يعرض 1 - 20 نتائج من 353 نتيجة بحث عن '"Tungsteno"', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Navarrete Gatell, Eric

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Electrònica, Elèctrica i Automàtica

    Thesis Advisors: Llobet Valero, Eduard

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    Academic Journal
  3. 3
    Academic Journal

    Alternate Title: A NEW APPROACH TO TUNGSTEN.

    المصدر: Revista de Critica Literaria Latinoamericana. 2022, Vol. 48 Issue 96, p243-271. 29p.

    مصطلحات جغرافية: MADRID (Spain)

    Reviews & Products: EL tungsteno (Book)

  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Dissertation/ Thesis
  14. 14
    Dissertation/ Thesis

    المؤلفون: Franco Salinas, Rubén Darío

    المساهمون: Hernández Pico, Yenny Rocio, Patiño Zapata, Edgar Javier

    وصف الملف: 25 páginas; application/pdf

    Relation: J. Scott. “Multiferroic memories”. En: Nature Materials 6.4 (2007), págs. 256-257. DOI:10.1038/nmat1868; D. Craik y R. Tebble. “Magnetic domains”. En: IOP Science 24.1 (1961), págs. 116-166. DOI:10.1088/0034-4885/24/1/304.; Pu Huang et al. “Recent advances in two-dimensional ferromagnetism: Materials synthesis, physical properties and device applications”. En: Nanoscale 12.4 (2020), págs. 2309-2327. DOI:10.1039/c9nr08890c.; S. Mallik et al. “Transition metal subtituted MoS2/WS2 van der Waals heterostructure for realization of dilute magnetic semiconductors”. En: Journal of Magnetism and Magnetic Materials 560 (2022). ISSN: 0304-8853.; M. Olenchuk et al. “Magnetic Properties of MoS2 and WS2 Powders”. En: Nanotechnology (ELNANO) (2022), págs. 91-94. DOI:10.1109/ELNANO54667. 2022.9927028.; J. Zhang et al. “Magnetic Molybdenum Disulfide Nanosheet Films”. En: Nano Letters 7.8 (jul. de 2007), págs. 2370-2376. DOI:10.1021/nl071016r. URL: https://doi.org/10.1021%2Fnl071016r.; X. Mao et al. “Ferromagnetism in exfoliated tungsten disulfide nanosheets”. En: Nanoscale Research Letters 8.1 (oct. de 2013). DOI:10.1186/1556-276x-8-430. URL: https://doi.org/10.1186%2F1556-276x-8-430.; X. Liu et al. “High Performance Field-Effect Transistor Based on Multilayer Tungsten Disulfide”. En: ACS Nano 8.10 (oct. de 2014), págs. 10396-10402. DOI:10.1021/nn505253p. URL: https://doi.org/10.1021%2Fnn505253p.; A. Rossi et al. “Patterned tungsten disulfide/graphene heterostructures for efficient multifunctional optoelectronic devices”. En: Nanoscale 10.9 (2018), págs. 4332-4338. DOI:10.1039/c7nr08703a. URL: https://doi.org/10.1039%2Fc7nr08703a.; B. Radisavljevic et al. “Single-layer MoS2 transistors”. En: Nature Nanotechnology 6.3 (ene. de 2011), págs. 147-150. DOI:10.1038/nnano.2010.279. URL: https://doi.org/10.1038%2Fnnano.2010.279.; O. Abdelsalam et al. “Magnetic and Electronic Properties of Edge-Modified Triangular WS2 and MoS2 Quantum Dots”. En: Crystals 13 (2023), pág. 251. DOI:10.3390/cryst13020251.; Avinash P. Nayak et al. “Pressure-Dependent Optical and Vibrational Properties of Monolayer Molybdenum Disulfide”. En: Nano Letters 15.1 (dic. de 2014), págs. 346-353. DOI:10.1021/nl5036397. URL: https://doi.org/10.1021%2Fnl5036397.; J. Luxa et al. “Origin of exotic ferromagnetic behavior in exfoliated layered transition metal dichalcogenides MoS2 and WS2”. En: Nanoscale 8.4 (2016), págs. 1960-1967. DOI:10.1039/C5NR05757D.; B. Kirupakar et al. “Vibrating Sample Magnetometer and Its Application In Characterisation Of Magnetic Property Of The Anti Cancer Drug Magnetic Microspheres”. En: INTERNATIONAL JOURNAL OF PHARMACEUTICS DRUG ANALYSIS 4.5 (2016), págs. 227-233. DOI: https://doi.org/10.1016/j.ijpharm.2010.10.011.; S Medeiros et al. “Stimuli-responsive magnetic particles for biomedical applications”. En: International Journal of Pharmaceutics 403.1,2 (2011), págs. 139-161. DOI: https://doi.org/10.1016/j.ijpharm.2010.10.011.; J. Leach. “Magnetic Targeted Drug Delivery”. Thesis. Faculty of the Virginia Polytechnic Institute y State University, feb. de 2003.; M. Abd Mutalib et al. “Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy”. En: ScienceDirect (2017), págs. 161-179. DOI:10.1016/b978-0-444-63776-5.00009-7.; J. Goldstein et al. “Scanning electron microscopy and X-ray microanalysis”. En: Springer Science+Business Media 1.3 (2003), págs. 565-570. DOI:10.1088/0034-4885/24/1/304.; https://hdl.handle.net/1992/73653; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/

  15. 15
    Video Recording

    المؤلفون: Maldonado Menacho, Erick

    المساهمون: Echegaray Yépez, Marco Antonio, operador de cámara

    المصدر: Universidad Continental ; Repositorio Institucional - Continental ; \\STG-POLIMEDIA\Polimedia\Storage Polimedia\WXYZ

    وصف الملف: application/mp4; 9 min., 58 seg.; application/pdf

  16. 16
    Conference
  17. 17
    Academic Journal
  18. 18
    Academic Journal

    المؤلفون: Rosado Cubero, Ana

    المصدر: Studies of Applied Economics; Vol. 32 No. 1 (2014): Economy and Culture; 247-258 ; Estudios de Economía Aplicada; Vol. 32 Núm. 1 (2014): Economí­a y Cultura; 247-258 ; 1697-5731 ; 1133-3197

    وصف الملف: application/pdf

  19. 19
    Academic Journal

    المصدر: Revista Tendencias en Docencia e Investigación en Química. Año 6, número 6 (enero-diciembre de 2020). ISSN: 2448-6663

