-
1Academic Journal
المؤلفون: Porras, Andrés Obdulio, Morales, María Paula, Santamaría, Gerardo, Torres-Fernández, Orlando
المصدر: Journal of Molecular Histology; Feb2025, Vol. 56 Issue 1, p1-7, 7p
-
2Academic Journal
المؤلفون: Laiton Donato, Katherine, Guzmán, Camila, Perdomo Balaguera, Erik, Sarmiento, Ladys, Torres Fernandez, Orlando, Ruiz, Hector Alejandro, Rosales Munar, Alicia, Peláez Carvajal, Dioselina, Navas, Maria Cristina, Wong, Matthew C., Junglen, Sandra, Ajami, Nadim J., Parra Henao, Gabriel, Usme Ciro, Jose A
المساهمون: CIST-Centro de Investigación en Salud para el Trópico
وصف الملف: 13 páginas; application/pdf
Relation: 953; 13; 15; Viruses; Martelli G.P., Sabanadzovic S., Abou-Ghanem Sabanadzovic N., Edwards M.C., Dreher T. The family Tymoviridae. Arch. Virol. 2002;147:1837–1846. doi:10.1007/s007050200045.; Ahlquist P. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat. Rev. Microbiol. 2006;4:371–382. doi:10.1038/nrmicro1389.; Elbeaino T., Digiaro M., Martelli G.P. Complete sequence of Fig fleck-associated virus, a novel member of the family Tymoviridae. Virus Res. 2011;161:198–202. doi:10.1016/j.virusres.2011.07.022.; Dreher T.W. Turnip yellow mosaic virus: Transfer RNA mimicry, chloroplasts and a C-rich genome. Mol. Plant Pathol. 2004;5:367–375. doi:10.1111/j.1364-3703.2004.00236.x.; Hogenhout S.A., Ammar E.-D., Whitfield A.E., Redinbaugh M.G. Insect Vector Interactions with Persistently Transmitted Viruses. Annu. Rev. Phytopathol. 2008;46:327–359. doi:10.1146/annurev.phyto.022508.092135.; Dietzgen R., Mann K., Johnson K. Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions. Viruses. 2016;8:303. doi:10.3390/v8110303.; Foster W.A. Mosquito Sugar Feeding and Reproductive Energetics. Annu. Rev. Entomol. 1995;40:443–474. doi:10.1146/annurev.en.40.010195.002303.; Batson J., Dudas G., Haas-Stapleton E., Kistler A.L., Li L.M., Logan P., Ratnasiri K., Retallack H. Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. Elife. 2021;10:e68353. doi:10.7554/eLife.68353.; Faizah A.N., Kobayashi D., Isawa H., Amoa-Bosompem M., Murota K., Higa Y., Futami K., Shimada S., Kim K.S., Itokawa K., et al. Deciphering the Virome of Culex vishnui Subgroup Mosquitoes, the Major Vectors of Japanese Encephalitis, in Japan. Viruses. 2020;12:264. doi:10.3390/v12030264.; Frey K.G., Biser T., Hamilton T., Santos C.J., Pimentel G., Mokashi V.P., Bishop-Lilly K.A. Bioinformatic Characterization of Mosquito Viromes within the Eastern United States and Puerto Rico: Discovery of Novel Viruses. Evol. Bioinform. Online. 2016;12:1–12. doi:10.4137/EBO.S38518.; Laiton-Donato K, Guzmán C, Perdomo Balaguera E, Sarmiento L, Torres Fernandez O, Ruiz HA, Rosales Munar A, Peláez Carvajal D, Navas MC, Wong MC, Junglen S, Ajami NJ, Parra-Henao G, Usme-Ciro JA. 2023. Novel Putative Tymoviridae-like Virus Isolated from Culex Mosquitoes in Colombia. Viruses 15(4):953. doi:10.3390/v15040953.https://hdl.handle.net/20.500.12494/55528; https://hdl.handle.net/20.500.12494/55528
-
3Academic Journal
المؤلفون: Álvarez Díaz, Diego Alejandro, Usme Ciro, Jose Aldemar, Corchuelo, Sheryll, Naizaque, Julián Ricardo, Rivera, Jorge Alonso, Castiblanco Martínez, Hernán Darío, Torres Fernández, Orlando, Rengifo, Aura Caterine
المساهمون: CIST-Centro de Investigación en Salud para el Trópico
المصدر: https://link.springer.com/article/10.1007/s00705-023-05820-8#:~:text=The%20use%20of%205'%2F,assembly%20of%20complete%20genome%20sequences.
