يعرض 1 - 20 نتائج من 462 نتيجة بحث عن '"Two-Way Coupling"', وقت الاستعلام: 0.64s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Report

    المساهمون: Institut de Mathématiques de Toulon - EA 2134 (IMATH), Université de Toulon (UTLN), Laboratoire des Sciences de l'Ingénieur Appliquées à la Mécanique et au génie Electrique (SIAME), Université de Pau et des Pays de l'Adour (UPPA), Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: https://hal.science/hal-04713029 ; 2024.

  10. 10
    Conference

    المؤلفون: Stafford, Chris, Rybdylova, Oyuna

    المصدر: Stafford , C & Rybdylova , O 2023 , ' The Generalised Fully Lagrangian Approach for Polydisperse Sprays. Implementation of a two-way coupling model in OpenFOAM. ' , Paper presented at European Conference on Liquid Atomization & Spray Systems , Napoli , Italy , 4/09/23 - 7/09/23 .

    وصف الملف: application/pdf

  11. 11
    Conference

    Relation: info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50022%2F2020/PT; Rúben Meireles, Leandro Magalhães, André Silva, Jorge Barata, "Characterization of a Two-way Coupling Approach for the Simulation of Fluid Flows under Cryogenic Conditions", ATE-HEFAT 2021 - 15th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Virtual Conference, 25-28 July, 2021; http://hdl.handle.net/10400.6/12570