    وصف الملف: pdf; Born digital; application/pdf

    Relation: https://revistatediq.azc.uam.mx/Docs/Revista_TeDIQ_2020.pdf; Stepnova, A.F., Kaziev-Zaxárovich, G., Holguín-Quiñones, S., Morales-Sánchez, L.A., Barrera-Pérez, F.M. & Ramírez-Cossio, L. (2020). Síntesis y caracterización del dodecatungstosilicato de caprolactamo con fórmula (C₆H₁₁NO)₃H₄[SiW₁₂O₄₀]·6H₂O. Revista Tendencias en Docencia e Investigación en Química, 6(6), 502-506. http://hdl.handle.net/11191/7765; http://hdl.handle.net/11191/7765

  20. 20
    Academic Journal

    المؤلفون: Riveros, Raúl Alberto

    المساهمون: Romero Malagón, Eduard Ricardo, LABORATORIO DE INVESTIGACIÓN EN COMBUSTIBLES Y ENERGÍA

    وصف الملف: application/pdf

    Relation: UPME, “Plan Energetico Nacional Colombia: Ideario Energético 2050,” Unidad Planeación Min. Energética, Repub. Colomb., p. 184, 2015, [Online]. Available: http://www.upme.gov.co/Docs/PEN/PEN_IdearioEnergetico2050.pdf.; British Petroleum, “BP Statistical Review of World Energy 67th,” 2018.; A. Ekeberg, “Niobium–tantalum,” British Geological Survey BGS, no. April, pp. 1–27, 2011.; O. P. Z. Servicio Geológico Colombiano, “Avance del Conocimiento Geocientífico como Base del Desarrollo Minero Energético,” 2014.; Unidad de Planeación Minero Energética - UPME, “Plan nacional de desarrollo minero con horizonte a 2025: Minería responsable con el territorio,” 2017.; V. E. Henrich and P. A. Cox, The surface science of metal oxides. Cambridge University Press, 1994.; U. Diebold, S. Li, and M. Schmid, “Oxide Surface Science,” no. October, pp. 129–148, 2009, doi:10.1146/annurev.physchem.012809.103254.; J. L. G. Fierro, Metal oxides : chemistry and applications. Taylor & Francis, 2006.; H. J. Freund, “Metal Oxide Surfaces: Electronic Structure and Molecular Adsorption,” vol. 407, 1995.; H. H. Kung, “Oxidative Dehydrogenation of Light (C2 to C4) Alkanes,” Adv. Catal., vol. 40, 1994.; Transition Metal Oxides: Surface chemistry and Catalysis, no. 1. 1989.; E. Huheey, E. A. Keiter, R. L. Keiter, and M. T. Aguilar Ortega, Química inorgánica : principios de estructura y reactividad. Harla, 1997.; H. Search, C. Journals, A. Contact, M. Iopscience, S. S. Phys, and I. P. Address, “The stability of ionic crystal surfaces,” vol. 4977, 1979.; H. H. Kung, Transition Metal Oxides: Surface Chemical and Catalysis. 1989.; J. F. Shackelford, “Introducción a La ciencia de materiales para ingenieros.”; H. Henry Teng, “How ions and molecules organize to form crystals,” Elements, vol. 9, no. 3, pp. 189–194, 2013, doi:10.2113/gselements.9.3.189.; W. Stumm, “Reactivity at the mineral-water interface: Dissolution and inhibition,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 120, no. 1–3, pp. 143–166, 1997, doi:10.1016/S0927-7757(96)03866-6.; W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals,” J. Cryst. Growth, vol. 203, no. 1, pp. 186–196, 1999, doi:10.1016/S0022-0248(99)00076-7.; R. I. Masel, Chemical kinetics and catalysis. Wiley-Interscience, 2001.; C. Noguera, “Polar oxide surfaces,” J. Phys. Condens. Matter, vol. 12, pp. 367–410, 2000.; N. N. (Norman N. Greenwood and A. (Alan) Earnshaw, Chemistry of the elements. Butterworth-Heinemann, 1997.; B. M. Weckhuysen and I. E. Wachs, “CATALYSIS BY SUPPORTED METAL OXIDES,” in Handbook of Surfaces and Interfaces of Materials, vol. 1, H. S. Nalwa, Ed. 2001, pp. 613–648.; R. K. Grasselli, “Site isolation and phase cooperation : Two important concepts in selective oxidation catalysis : A retrospective,” Catal. Today, vol. 238, pp. 10–27, 2014, doi:10.1016/j.cattod.2014.05.036.; M. Che, L. De Chinzir, U. D. P. Vi, A. J. Tench, and C. Diuision, “Characterization and Reactivity of Mononuclear Oxygen Species on Oxide Surfaces,” 1982.; M. Che and A. J. Tench, Characterization an d Reactivity of Molecular Oxygen Species on Oxide Surfaces, vol. 32. 1983.; R. K. Grasselli, “Fundamental principles of selective heterogeneous oxidation atalysis,” Top. Catal., vol. 21, no. 1–3, pp. 79–88, 2002, doi:10.1023/a:1020556131984.; J. C. Volta and J. L. Portefaix, “Structure sensitivity of mild oxidation reactions on oxide catalysts - A Review,” Appl. Catal., vol. 18, pp. 1–32, 1985.; H. Freund, H. Kuhlenbeck, and V. Staemmler, “Oxide surfaces,” Rep. Prog. Phys., vol. 59, no. October 1995, pp. 283–347, 1996.; B. G.- Swierkosz, “Thirty years in selective oxidation on oxides : what have we learned ?,” vol. 12, pp. 23–42, 2000.; M. Bettahar, G. Costentin, L. Savary, and J. Lavalley, “On the partial oxidation of propane and propylene on mixed metal oxide catalysts,” Applied Catalysis A: General, vol. 145, no. 1–2. pp. 1–48, 1996, doi:10.1016/0926-860X(96)00138-X.; J. L. Callahan and R. K. Grasselli, “A Selectivity Factor in Vapor-Phase Hydrocarbon Oxidation Catalysis,” AIChE J., vol. 9, no. 6, pp. 755–760, 1963, doi:10.1002/aic.690090610.; I. Fechete and C. V Jacques, “Heterogeneous partial oxidation catalysis on metal oxides,” C. R. Chim., pp. 1–23, 2016, doi:10.1016/j.crci.2015.09.021.; C. Doornkamp and V. Ponec, “The universal character of the Mars and Van Krevelen mechanism,” 