مصطلحات موضوعية: 610 - Medicina y salud, Zika virus, RNA genome, ZIKV genome, UTR sequences
وصف الملف: 8 páginas; application/pdf
Relation: 204; 168; Archives of Virology; Akiyama BM, Laurence HM, Massey AR, Costantino DA, Xie X, Yang Y, Shi PY, Nix JC, Beckham JD, Kieft JS (2016) Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science 354:1148–1152; Alvarez DE, Lodeiro MF, Ludueña SJ, Pietrasanta LI, Gamarnik AV (2005) Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol 79:6631–6643; Bellaousov S, Mathews DH (2010) ProbKnot: fast prediction of RNA secondary structure including pseudoknots. RNA 16:1870–1880; Besnard M, Eyrolle-Guignot D, Guillemette-Artur P, Lastère S, Bost-Bezeaud F, Marcelis L, Abadie V, Garel C, Moutard ML, Jouannic JM, Rozenberg F, Leparc-Goffart I, Mallet HP (2016) Congenital cerebral malformations and dysfunction in fetuses and newborns following the 2013–2014 Zika virus epidemic in French Polynesia. Euro Surveill 21:30181; Bryant JE, Vasconcelos PF, Rijnbrand RC, Mutebi JP, Higgs S, Barrett AD (2005) Size heterogeneity in the 3' noncoding region of South American isolates of yellow fever virus. J Virol 79:3807–3821; Cao-Lormeau V-M, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial A-L, Decam C, Choumet V, Halstead SK, Willison HJ, Musset L, Manuguerra J-C, Despres P, Fournier E, Mallet H-P, Musso D, Fontanet A, Neil J, Ghawché F (2016) Guillain–Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. The Lancet 387:1531–1539; Chen YS, Fan YH, Tien CF, Yueh A, Chang RY (2018) The conserved stem-loop II structure at the 3’ untranslated region of Japanese encephalitis virus genome is required for the formation of subgenomic flaviviral RNA. PLoS One 13:e0201250; de Borba L, Villordo SM, Marsico FL, Carballeda JM, Filomatori CV, Gebhard LG, Pallarés HM, Lequime S, Lambrechts L, Sánchez Vargas I, Blair CD, Gamarnik AV (2019) RNA Structure Duplication in the Dengue Virus 3’ UTR. Redundancy or Host Specificity? mBio 10:e02506; Dong H, Zhang B, Shi PY (2008) Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein. Virology 381:123–135; Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360:2536–2543; Álvarez-Díaz, D.A., Usme-Ciro, J.A., Corchuelo, S. et al. 5'/3' RACE method for sequencing the 5' and 3' untranslated regions of Zika virus. Arch Virol 168, 204 (2023). doi:10.1007/s00705-023-05820-8.; https://hdl.handle.net/20.500.12494/55526
-
4Academic Journal
المؤلفون: Rivera , Jorge, Corchuelo, Sheryll, Naizaque, Julián, Parra, Édgar, Meek, Eugenio Aladino, Álvarez-Díaz, Diego, Mercado , Marcela, Torres-Fernández, Orlando
المصدر: Biomedica; Vol. 43 No. 1 (2023); 8-21 ; Biomédica; Vol. 43 Núm. 1 (2023); 8-21 ; 2590-7379 ; 0120-4157
مصطلحات موضوعية: covid-19, histopatología, histopathology
وصف الملف: application/pdf; text/xml
Relation: https://revistabiomedica.org/index.php/biomedica/article/view/6737/5235; https://revistabiomedica.org/index.php/biomedica/article/view/6737/5305; Esposito S, Noviello S, Pagliano P. Update on treatment of COVID-19: Ongoing studies between promising and disappointing results. Infez Med. 2020;28:198-211.; World Health Organization. Coronavirus disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update 2020. Accessed: March 30, 2022. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports; Caramaschi S, Kapp ME, Miller SE, Eisenberg R, Johnson J, Epperly G, et al. Histopathological findings and clinicopathologic correlation in COVID-19: A systematic review. Mod Pathol. 