A practical Guide Book. Baton Rouge, Louisiana, USA: World Aquaculture Society. Avnimelech Y. 2015. Biofloc technology: A practical Guide Book. 3rd edition. Baton Rouge, Louisiana, USA: World Aquaculture Society. Avnimelech Y, Ritvo G. 2003. Shrimp and fish pond soils: processes and management. Aquaculture 220:549-567. https://doi.org/10.1016/S0044-8486(02)00641-5 Barrington K, Chopin T & Robinson S. 2009. Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In Integrated mariculture: a global review. 529:7-46. Bertin RL, Gonzaga LV, Borges G, Azevedo MS, Maltez HF, Heller M, Micke GA, Tavares LBB, Fett R. 2014. Nutrient composition and identification/quantification of major pheno -
4Academic Journal
Alternate Title: Establishment of biofloc at three carbon/nitrogen ratios, tending to the production of zooplankton.
المؤلفون: Collazos-Lasso, L. F.1 lcollazos@unillanos.edu.co, Ueno-Fukura, M.1 ufukura@unillanos.edu.co, Jiménez-Moreno, Y.2, Suárez-Contento, L.1 laura.suarez@unillanos.edu.co, Aya-Baquero, E.2 elizabeth.aya@unillanos.edu.co
المصدر: Revista de la Facultad de Medicina Veterinaria y de Zootecnia. set-dic2022, Vol. 69 Issue 3, p281-298. 18p.
مصطلحات موضوعية: *OXYGEN in water, *WATER quality, *SODIUM bicarbonate, *FOOD quality, *ZOOPLANKTON
-
5Academic Journal
Alternate Title: Prospects for sustainable production in integrated multitrophic aquaculture (IMTA): a review. (English)
المصدر: Revista de la Facultad de Medicina Veterinaria y de Zootecnia; ene-abr2022, Vol. 69 Issue 1, p75-97, 23p
مصطلحات موضوعية: FISH farming, FOOD chains, SOCIAL impact, BODIES of water, AQUACULTURE