2000.; J. Haber, J. Janas, M. Schiavello, and R. J. D. Tilleys, “Tungsten Oxides as Catalysts in Selective Oxidation,” vol. 403, pp. 395–403, 1983.; A. Zecchina and E. S. P. B. V, “Structure and Reactivity of Surfaces concept of structure-sensitivity in catalysis by Oxides - J. HABER,” in Structure and Reactivity of Surfaces, Elsevier S., A. Z. and G. C. C. Morterra, Ed. 1989, pp. 447–467.; F. Cavani and F. Trifirò, “The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins,” Catal. Today, vol. 24, no. 3, pp. 307–313, 1995, doi:10.1016/0920-5861(95)00051-G.; D. W. Smith, “An acidity scale for binary oxides,” J. Chem. Educ., vol. 64, no. 6, p. 480, 1987, doi:10.1021/ed064p480.; B. A. Grzybowska, “Acidic properties of mixed Transition Metal Oxides,” Mater. Chem. Phys., vol. 17, pp. 121–144, 1987.; S. R. Morrison, “Surface states associated with acid sites on solids,” Surf. Sci., vol. 50, pp. 329–342, 1975.; I. E. Wachs, “Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials,” Catal. Today, vol. 100, no. 1–2, pp. 79–94, 2005, doi:10.1016/j.cattod.2004.12.019.; J.-M. Jehng and I. E. Wachs, “Structural chemistry and raman spectra of niobium oxides,” Chem. Mater., vol. 3, no. 1, pp. 100–107, 1991, doi:10.1021/cm00013a025.; G. Busca, G. Ramis, and V. Lorenzelli, “{FT-IR} study of the surface properties of polycrystalline vanadia,” J. Mol. Catal., vol. 50, no. 2, pp. 231–240, 1989, doi:10.1016/0304-5102(89)85066-7.; K. Tanabe and W. F. Ho, “Industrial application of solid acid ± base catalysts,” vol. 181, 1999.; B. Centers and A. Property, “Acid and Base Centers: Structure an Acid-Base Property,” New Solid Acids Bases, vol. 51, pp. 27–213, 1989, doi:10.1016/S0167-2991(08)61046-0.; D. Siew Hew Sam, V. Soenen, and J. C. Volta, “Oxidative dehydrogenation of propane over VMgO catalysts,” J. Catal., vol. 123, no. 2, pp. 417–435, 1990, doi:10.1016/0021-9517(90)90139-B.; E. L. Lee and I. E. Wachs, “In Situ Spectroscopic Investigation of the Molecular and Electronic Structures of SiO2 Supported Surface Metal Oxides,” J. Phys. Chem. C, vol. 111, no. 39, pp. 14410–14425, 2007, doi:10.1021/jp0735482.; A. M. Turek, I. E. Wachs, and E. DeCanio, “Acidic properties of alumina-supported metal oxide catalysts: an infrared spectroscopy study,” J. Phys. Chem., vol. 96, no. 12, pp. 5000–5007, 1992, doi:10.1021/j100191a050.; M. A. Vuurman, D. J. Stufkens, A. Oskam, G. Deo, and I. E. Wachs, “Combined Raman and IR study of MOx-V2O5/Al2O3(MOx= MoO3, WO3, NiO, CoO) catalysts under dehydrated conditions,” J. Chem. Soc. - Faraday Trans., vol. 92, no. 17, pp. 3259–3265, 1996, doi:10.1039/FT9969203259.; F. K. D. V. L. J. A. M. A. A. M. A. V. A. M. T. J.-M. J. I. E. Wachs., “Alumina supported Manganeso Oxide Catalysts,” J. Catal., vol. 150, pp. 94–104, 1994.; M. de Boer, A. J. van Dillen, D. C. Koningsberger, J. W. Geus, M. A. Vuurman, and I. E. Wachs, “Remarkable spreading behavior of molybdena on silica catalysts. An in situ EXAFS-Raman study,” Catal. Letters, vol. 11, no. 2, pp. 227–239, 1991, doi:10.1007/BF00764089.; I. E. Wachs, “Molecular engineering of supported metal oxide catalysts: Oxidation reactions over supported vanadia catalysts,” Catal. Vol. 13, vol. 13, pp. 37–54, 1997, doi:10.1039/9781847553256-00037.; J. OLAH, G. A.; PRAKASH, G. K. S.; MOLNÁ, Á.; SOMMAR, Superacid Chemistry. 2009.; T. Yamaguchi, “Recent progress in solid superacid,” Appl. Catal., vol. 61, no. 1, pp. 1–25, 1990, doi:10.1016/S0166-9834(00)82131-4.; J. M. Michael B. Smith, March’s advanced organic chemistry, Sixth 6th. Wiley-Interscience, 2007.; A. Zecchina, C. Lamberti, S. Bordiga, Á. Torino, and V. P. Giuria, “Surface acidity and basicity : General concepts,” vol. 41, pp. 169–177, 1998.; K. H. Lee, Y. Yoon, W. Y. Ã. Ueda, and Y. Y. Ã. Moro-oka, “An evidence of active surface MoO x over MgMoO 4 for the catalytic oxidative dehydrogenation of propane,” vol. 46, pp. 267–271, 1997.; S. Chemistry and P. Academy, “Review Oxidation of hydrocarbons quantum chemical studies on transition metal oxide catalysts -,” vol. 70, pp. 277–333, 1991.; S. N. Khadzhiev, “Nanoheterogeneous Catalysis : A New Sector of Nanotechnologies in Chemistry and Petroleum Chemistry ( A Review ),” vol. 51, no. 1, pp. 1–15, 2011, doi:10.1134/S0965544111010063.; G. B. Haxel, J. B. Hedrick, and G. J. Orris, “Rare Earth Elements — Critical Resources for High Technology,” United States Geol. Surv. Fact Sheet, vol. 087, p. 4, 2002, doi:10.1017/CBO9781107415324.004.; R. L. Rudnick and S. Gao, “3.01 - Composition of the Continental Crust,” Treatise on Geochemistry, vol. 1, no. 7, pp. 1–64, 2003, doi: http://dx.doi.org/10.1016/B0-08-043751-6/03016-4.; B. G. Survey, “Risk List 2011 British Geological Survey A new supply risk index for chemical elements or element groups which are of economic value,” World, vol. 1, 2011.; D. R. Lide, “CRC Handbook of Chemistry and Physics,” CRC Handb. Chem. Phys., pp. 2313–2314, 2005, doi:10.1021/ja041017a.; K. Tanabe, “Catalytic application of niobium compounds,” Catal. Today, vol. 78, no. 1-4 SPEC., pp. 65–77, 2003, doi:10.1016/S0920-5861(02)00343-7.; F. A. Cotton and G. Wilkinson, Química inorgánica avanzada, Limusa. 