2021;34:1614-33. https://doi.org/10.1038/s41379-021-00814-w; Huang X, Wei F, Hu L, Wen L, Chen K. Epidemiology and clinical characteristics of COVID-19. Arch Iran Med. 2020;23:268-71.; Bulut C, Kato Y. Epidemiology of COVID-19. Turk J Med Sci. 2020;50:563-70. https://doi.org/10.3906/sag-2004-172; Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ. 2020;368:m606. https://doi.org/10.1136/bmj.m606; Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr. 2020;63:119-24. https://doi.org/10.3345/cep.2020.00493; Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4:1011-33. https://doi.org/10.3390/v4061011; Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586-90. https://doi.org/10.1007/s00134-020-05985-9; Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203:622-30. https://doi.org/10.1002/path.1560; Farcas GA, Poutanen SM, Mazzulli T, Willey BM, Butany J, Asa SL, et al. Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus. J Infect Dis. 2005;191:193-7. https://doi.org/10.1086/426870; Hanley B, Lucas SB, Youd E, Swift B, Osborn M. Autopsy in suspected COVID-19 cases. J Clin Pathol. 2020;73:239-42. https://doi.org/10.1136/jclinpath-2020-206522; Fox S, Akmatbekov A, Harbert J, Li G, Brown J, Vander Heide R. Pulmonary and cardiac pathology in African American patients with COVID-19: An autopsy series from New Orleans. Lancet Respir Med. 2020;8:681-6. https://doi.org/10.1016/S2213-2600(20)30243-5; Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708-20. https://doi.org/10.1056/NEJMoa2002032; Martines R, Ritter J, Matkovic E, Gary J, Bollweg B, Bullock H, et al. Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States. Emerg Infect Dis. 2020;26:2005. https://doi.org/10.3201/eid2609.202095; Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420-2. https://doi.org/10.1016/S2213-2600(20)30076-X; Hariri LP, North CM, Shih AR, Israel RA, Maley JH, Villalba JA, et al. Lung histopathology in coronavirus disease 2019 as compared with severe acute respiratory syndrome and H1N1 influenza: A systematic review. Chest. 2021;159:73-84. https://doi.org/10.1016/j.chest.2020.09.259; https://revistabiomedica.org/index.php/biomedica/article/view/6737
-
5Academic Journal
المؤلفون: Laiton-Donato, Katherine, Guzmán, Camila, Larios, Lorena, Sarmiento, Ladys, Torres-Fernandez, Orlando, Peláez-Carvajal, Dioselina, Navas, María Cristina, Parra-Henao, Gabriel, Usme-Ciro, José A.
المصدر: Iatreia; Vol. 35 No. 1-S (2022); S43-S44 ; Iatreia; Vol. 35 Núm. 1-S (2022); S43-S44 ; 2011-7965 ; 0121-0793
مصطلحات موضوعية: Tymoviridae like-virus, Aislamiento viral, Caracterización in vitro, Mosquitos, Secuenciación de próxima generación, virología
وصف الملف: application/pdf
-
6Academic Journal
المؤلفون: Rivera , Jorge Alonso, Corchuelo , Sheryll, Parra , Edgar Alberto, Meek, Eugenio Aladino, Mercado, Marcela, Torres-Fernández, Orlando
المصدر: Biomedica; Vol. 42 No. Sp. 2 (2022): Covid-19; 9-13 ; Biomédica; Vol. 42 Núm. Sp. 2 (2022): Covid-19; 9-13 ; 2590-7379 ; 0120-4157
مصطلحات موضوعية: COVID-19, lung, immunohistochemistry, antigens, viral, pulmón, inmunohistoquímica, antígenos virales
وصف الملف: application/pdf; text/xml