  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal

    وصف الملف: 12 páginas; application/pdf

    Relation: 12; 43; Ingeniería e Investigación; Akiki, G., Jackson, T. L., and Balachandar, S. (2017). Pairwise interaction extended point-particle model for a random array of monodisperse spheres. Journal Fluid Mechanics, 813, 882-928. https://doi.org/10.1017/jfm.2016.877; Balachandar, S., and Eaton, J. K. (2010). Turbulent dispersed multiphase flow. Annual Review Fluid Mechanics, 42, 111- 133. https://doi.org/10.1146/annurev.fluid.010908.165243; Battista, F., Mollicone, J. P., Gualtieri, P., Messina, R., and Casciola, C.M. (2019). Exact regularised point particle (ERPP) method for particle-laden wall-bounded flows in the twoway coupling regime. Journal Fluid Mechanics, 878, 420- 444. https://doi.org/10.1017/jfm.2019.622; Bernard, P. S., Ashmawey, M. F., and Handler, R. A. (1989). An analysis of particle trajectories in computer-simulated turbulence channel flow. Physics of Fluids A, 1, 1532-1540. https://doi.org/10.1063/1.857330; Boivin, M., Simonin, O., and Squires, K. D. (1998). Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. Journal Fluid Mechanics, 375, 235- 263. https://doi.org/10.1017/S0022112098002821; Capecelatro, J., Desjardins, O., and Fox, R. O. (2018). On the transition between turbulence regimes in particle-laden channel flows. Journal Fluid Mechanics, 845, 499-519. https:// doi.org/10.1017/jfm.2018.259; Costa, P., Brandt, L., and Picano, F. (2021). Near-wall turbulence modulation by small inertial particles. Journal Fluid Mechanics, 922, A9. https://doi.org/10.1017/jfm.2021.507; de Villiers, E. (2006). The potential of Large Eddy Simulation for the modeling of wall bounded flows [Doctoral thesis, Imperial College of Science, Technology, and Medicine] https://scirp.org/reference/ReferencesPapers.aspx?ReferenceID= 2169716; Dritselis, C., and Vlachos, N. S. (2008). Numerical study of educed coherent structures in the near-wall region of a particle- laden channel flow. Physics of Fluids, 20, 055103. https:// doi.org/10.1063/1.2919108; Dritselis, C., and Vlachos, N.S. (2011). Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Physics of Fluids, 23, 025103. https://doi.org/10.1063/1.3553292; Dritselis, C. (2016). Direct numerical simulation of particle laden turbulent channel flows with two- and four-way coupling effects: budgets of Reynolds stress and streamwise enstrophy. Fluid Dynamics Research, 48, 015507. https:// doi.org/10.1088/0169-5983/48/1/015507; Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Applied Scientific Research, 52, 309-329. https://doi. org/10.1007/BF00936835; Göz, M. F., Laín, S., and Sommerfeld, M. (2004). Study of the numerical instabilities in Lagrangian Tracking of bubbles and particles in two-phase flow. Computers and Chemical Engineering, 28, 2727-2733. https://doi.org/10.1016/j.compchemeng. 2004.07.035; Gualtieri, P., Picano, F., Sardina, G., and Casciola, C.M. (2015). Exact regularized point particle method for multiphase flows in the two-way coupling regime. Journal Fluid Mechanics, 773, 520-561. https://doi.org/10.1017/ jfm.2015.258; Hunt, J. C. R., Wray, A. A., and Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research (Eds.), Proceedings of the Summer Program 1988 (pp. 193-208). https://web.stanford.edu/ group/ctr/Summer/201306111537.pdf; Ireland, P. J., and Desjardins, O. (2017). Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling. Journal Computational Physics, 338, 405-430. https:// doi.org/10.1016/j.jcp.2017.02.070; Jiménez, J., and Pinelli, A. (1999). The autonomous cycle of near-wall turbulence. Journal Fluid Mechanics, 389, 335- 359. https://doi.org/10.1017/S0022112099005066; Kontomaris, K., Hanratty, T. J., and McLaughlin, J. B. (1992). An algorithm for tracking fluid particles in a spectral simulation of turbulent channel flow. Journal Computational Physics, 103, 231-242. https://doi.org/ 10.1016/0021-9991(92)90398-I; Kuerten, J. G. M., van der Geld, C. W. M., and Geurts, B. J. (2011). Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow. Physics of Fluids, 23, 123301. https://doi. org/10.1063/1.3663308; Kuerten, J. G. M. (2016). Point-particle DNS and LES of particle- laden turbulent flow – A state-of-the-art review. Flow, Turbulence and Combustion, 97, 689-713. https://doi. org/10.1007/s10494-016-9765-y; Laín, S., and Aliod, R. (2000). Study on the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments. International Journal of Heat and Fluid Flow, 21, 374-380. https://doi. org/10.1016/S0142-727X(00)00023-0; Laín, S., and Sommerfeld, M. (2007). A study of pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow. Brazilian Journal of Chemical Engineering, 24, 535-546.; Lee, J., and Lee, C. (2015). Modification of particle-laden near-wall turbulence; effect of Stokes number. Physics of Fluids, 27, 023303. https://doi.org/10.1063/1.4908277; Li, Y., McLaughlin, J. B., Kontomaris, K., and Portela, L. (2001). Numerical simulation of particle-laden turbulent channel flow. Physics of Fluids, 13, 2957-2967. https://doi.org/10.1063/1.1396846; Li, J., Wang, H., Liu, Z., Chen, S., and Zheng, C. (2012). An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Experiments in Fluids, 53, 1385-1403. https://doi.org/10.1007/ s00348-012-1364-7; Marchioli, C. (2003). Mechanisms for transfer, segregation and deposition of heavy particles in turbulent boundary layers [Doctoral thesis, University of Udine] http://calliope.dem. uniud.it/PEOPLE/cris.html; Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F., and Portela, L. M. (2008). Statistics of particle dispersion in direct numerical simulations of wall bounded turbulence: Results of an international collaborative benchmark test. International Journal of Multiphase Flow, 34(9), 879-893. https:// doi.org/10.1016/j.ijmultiphaseflow.2008.01.009; Maxey, M. R., and Patel, B. K. (2001). Localized force representations for particles sedimenting in Stokes flow. International Journal of Multiphase Flow, 27, 1603-1626. https://doi. org/10.1016/S0301-9322(01)00014-3; Maxey, M. R., and Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26, 883-889. https://doi.org/10.1063/1.864230; McLaughlin, J.B. (1989). Aerosol particle deposition in numerically simulated channel flow. Physics of Fluids A, 1, 1211- 1224. https://doi.org/10.1063/1.857344; Pan, Y., and Banerjee, S. (1996). Numerical simulation of particle interactions with wall turbulence. Physics of Fluids, 8, 2733-2755. https://doi.org/10.1063/1.869059; Reeks, M. W. (1983). The transport of discrete particles in inhomogeneous turbulence. Journal of Aerosol Science, 14, 729- 739. https://doi.org/10.1016/0021-8502(83)90055-1; Righetti, M., and Romano, G. P. (2004). Particle–fluid interactions in a plane near-wall turbulent flow. Journal Fluid Mechanics. https://doi.org/10.1017/S0022112004008304; Schoppa, W., and Hussain, F. (2002). Coherent structure generation in near-wall turbulence. Journal of Fluid Mechanics, 453, 57-108. https://doi.org/10.1017/S002211200100667X; Sommerfeld, M., and Laín, S. (2015). Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. Canadian Journal of Chemical Engineering, 93, 1-17. https://doi. org/10.1002/cjce.22105; Vreman, A. W. (2007). Turbulence characteristics of particle-laden pipe flow. Journal Fluid Mechanics, 584, 235-279. https:// doi.org/10.1017/S0022112007006556; Laín Beatove, S.; Ortíz, D.; Ramírez. J. A.; Duque Daza, C. A. (2023). Analysis and Discussion of Two-Way Coupling Effects in Particle-Laden Turbulent Channel Flow. Ingeniería e Investigación 43(1). PP. 1-12. http://doi.org/10.15446/ing.investig.87275; https://hdl.handle.net/10614/15523; http://doi.org/10.15446/ing.investig.87275; Universidad Autónoma de Occidente; Respositorio Educativo Digital UAO; https://red.uao.edu.co/

  17. 17
    Academic Journal

    المصدر: Journal of Marine Science and Engineering; Volume 11; Issue 7; Pages: 1372

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Ocean Engineering; https://dx.doi.org/10.3390/jmse11071372

  18. 18
    Academic Journal
  19. 19
    Academic Journal

    المساهمون: Lightspeed Studios (Lightspeed), Tencent Shenzhen, La Géometrie au Service du Numérique (GEOMERIX), Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Paris (IP Paris), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: ISSN: 0730-0301.

  20. 20