2008.; I. E. Wachs, L. E. Briand, J.-M. Jehng, L. Burcham, and X. Gao, “Molecular structure and reactivity of the group V metal oxides,” Catal. Today, vol. 57, pp. 323–330, 2000, doi:10.1016/S0920-5861(99)00343-0.; B. M. Gatehouse and A. D. Wadsley, “The crystal structure of the high temperature form of niobium pentoxide,” Acta Crystallogr., vol. 17, no. 12, pp. 1545–1554, 1964, doi:10.1107/S0365110X6400384X.; C. Nico et al., “Sintered NbO powders for electronic device applications,” J. Phys. Chem. C, vol. 115, no. 11, pp. 4879–4886, 2011, doi:10.1021/jp110672u.; J. Datka, “Acidic Properties of Supported Niobium Oxide Catalysts : An Infrared Spectroscopy Investigation,” vol. 199, pp. 186–199, 1992.; T. Ushikubo, “Activation of propane and butanes over niobium- and tantalum-based oxide catalysts,” Catal. Today, vol. 78, no. 1-4 SPEC., pp. 79–84, 2003, doi:10.1016/S0920-5861(02)00346-2.; T. Ushikubo and K. Wada, “Catalytic properties of hydrated tantalum oxide,” Appl. Catal., vol. 67, no. 1, pp. 25–38, 1990, doi:10.1016/S0166-9834(00)84429-2.; “Internation Molybdenum Association - Higher and lower oxidation states.” http://www.imoa.info/molybdenum-uses/molybdenum-chemistry-uses/molybdenum-oxidation-states.php# (accessed Dec. 03, 2017).; K. Chen, A. T. Bell, and E. Iglesia, “Kinetics and mechanism of oxidative dehydrogenation of propane on vanadium, molybdenum, and tungsten oxides,” J. Phys. Chem. B, vol. 104, no. 6, pp. 1292–1299, 2000, doi:10.1021/jp9933875.; M. Ziolek and I. Nowak, “Characterization techniques employed in the study of niobium and tantalum-containing materials,” Catal. Today, vol. 78, no. 1-4 SPEC., pp. 543–553, 2003, doi:10.1016/S0920-5861(02)00353-X.; M. Ziolek, “Niobium-containing catalysts—the state of the art,” Catalysis Today, vol. 78, no. 1–4. pp. 47–64, 2003, doi:10.1016/S0920-5861(02)00340-1.; M. Ziolek and I. Sobczak, “The role of niobium component in heterogeneous catalysts,” Catal. Today, vol. 285, pp. 211–225, 2017, doi:10.1016/j.cattod.2016.12.013.; T. Ushikubo, “Recent topics of research and development of catalysis by niobium and tantalum oxides,” vol. 57, pp. 331–338, 2000.; Y. Wada and A. Morikawa, “Catalysis by niobium oxides in their reduced states,” Catal. Today, vol. 8, no. 1, pp. 13–25, 1990, doi:10.1016/0920-5861(90)87004-M.; F. Barbieri, D. Cauzzi, F. De Smet, and M. Devillers, “Mixed-oxide catalysts involving V , Nb and Si obtained by a non-hydrolytic sol – gel route : preparation and catalytic behaviour in oxydative dehydrogenation of propane,” vol. 61, pp. 353–360, 2000.; S. A. Holmes et al., “Solid state chemistry of bulk mixed metal oxide catalysts for the selective oxidation of propane to acrylic acid,” vol. 67, pp. 403–409, 2001.; N. Otabi-cho, “A : Various reactions catalyzed by niobium compounds and materials,” vol. 133, pp. 191–218, 1995.; A. Katrib, P. Leflaive, L. Hilaire, and G. Maire, “Molybdenum based catalysts. I. MoO2 as the active species in the reforming of hydrocarbons,” Catal. Letters, vol. 38, no. 1–2, pp. 95–99, 1996, doi:10.1007/BF00806906.; A. Katrib, D. Mey, and G. Maire, “Molybdenum and tungsten dioxides, XO2 (X=Mo,W), as reforming catalysts for hydrocarbon compounds,” Catal. Today, vol. 65, no. 2–4, pp. 179–183, 2001, doi:10.1016/S0920-5861(00)00580-0.; H. Belatel, H. Al-Kandari, F. Al-Khorafi, A. Katrib, and F. Garin, “Catalytic reactions of methylcyclohexane (MCH) on partially reduced MoO3,” Appl. Catal. A Gen., vol. 275, no. 1–2, pp. 141–147, 2004, doi:10.1016/j.apcata.2004.07.029.; H. Al-Kandari, F. Al-Kharafi, N. Al-Awadi, O. M. El-Dusouqui, and A. Katrib, “Surface electronic structure-catalytic activity relationship of partially reduced WO3 bulk or deposited on TiO2,” J. Electron Spectros. Relat. Phenomena, vol. 151, no. 2, pp. 128–134, 2006, doi:10.1016/j.elspec.2005.11.007.; A. Zecchina and E. S. P. B. V, “THE CONCEPT OF STRUCTURE-SENSITI VlTY IN CATALYSIS BY OXIDES J. HABER Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow (Poland),” pp. 447–467, 1989.; C. Letters and C. Society, “REACTION OF BUTANE TO ISOBUTANE CATALYZED BY IRON OXIDE TREATED WITH SULFATE ION . SOLID SUPERACID CATALYST Makoto HINO and Kazushi ARATA * Hakodate Technical College , Tokura-cho , Hakodate 042 * Hokkaido University of Education , Hachiman-cho , Hakodate,” pp. 1259–1260, 1979.; K. Arata, “Preparation of superacids by metal oxides for reactions of butanes and pentanes,” Appl. Catal. A Gen., vol. 146, no. 1, pp. 3–32, 1996, doi:10.1016/0926-860X(96)00046-4.; M. Hino and K. Arata, “Synthesis of solid superacid catalyst with acid strength of Ho; D. Fǎrcaşiu, J. Q. Li, and A. Kogelbauer, “The mechanism of conversion of hydrocarbons on sulfated metal oxides. Part IV. Kinetics of the reaction of methylcyclopentane on sulfated zirconia,” J. Mol. Catal. A Chem., vol. 124, no. 1, pp. 67–78, 1997, doi:10.1016/S1381-1169(97)00067-8.; K. Arata, H. Matsuhashi, M. Hino, and H. Nakamura, “Synthesis of solid superacids and their activities for reactions of alkanes,” Catal. Today, vol. 