Relation: https://revistabiomedica.org/index.php/biomedica/article/view/6132/5035; https://revistabiomedica.org/index.php/biomedica/article/view/6132/5180; Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndromecoronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr. 2020;63:119-24. https://doi.org/10.3345/cep.2020.00493; World Health Organization. COVID-19 Weekly Epidemiological Update 2021. Accessed: February 23, 2021. Available at: https://www.who.int/publications/m/item/weeklyepidemiological-update---23-february-2021; Álvarez-Díaz DA, Franco-Muñoz C, Laiton-Donato K, Usme-Ciro JA, Franco-Sierra ND, Flórez-Sánchez AC, et al. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. Infect Genet Evol. 2020;84. https://doi.org/10.1016/j.meegid.2020.104390; Instituto Nacional de Salud. COVID-19 en Colombia. Accessed: February 25, 2021. Available at: https://www.ins.gov.co/Noticias/Paginas/coronavirus-casos.aspx; Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4:1011-33. https://doi.org/10.3390/v4061011; Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586-90. https://doi.org/10.1007/s00134-020-05985-9; Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203:622-30. https://doi.org/10.1002/path.1560; Farcas GA, Poutanen SM, Mazzulli T, Willey BM, Butany J, Asa SL, et al. Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus. J Infect Dis. 2005;191:193-7. https://doi.org/10.1086/426870; Satija N, Lal SK. The molecular biology of SARS coronavirus. Ann N Y Acad Sci. 2007;1102:26-38. https://doi.org/10.1196/annals.1408.002; Martines R, Ritter J, Matkovic E, Gary J, Bollweg B, Bullock H, et al. Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States. Emerg Infect Dis. 2020;26:2005. https://doi.org/10.3201/eid2609.202095; Chu H, Chan JF-W, Yuen TT-T, Shuai H, Yuan S, Wang Y, et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: An observational study. Lancet Microbe. 2020;1:e14-e23. https://doi.org/10.1016/s2666-5247(20)30004-5; Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061-9. https://doi.org/10.1001/jama.2020.1585; Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and ageusia: Common findings in COVID-19 patients. Laryngoscope. 2020;130:1787. https://doi.org/10.1002/lary.28692; Menter T, Haslbauer JD, Nienhold R, Savic S, Hopfer H, Deigendesch N, et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020;77:198-209. https://doi.org/10.1111/his.14134; Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao M, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020;33:1007-14. https://doi.org/10.1038/s41379-020-0536-x; Griffin DO, Jensen A, Khan M, Chin J, Chin K, Saad J, et al. Pulmonary embolism and increased levels of d-Dimer in patients with coronavirus disease. Emerg Infect Dis. 2020;26:1941-3. https://doi.org/10.3201/eid2608.201477; Mohanty SK, Satapathy A, Naidu MM, Mukhopadhyay S, Sharma S, Barton LM, et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19) - anatomic pathology perspective on current knowledge. Diagn Pathol. 2020;15:103. https://doi.org/10.1186/s13000-020-01017-8; https://revistabiomedica.org/index.php/biomedica/article/view/6132
-
7Academic Journal
المؤلفون: Porras, Andrés Obdulio, Morales, María Paula, Santamaría, Gerardo, Torres-Fernández, Orlando
المصدر: J Mol Histol ; ISSN:1567-2387 ; Volume:56 ; Issue:1
مصطلحات موضوعية: Cerebellum, Golgi stain., Microtubule-associated proteins, Purkinje cells, Rabies virus
-
8Academic Journal
المؤلفون: Álvarez-Díaz, Diego Alejandro, Valencia-Álvarez, Emmanuel, Rivera, Jorge Alonso, Rengifo, Aura Caterine, Usme-Ciro, José Aldemar, Peláez-Carvajal, Dioselina, Lozano-Jiménez, Yenny Yolanda, Torres-Fernández, Orlando
المصدر: Scopus Unisalle
مصطلحات موضوعية: Arbovirus, Chikungunya, Dengue, RT-qPCR, Viral load, Zika
Relation: https://ciencia.lasalle.edu.co/scopus_unisalle/826; https://doi.org/10.1016/j.meegid.2021.104967
-
9Academic Journal
المؤلفون: Laiton Donato, Katherine, Álvarez Díaz, Diego Alejandro, Rengifo, Aura C., Torres Fernandez, Orlando, Usme Ciro, José Aldemar, Rivera, Jorge A., Santamaría, Gerardo, Naizaque, Julian, Monroy Gomez, Jeison, Sarmiento, Ladys, Gunturiz, Maria L., Muñoz, Alejandra, Vanegas, Ricardo, Rico, Angelica, Pardo, Lissethe, Pelaez Carvajal, Dioselina
مصطلحات موضوعية: Virus Zika, Genoma completo, Aislamiento viral, Cerebro, Modelo animal, Zika virus, Complete genome, Virus isolation, brain, Animal model
وصف الملف: application/pdf
Relation: https://mra.asm.org/content/8/46/e01719-18; Microbiology Resource Announcements; Dick GW, Kitchen SF, Haddow AJ. 1952. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46:509 –520. https:// doi.org/10.1016/0035-9203(52)90042-4.; Musso D. 2015. Zika virus transmission from French Polynesia to Brazil. Emerg Infect Dis 21:1887. https://doi.org/10.3201/eid2110.151125.; Cuevas EL, Tong VT, Rozo N, Valencia D, Pacheco O, Gilboa SM, Mercado Laiton-Donato et al. Volume 8 Issue 46 e01719-18 mra.asm.org 2 on November 14, 2019 by guest http://mra.asm.org/ Downloaded from M, Renquist CM, González M, Ailes EC, Duarte C, Godoshian V, Sancken CL, Turca AMR, Calles DL, Ayala M, Morgan P, Perez ENT, Bonilla HQ, Gomez RC, Estupiñan AC, Gunturiz ML, Meaney-Delman D, Jamieson DJ, Honein MA, Martínez MLO. 2016. Preliminary report of microcephaly potentially associated with Zika virus infection during pregnancy— Colombia, January–November 2016. MMWR Morb Mortal Wkly Rep 65: 1409 –1413. https://doi.org/10.15585/mmwr.mm6549e1.; Devhare P, Meyer K, Steele R, Ray RB, Ray R. 2017. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells. Cell Death Dis 8:e3106. https://doi.org/10 .1038/cddis.2017.517.; Tsunoda I, Omura S, Sato F, Kusunoki S, Fujita M, Park AM, Hasanovic F, Yanagihara R, Nagata S. 2016. Neuropathogenesis of Zika virus infection: potential roles of antibody-mediated pathology. Acta Medica Kinki University 41:37–52.; GeurtsvanKessel CH, Islam Z, Islam MB, Kamga S, Papri N, van de Vijver D, Reusken C, Mogling R, Heikema AP, Jahan I, Pradel FK, Pavlicek RL, Mohammad QD, Koopmans MPG, Jacobs BC, Endtz HP. 2018. Zika virus and Guillain-Barré syndrome in Bangladesh. Ann Clin Transl Neurol 5:606 – 615. https://doi.org/10.1002/acn3.556.; Zhang F, Wang HJ, Wang Q, Liu ZY, Yuan L, Huang XY, Li G, Ye Q, Yang H, Shi L, Deng YQ, Qin CF, Xu Z. 2017. American strain of Zika virus causes more severe microcephaly than an old Asian strain in neonatal mice. EBioMedicine 25:95–105. https://doi.org/10.1016/j.ebiom.2017.10 .019.; Santiago GA, Vazquez J, Courtney S, Matias KY, Andersen LE, Colon C, Butler AE, Roulo R, Bowzard J, Villanueva JM, Munoz-Jordan JL. 2018. Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses. Nat Commun 9:1391. https://doi.org/ 10.1038/s41467-018-03772-1.; Azeredo EL, Dos Santos FB, Barbosa LS, Souza TMA, Badolato-Correa J, Sanchez-Arcila JC, Nunes PCG, de-Oliveira-Pinto LM, de Filippis AM, Dal Fabbro M, Hoscher Romanholi I, Venancio da Cunha R. 2018. Clinical and laboratory profile of zika and dengue infected patients: lessons learned from the co-circulation of dengue, zika and chikungunya in Brazil. PLoS Curr 10:ecurrents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5. https:// doi.org/10.1371/currents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5; Mehta R, Gerardin P, de Brito CAA, Soares CN, Ferreira MLB, Solomon T. 2018. The neurological complications of chikungunya virus: a