81, no. 1, pp. 17–30, 2003, doi:10.1016/S0920-5861(03)00098-1.; N. Katada, J. I. Endo, K. I. Notsu, N. Yasunobu, N. Naito, and M. Niwa, “Superacidity and catalytic activity of sulfated zirconia,” J. Phys. Chem. B, vol. 104, no. 44, pp. 10321–10328, 2000, doi:10.1021/jp002212o.; a. C. B. dos Santos, W. B. Kover, and a. C. Faro, “Transition metal oxides additivated with sulphate or phosphate as catalysts for the cracking of cumene and supports for sulphided nickel-tungsten hydrocracking catalysts,” Appl. Catal. A Gen., vol. 153, no. 96, pp. 83–101, 1997, doi:10.1016/S0926-860X(96)00333-X.; K. Arata and M. Hino, “Preparation of superacids by metal oxides and their catalytic action,” Mater. Chem. Phys., vol. 26, no. 3–4, pp. 213–237, 1990, doi:10.1016/0254-0584(90)90012-Y.; D. Fǎrcaşiu, A. Ghenciu, and J. Q. Li, “The mechanism of conversion of saturated hydrocarbons catalyzed by sulfated metal oxides. Part II. Reaction of benzene on sulfated zirconia,” J. Catal., vol. 158, no. 1, pp. 116–127, 1996, doi:10.1006/jcat.1996.0013.; S. Refining, M. Company, and M. Hook, “A Highly Active Solid Superacid Catalyst for n-Butane Isomerization: a Sulfated Oxided Containing Iron, Manganese and Zirconium,” vol. 02, no. 0, pp. 1645–1646, 1992.; D. J. Rosenberg, F. Coloma, and J. A. Anderson, “Modification of the acid properties of silica-zirconia aerogels by in situ and ex situ sulfation,” J. Catal., vol. 210, no. 1, pp. 218–228, 2002, doi:10.1006/jcat.2002.3656.; A. O. Zro, Y. Xia, W. Hua, and Z. Gao, “A new catalyst for n -butane isomerization : persulfate-modified,” vol. 185, pp. 293–300, 1999.; B. M. Reddy, P. M. Sreekanth, Y. Yamada, and T. Kobayashi, “Surface characterization and catalytic activity of sulfate-, molybdate- and tungstate-promoted Al2O3–ZrO2 solid acid catalysts,” J. Mol. Catal. A Chem., vol. 227, no. 1–2, pp. 81–89, 2005, doi:10.1016/j.molcata.2004.10.011.; S. Al-Kandari, H. Al-Kandari, F. Al-Kharafi, and A. Katrib, “The catalytic reactions of n-pentane and 1-pentene on different molybdenum oxides and metal surfaces,” Appl. Catal. A Gen., vol. 341, no. 1–2, pp. 160–167, 2008, doi:10.1016/j.apcata.2008.02.038.; “Redox properties of niobium oxide catalysts.pdf.” .; V. Pârvulescu, V. I. Pârvulescu, and P. Grange, “Preparation , characterization and catalytic properties of Co – Nb 2 O 5 – SiO 2 catalysts,” vol. 57, pp. 193–199, 2000.; J. O. F. Catal, “Ammoxidation of Propane over Catalysts Comprising Mixed Oxides of Mo and V,” vol. 396, pp. 394–396, 1997.; K. T. Z. Chen, T. Iizuka, “Niobic acid as an efficient catalyst for vapor phase esterificaction of ethyl alcohol with acetic acid,” Chem. Lett., pp. 1085–1088, 1984, doi: doi.org/10.1246/cl.1984.1085.; K. T. T. Iizuka, S. Fujie, T. Ushikubo, Z. Chen, “Esterification of Acrylic acid with Methanol over Niobic acid catalyst,” Appl. Catal., vol. 28, pp. 1–5, 1986.; Y. S. T. Hanaoka, K. Takeuchi, T. Matsuzaki, “Solvolysis and Isomerization of Phenyloxirane catalyzed with Niobic acid,” Catal. Letters, vol. 5, pp. 13–16, 1990.; T. I. and K. T. K. Ogasawara, “Ethylene hydration over Niobic acid catalysts,” Chem. Lett., pp. 645–648, 1984.; J. J. Spivey, M. R. Gogate, J. R. Zoeller, and R. D. Colberg, “Novel catalysts for the environmentally friendly synthesis of Methyl Methacrylate,” Ind. Eng. Chem. Res., vol. 5885, no. reaction 2, pp. 4600–4608, 1997.; T. Y. and C. Nishimichi, “Olefin-aldehyde condensation reaction on solids acids,” Catal. Today, vol. 16, pp. 555–562, 1993.; J. A. O. and M. M. M. Paulis, M. Martín, D.B. Soria, A. Díaz, “Preparation and characterization of niobium oxide for the catalytic aldol condensation of acetone,” Appl. Catal. A, Gen., vol. 180, pp. 411–420, 1999.; N. M. R. P. and E. R. L. M. Moraes, W.de.S.F. Pinto, W.A. Gonzalez, L.M.P.M. Carmo, “Benzylation of toluene and anisole by benzyl alcohol catalyzed by niobic acid : influence of pretreatment temperature in the catalytic activity of,” Appl. Catal. A, Gen., vol. 138, no. September 1995, 1996.; R. Weng and J. Lee, “Catalytic performance and active sites determination of niobium oxide promoted vanadia / titania catalysts for selective catalytic reduction of nitric oxide,” vol. 105, no. 1, pp. 41–51, 1993.; “Reactivity of Supported Vanadium Oxide Catalysts - Partial oxidation Methanol.pdf.” .; A. Khodakov, B. Olthof, a T. Bell, and E. Iglesia, “Structure and catalytic properties of supported vanadium oxides: Support effects on oxidative dehydrogenation reactions,” J. Catal., vol. 181, no. 2, pp. 205–216, 1999, doi:10.1006/jcat.1998.2295.; J. Jehng, A. M. Turek, and I. E. Wachs, “Surface modified niobium oxide catalyst : synthesis , characterization , and catalysis,” vol. 83, pp. 179–200, 1992.; D. G. Barton, S. L. Soled, G. D. Meitzner, G. A. Fuentes, and E. Iglesia, “Structural and Catalytic Characterization of Solid Acids Based on Zirconia Modified by Tungsten Oxide,” vol. 72, pp. 57–72, 1999.; J. Winslow and E. Schmetz, “Direct Coal Liquefaction Overview,” Netl, 2009, [Online]. Available: http://seca.doe.gov/technologies/ccbtl/refshelf/presentations/20090409_LTI_DCL Presentation - Comprehensive Overview.pdf.; A. Chem, “IUPAC. 1996. Basic Terminology of Stereochemistry. Pure. Appl. Chem., 68, 2193-2222.,” 1996.; L. Thomas, Coal Geology. 2013.; ASTM International, “ASTM D388-12 Standard Calsification of Coals by Rank,” Astm, vol. 05, no. January 2000, pp. 1–7, 2002, doi:10.1520/D0388-12.2.; D. G. Levine, R. H. Schlosberg, and B. G. Silbernagel, “Understanding the chemistry and physics of coal structure (A Review),” Proc. Natl. Acad. Sci. U. S. A., vol. 79, no. 10, pp. 3365–3370, 1982, doi:10.1073/pnas.79.10.3365.; A. Radenović, “Inorganic constituents in coal,” Kem. u Ind. Chem. Chem. Eng., vol. 55, no. 2, pp. 65–71, 2006.; H. Shinn, “From coal to single-stage and two-stage products : a reactive model of coal structure,” vol. 63, pp. 1187–1196, 1984.; T. Takanohashi, “Coal Structure and Properties,” in Encyclopedia of Life Support Systems (EOLSS) - An Integrated compendium of twenty encyclopedias, vol. Vol. I: Co, .; a. M. Gyul’maliev and S. G. Gagarin, “Molecular modeling of the structure and properties of coal organic matter,” Solid Fuel Chem., vol. 44, no. 3, pp. 154–163, 2010, doi:10.3103/S036152191003002X.; I. Wender, “Catalysis Reviews : Science and Engineering Catalytic Synthesis of Chemicals from Coal,” Catal. Rev. Sci. Eng., vol. 14, no. 1, pp. 97–129, 1976, doi:10.1080/03602457608073408.; M. S. Solum, R. J. Pugmire, and D. M. Grant, “13C Solid-state NMR of Argonne Premium Coals,” Energy & Fuels, vol. 3, pp. 187–193, 1989.; I. Mochida, O. Okuma, and S. H. Yoon, “Chemicals from direct coal liquefaction,” Chem. Rev., vol. 114, no. 3, pp. 1637–1672, 2014, doi:10.1021/cr4002885.; H. Shui, Z. Cai, and C. C. Xu, “Recent advances in direct coal liquefaction,” Energies, vol. 3, no. 2, pp. 155–170, 2010, doi:10.3390/en3020155.; Z. Liu, S. Shi, and Y. Li, “Coal liquefaction technologies-Development in China and challenges in chemical reaction engineering,” Chem. Eng. Sci., vol. 65, no. 1, pp. 12–17, 2010, doi:10.1016/j.ces.2009.05.014.; A. G. Comolli, T. L. K. Lee, G. A. Popper, and P. Zhou, “The Shenhua coal direct liquefaction plant,” Fuel Process. Technol., vol. 59, no. 2–3, pp. 207–215, 1999, doi:10.1016/S0378-3820(99)00016-8.; M. Kouzu et al., “Catalytic hydrogenation of recycle solvent in a 150 t/d pilot plant of the NEDOL coal liquefaction process,” Fuel, vol. 79, no. 3–4, pp. 365–371, 2000, doi:10.1016/S0016-2361(99)00171-4.; K. Hirano, M. Kouzu, T. Okado, M. Kobayashi, N. Ikenaga, and T. Suzuki, “Catalytic activity of iron compounds for coal liquefaction,” Fuel, vol. 78, no.15, pp. 1867–1873, 1999, doi:10.1016/S0016-2361(99)00095-2.; T. Kotanigawa, M. Yamamoto, and M. Sasaki, “Active site of iron-based catalyst in coal liquefaction,” Energy …, vol. 0624, no. 7, pp. 190–193, 1997, doi:10.1021/ef960053v.; I. Mochida and K. Sakanishi, “Catalysis in Coal Liquefaction,” Adv. Catal., vol. 40, no. C, pp. 39–85, 1994, doi:10.1016/S0360-0564(08)60656-2.; N. Ikenaga, S. Kan-Nan, T. Sakoda, and T. Suzuki, “Coal hydroliquefaction using highly dispersed catalyst precursors,” Catal. Today, vol. 39, no. 1–2, pp. 99–109, 1997, doi:10.1016/S0920-5861(97)00092-8.; Z. Liu, J. Yang, J. W. Zondlo, A. H. Stiller, and D. B. Dadyburjor, “In situ impregnated iron-based catalysts for direct coal liquefaction,” Fuel, vol. 75, no. 1, pp. 51–57, 1996, doi:10.1016/0016-2361(95)00226-X.; D. B. Dadyburjor and T. E. Fout, “Ferric-sulfide-based catalysts made using reverse micelles::: Effect of preparation on performance in coal liquefaction,” Catal. Today, vol. 63, pp. 33–41, 2000, [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0920586100004430%5Cnpapers2://publication/uuid/8151391C-FDBA-47BA-A640-94AD9620A4D0.; C. Song, D. S. Parfitt, and H. H. Schobert, “Bimetallic Dispersed Catalysts from Molecular Precursors Containing Mo–Co–S for Coal Liquefaction,” Energy and Fuels, vol. 8, no. 2, pp. 313–319, 1994, doi:10.1021/ef00044a004.; C. K. J. Hulston, P. J. Redlich, W. R. Jackson, F. P. Larkins, and M. Marshall, “Nickel molybdate-catalysed hydrogenation of brown coal without solvent or added sulfur,” Fuel, vol. 75, no. 12, pp. 1387–1392, 1996, doi:10.1016/0016-2361(96)00093-2.; K. Shimizu and H. Kawashima, “Comparison of superacid-catalyzed depolymerization and thermal depolymerization of bituminous coal-catalysis by superacid HF/BF3 and synthetic pyrite,” Energy and Fuels, vol. 13, no. 6, pp. 1223–1229, 1999, doi:10.1021/ef990097e.; Z. Wang, H. Shui, D. Zhang, and J. Gao, “A Comparison of FeS, FeS + S and solid superacid catalytic properties for coal hydro-liquefaction,” Fuel, vol. 86, no. 5–6, pp. 835–842, 2007, doi:10.1016/j.fuel.2006.09.018.; Z. Wang, H. Shui, Y. Zhu, and J. Gao, “Catalysis of SO42 -/ ZrO2solid acid for the liquefaction of coal,” Fuel, vol. 88, no. 5, pp. 885–889, 2009, doi:10.1016/j.fuel.2008.10.040.; V. R. Pradhan, J. W. Tierney, I. Wender, and G. P. Huffman, “Catalysis in direct coal liquefaction by sulfated metal oxides,” Energy & Fuels, vol. 5, no. 3, pp. 497–507, 1991, doi:10.1021/ef00027a024.; I. Nowak and