systematic review. Rev Med Virol 28:e1978. https://doi.org/10.1002/rmv.1978.; https://hdl.handle.net/20.500.12494/32705; Laiton-Donato, K., Álvarez-Díaz, D. A., Rengifo, A. C., Torres-Fernández, O., Usme-Ciro, J. A., Rivera, J. A., Santamaría, G., Naizaque, J., Monroy-Gómez, J., Sarmiento, L., Gunturiz, M. L., Muñoz, A., Vanegas, R., Rico, A., Pardo, L., & Peláez-Carvajal, D. (2019). Complete Genome Sequence of a Colombian Zika Virus Strain Obtained from BALB/c Mouse Brain after Intraperitoneal Inoculation. Microbiology Resource Announcements, 8(46). https://doi.org/10.1128/MRA.01719-18
-
10Academic Journal
المؤلفون: Álvarez-Díaz, Diego Alejandro, Usme-Ciro, José Aldemar, Corchuelo, Sheryll, Naizaque, Julián Ricardo, Rivera, Jorge Alonso, Castiblanco-Martínez, Hernán Darío, Torres-Fernández, Orlando, Rengifo, Aura Caterine
المساهمون: Departamento Administrativo de Ciencia, Tecnología e Innovación
المصدر: Archives of Virology ; volume 168, issue 8 ; ISSN 0304-8608 1432-8798
-
11Academic Journal
المساهمون: Departamento Administrativo de Ciencia, Tecnología e Innovación
المصدر: Journal of Molecular Histology ; volume 54, issue 3, page 245-253 ; ISSN 1567-2379 1567-2387
-
12Academic Journal
المؤلفون: Rengifo, Aura Caterine, Rivera, Jorge, Álvarez-Díaz, Diego Alejandro, Naizaque, Julián, Santamaria, Gerardo, Corchuelo, Sheryll, Gómez, Claudia Yadira, Torres-Fernández, Orlando
المصدر: Viruses (1999-4915); Aug2023, Vol. 15 Issue 8, p1632, 28p
-
13Academic Journal
مصطلحات موضوعية: rabies virus, dendritic pathology, myelin figures, microtubules, pyramidal neurons, ultrastructure of nervous tissue, virus de la rabia, patología dendrítica, figuras de mielina, microtúbulos, neuronas piramidales, ultraestructura del sistema nervioso
وصف الملف: application/pdf
Relation: 16; 15; Biosalud; Schneider LG. Spread of virus within the central nervous system. In: Baer GM, ed. The nature history of rabies. New York: Academic Press; 1975. p. 199-216.; Torres-Fernández O, Lamprea N, Pimienta H. Demostración del ingreso del virus de la rabia a la corteza cerebral a través de las neuronas piramidales de la capa V. Iatreia 2005; 18:S85- S86.; Lamprea N, Torres-Fernández O. Immunohistochemical evaluation of calbindin expression in mouse brain at different times after rabies virus inoculation. Colomb Med (Cali) 2008; 39(Suppl 3):7-12.; Torres-Fernández O, Yepes GE, Gómez JE. Neuronal dendritic morphology alterations in the cerebral cortex of rabies-infected mice: a Golgi study. Biomédica 2007; 27:605-13.; Li XQ, Sarmento L, Fu ZF. Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses. J Virol 2005; 79:10063-8.; Scott CA, Rossiter JP, Andrew RD, Jackson AC. Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent proteinexpressing transgenic mice. J Virol 2008; 82:513-21.; Song Y, Hou J, Qiao B, Li Y, Xu Y, Duan M, et al. Street rabies virus causes dendritic injury and F-actin depolimerization in the hippocampus. J Gen Virol 2013; 94:276-83.; Matsumoto S. Electron microscope studies of rabies virus in mouse brain. J Cell Biol 1963; 19:565-91.; Hummeler K, Koprowski H, Wiktor TJ. Structure and development of rabies virus in tissue culture. J Virol 1967; 1:152-70.; Miyamoto K, Matsumoto S. Comparative studies between pathogenesis of street and fixed rabies infection. J Exp Med 1967; 125:447-75.; Matsumoto S. Electron microscopy of central nervous system infection. In: Baer GM, ed. The nature history of rabies. New York: Academic Press; 1975. p. 217-33.; Hummeler K, Atanasiu