M. Ziolek, “Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis.,” Chem. Rev., vol. 99, no. 12, pp. 3603–3624, 1999, doi:10.1021/cr9800208.; R. Schulz et al., “ Hydrogen desorption mechanism in MgH2−Nb nanocomposites ,” Phys. Rev. B, vol. 63, no. 5, pp. 1–4, 2002, doi:10.1103/physrevb.63.052103.; G. Barkhordarian, T. Klassen, and R. Bormann, “Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst,” Scr. Mater., vol. 49, no. 3, pp. 213–217, 2003, doi:10.1016/S1359-6462(03)00259-8.; A. BORGSCHULTE, J. RECTOR, B. DAM, R. GRIESSEN, and A. ZUTTEL, “The role of niobium oxide as a surface catalyst for hydrogen absorption,” Journal of Catalysis, vol. 235, no. 2. pp. 353–358, 2005, doi:10.1016/j.jcat.2005.08.018.; V. Gaborit, N. Allali, C. Geantet, M. Breysse, M. Vrinat, and M. Danot, “Niobium sulfide as a dopant for hydrotreating NiMo catalysts,” Catal. Today, vol. 57, no. 3–4, pp. 267–273, 2000, doi:10.1016/S0920-5861(99)00336-3.; N. Allali, A. Leblanc, M. Danot, C. Geantet, M. Vrinat, and M. Breysse, “Catalytic properties of pure and Ni doped niobium sulfide catalysts for hydrodesulfurization,” Catal. Today, vol. 27, no. 1–2, pp. 137–144, 1996, doi:10.1016/0920-5861(95)00181-6.; D. P. Flatman-Fairs and G. Harrison, “Suitability of UK bituminous and Spanish lignitous coals, and their blends for two stage liquefaction,” Fuel, vol. 78, no. 14, pp. 1711–1717, 1999, doi:10.1016/S0016-2361(99)00119-2.; J. Cai, Y. Wang, and Q. Huang, “Rapid liquefaction of Longkou lignite coal by using a tubular reactor under methane atmosphere,” Fuel, vol. 87, no. 15–16, pp. 3388–3392, 2008, doi:10.1016/j.fuel.2008.06.001.; P. Song, Chunshan; Schobert, Harold; Hatcher, “Temperature-Programmed Liquefaction of a Low-Rank Coal,” Energy & Fuels, no. 9, pp. 326–328, 1992.; D. F. McMillen, R. Malhotra, and D. S. Tse, “Interactive Effects between Solvent Components: Possible Chemical Origin of Synergy in Liquefaction and Coprocessing,” Energy and Fuels, vol. 5, no. 1, pp. 179–187, 1991, doi:10.1021/ef00025a031.; K. Chiba, H. Tagaya, and N. Saito, “Liquefaction of Yallourn Coal by Binary System Solvent,” Energy and Fuels, vol. 1, no. 4, pp. 338–343, 1987, doi:10.1021/ef00004a005.; S. Effects, P. Functionality, H. Functionality, T. Iv, and T. Iv, “Coal Liquefaction by Binary Solvent Systems Composed of Tetralin and Reducible Compounds,” Energy & Fuels, no. 6, pp. 345–350, 1989.; P. N. Kuznetsov, J. Bimer, P. D. Salbut, E. D. Korniyets, L. I. Kuznetsova, and C. E. Snape, “The nature of the synergistic effect of binary tetralin-alcohol solvents in Kansk-Achinsk brown coal liquefaction,” Fuel Process. Technol., vol. 50, no. 2–3, pp. 139–152, 1997, doi:10.1016/S0378-3820(96)01047-8.; M. A. Mikita, B. C. Bockrath, H. M. Davis, S. Friedman, and E. G. Illig, “Water and Nondonor-Vehicle-Assisted Liquefaction of Illinois Bituminous Coal?,” no. 1, pp. 534–538, 1988.; C. Song, A. K. Saini, and Y. Yoneyama, “New process for catalytic liquefaction of coal using dispersed MoS2catalyst generated in situ with added H2O,” Fuel, vol. 79, no. 3–4, pp. 249–261, 2000, doi:10.1016/S0016-2361(99)00159-3.; A. Song, Chunshan; Saini, “Strong Synergistic Effect between Dispersed Mo Catalyst and H2O for Low-Sever,” energy, pp. 188–189, 1995.; I. Mochida, K. Sakanishi, A. Takayama, and R. Sakata, “Hydrogen-Transferring Liquefaction of an Australian Brown Coal with Polyhydrogenated Condensed Aromatics: Roles of Donor in the Liquefaction,” Energy and Fuels, vol. 4, no. 1, pp. 81–84, 1990, doi:10.1021/ef00019a015.; Q. Sun, J. J. Fletcher, Y. Zhang, and X. Ren, “Comparative analysis of costs of alternative coal liquefaction processes,” Energy and Fuels, vol. 19, no. 3, pp. 1160–1164, 2005, doi:10.1021/ef049859i.; K. A. Hata, Y. Watanabe, K. Wada, and T. A. Mitsudo, “Iron sulfate/sulfur-catalyzed liquefaction of Wandoan coal using syngas-water as a hydrogen source,” Fuel Process. Technol., vol. 56, no. 3, pp. 291–304, 1998, doi:10.1016/S0378-3820(98)00058-7.; H. Shui, J. Liu, Z. Wang, and D. Zhnag, “Preliminary study on liquefaction properties of Xiaolongtan lignite under different atmospheres,” J. Fuel Chem. Technol., vol. 37, no. 3, pp. 257–261, 2009, doi: http://dx.doi.org/10.1016/S1872-5813(09)60019-0.; Y. Watanabe, K. aki Hata, N. aki Kawasaki, K. Wada, and T. aki Mitsudo, “Synthetic Pyrite-Catalyzed Coal Liquefaction in Syngas-Water Systems,” Energy and Fuels, vol. 8, no. 3, pp. 806–807, 1994, doi:10.1021/ef00045a041.; Y. Watanabe, H. Yamada, N. Kawasaki, and K. Hata, “Fe(CO)5-sulfur-catalysed coal liquefaction in H20-CO systems,” Fuel, vol. 75, no. 1, pp. 46–50, 1996.; C. Technology, “Effect of initial coal particle size on coal liquefaction conversion Mehran Heydari , Moshfiqur Rahman and Rajender Gupta *,” vol. 12, no. 1, 2016.; H. Hu, G. Sha, and G. Chen, “Effect of solvent swelling on liquefaction of Xinglong coal at less severe conditions,” Fuel Process. Technol., vol. 68, no. 1, pp. 33–43, 2000, doi:10.1016/S0378-3820(00)00101-6.; F. Pinto, I. Gulyurtlu, L. S. Lobo, and I. Cabrita, “Effect of coal pre-treatment with swelling solvents on coal liquefaction,” Fuel, vol. 78, no. 6, pp. 629–634, 1999, doi:10.1016/S0016-2361(98)00193-8.; F. P. Miknis, D. A. Netzel, T. F. Turner, J. C. Wallace, and C. H. Butcher, “Effect of different drying methods on coal structure and reactivity toward liquefaction,” Energy and Fuels, vol. 10, no. 3, pp. 631–640, 1996, doi:10.1021/ef950257w.; O. Ivanenko, R. a. Graff, V. Balogh-Nair, and C. Brathwaite, “Improvement of Coal Direct Liquefaction by Steam Pretreatment,” Energy & Fuels, vol. 11, no. 1, pp. 206–212, 1997, doi:10.1021/ef960088v.; M. Iino, T. Takanohashi, C. Li, and H. Kumagai, “Increase in extraction yields of coals by water treatment,” Energy and Fuels, vol. 18, no. 5, pp. 1414–1418, 2004, doi:10.1021/ef034078n.; W. Geng, Y. Kumabe, T. Nakajima, H. Takanashi, and A. Ohki, “Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS),” Fuel, vol. 88, no. 4, pp. 644–649, 2009, doi:10.1016/j.fuel.2008.09.025.; H. Hasuo, K. Sakanishi, H. Taniguchi, M. Kishino, and I. Mochida, “Effects of Catalytic Activity and Solvent Composition on Two-Stage Coal Liquefaction,” Ind. Eng. Chem. Res., vol. 36, no. 5, pp. 1453–1457, 1997, doi:10.1021/ie960556o.; Y. Inukai, S. Arita, and H. Hirosue, “Effect of Preheat Treatment on Coal Liquefaction,” no. 14. pp. 67–70, 1995.; V. Orlando, “Renace el sector de hidrocarburos,” Agencia Nacional de Hidrocarburos (ANH), pp. 86–87, 2018.; “United Nations Climate Change - UNFCCC.” https://unfccc.int/ (accessed Jul. 28, 2018).; C. N. D. P. E. Y. S. CONPES, “Estrategia para la implementación de los objetivos de desarrollo sostenible (ODS) en Colombia,” Doc. CONPES 3918, pp. 1–73, 2018.; World Coal Institute WCI, “Carbón Limpio : Creando un Futuro a Través a la Tecnología,” 2004.; A. L. de M. y E. ALAME, “Agenda XX Colombian Coal Conference 2017 - Barranquilla 8 y 9 de Febrero,” 2017.; Agencia Nacional de Hidrocarburos (ANH), Unidad de Planeación Minero Energetica (UPME), and Unión Temporal CTL, “Análisis y evaluación técnica y económica de la producción de combustibles líquidos a partir de carbon para el caso colombiano,” 2007.; J. M. Barraza, E. Coley, D. R. Velasco, and P. Colom, “Licuefacción directa del carbón del Cerrejón (Colombia) – Influencia de variables de proceso sobre la conversión y distribución d eproductos,” III Congr. Bras. carboe, Gramado-Brasil, no. June, 2011.; D. Ramos, L. Rodríguez, Y. Agamez, and J. Díaz, “Licuefacción catalítica directa de carbones. Efecto de la temperatura,” Rev. Colomb. Quim., vol. 39, no. 1, pp. 131–139, 2010.; E. Ministro and G. Nacional, Resolución 18-0102 de 2012, vol. 2012, no. Enero 20. 2012.; I. U. N. Ministerio De Minas Y Energia Instituto Colombiano De Geologia Y Mineria, “‘Caracterización De Depósitos Aluviales Con Manifestaciones De Tantalio Y Niobio (“Coltán”) En Las Comunidades Indígenas De Matraca Y Caranacoa, Departamento Del Guainía’ .,” p. 190, 2011, doi: http://aplicaciones1.ingeominas.gov.co/sicat/html/Metadato.aspx?CID=240476 last view: 11/6/2011.; R. O. Cristancho, “Caracterización de un mineral de Casiterita Colombiano y contribución al mejoramiento en su metodología de beneficio,” 2013.; Z. Amaya Perea, “Caracterización Mineralógica Y Geoquímica De Wolframitas Y Minerales Asociados En Zancudo, Río Inírida, Colombia.,” 2013.; R. Rodriguez, “Minerales polimetalicos en Colombia analisis del mercado nacional,” 2000.; R. Cunningham, C.G., Zappettini, E.O., Vivallo S., Waldo, Celada, C.M., Quispe, Jorge, Singer, D.A., Briskey, J.A, Sutphin, D.M., Gajardo M., Mariano, Diaz, Alejandro, Portigliati, Carlos, Berger, V.I., Carrasco and K. . Schulz, “Quantitative mineral resource assessment of copper, molybdenum, gold, and silver in undiscovered porphyry copper deposits in the Andes Mountains of South America,” 2008. [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Quantitative+Mineral+Resource+Assessment+of+Copper,+Molybdenum,+Gold,+and+Silver+in+Undiscovered+Por-+phyry+Copper+Deposits+in+the+Andes+Mountains+of+South+America.+C.G.+C#0.; Servicio Geológico Colombiano, “EXPLORING COLOMBIA,” 2015, no. March.; E. Ministro and G. Nacional, “Resolución 18-0241 de 2012,” vol. 2012, no. Febrero 24, 2012.; J. Gómez, Á. Nivia, N. E. Montes, M. F. Almanza, F. A. Alcárcel, and C. A. Madrid, Compilando la geología de Colombia: Una visión a 2015. 2015.; A. Aguilera, “Is Policy Convergence Enough ?: Colombia , South Korea and Natural Resources Devel- opment,” Korea Review of International Studies, pp. 41–60, 2015.; J. M. Rincón, E. Cifuentes, and A. Jiménez, “Licuefacción de Carbón del Cerrejón Utilizando Breas Hidrogenadas como Solvente Donor de Hidrógeno,” Rev. Colomb. química, vol. 14, pp. 59–64, 1985.; J. A. Jiménez, O. A. Villalba, L. I. Rodríguez, O. Hernández, Y. Y. Agámez-Pertuz, and J. J. Díaz-Velásquez, “Catalizadores de Co, Fe y Ni soportados sobre coque para la licuefacción directa de carbón,” Rev. Colomb. Quim., vol. 37, no. 2, pp. 233–242, 2008.; U. N. de C. Laboratorio de Investigación en Combustibles y Energía LICE, “Instituto Nacional da propiedade Industrial - Brasil, Patent: PI 0917082-0 B1,” 2018.; https://repositorio.unal.edu.co/handle/unal/78438