P. Electron microscopy. In: Meslin FX, Kaplan MM, Koprowski H, eds. Laboratory techniques in rabies. Geneva: World Health Organization; 1996. p. 209-17.; Iwasaki Y, Clark H. Cell to cell transmission of virus in the central nervous system: II. Experimental rabies in mouse. Lab Invest 1975; 33:391-99.; Iwasaki Y, Liu DS, Yamamoto T, Konno H. On the replication and spread of rabies virus in the human central nervous system. J Neuropathol Exp Neurol 1985; 44:185-95.; De Brito T, De Fátima M, Tiriba A. Ultrastructure of the Negri body in human rabies. J Neurol Sci 1973; 20:363-72.; Sandhyamani S, Roy S, Gode GR, Kalla GN. Pathology of rabies: a light- and electron-microscopical study with particular reference to the changes in cases with prolonged survival. Acta Neuropathol 1981; 54:247-51.; Manghani DK, Dastur DK, Nanavaty AN, Patel R. Pleomorphism of fine structure of rabies virus in human and experimental brain. J Neurol Sci 1986; 75:181-93.; Fekadu M, Chandler FW, Harrison AK. Pathogenesis of rabies in dogs inoculated with and Ethiopian rabies virus strain. Immunofluorescence, histologic and ultrastructural studies of the central nervous system. Arch Virol 1982; 71:109-26.; Charlton KM, Casey GA, Webster WA, Bundza A. Experimental rabies in skunks and foxes. Pathogenesis of the spongiform lesions. Lab Invest 1987; 57:634-45.; Velandia ML, Pérez-Castro R, Hurtado H, Castellanos JE. Ultrastructural description of rabies virus infection in cultured sensory neurons. Mem Inst Oswaldo Cruz 2007; 102:441-47.; Peters A, Palay S, Webster H. The fine structure of the nervous system. Neurons and their supporting cells. 3rd ed. New York: Oxford University Press; 1991.; Hurtado AP, Rengifo AC, Torres-Fernández O. Immunohistochemical over expression of MAP-2 in the cerebral cortex of rabies-infected mice. Int J Morphol 2015; 33:465-70.; Sjöestrand FS, Cedergren EA, KarlssonU. Myelin-like figures formed from mitochondrial material. Nature 1964; 202:1075-8.; Le Beux Y, Hetenyi G Jr, Phillips MJ. Mitochondrial myelin-like figures: a non-specific reactive process of mitochondrial phospholipid membranes to several stimuli. Z. Zellforsch Mikrosk Anat 1969; 99:491-506.; Miguet-AlfonsiHYPERLINK “http://www.ncbi.nlm.nih.gov/pubmed?term=Miguet-Alfonsi%20C%5BAuthor%5D&cauthor=true&cauthor_uid=12147305” C, Prunet C, Monier S, Bessède G, LemaireEwing S, Berthier A, et al. Analysis of oxidative processes and of myelin figures formation before and after the loss of mitochondrial transmembrane potential during 7-beta-hydroxycholesterol and; 7-ketocholesterol-induced apoptosis: comparison with various pro-apoptotic chemicals. Biochem Pharmacol 2002; 64:527-41.; Lin CH, Chang LW, Wei YH, Wu SB, Yang CS, Chang WH, et al. Electronic microscopy evidence for mitochondria as targets for Cd/Se/Te-based quantum dot 705 toxicity in vivo. Kaohsiung J Med Sci 2012; 28(7 Suppl):S53-62.; Alandijany T, Kammouni W, Roy-Chowdhury SL, Fernyhough P, Jackson AC. Mitochondrial dysfunction in rabies virus infection of neurons. J. Neurovirol. 2013; 9:537-49.; Robards AW, Wilson AJ. Procedures in electron microscopy. Chichester: John Wiley & Sons; 1993. p. 5:1:54 – 5:1:55.; Castejon OJ. Electron microscopy of myelin figures in normal and pathological tissues. A review. Acta Microscopica 2008; 17:13-19.; Schneeberger EE, Lynch RD, Geyer RP. Glutaraldehyde fixation used to demonstrate altered properties of outer mitochondrial membranes in polyunsaturated fatty acid supplemented cells. Exp Cell Res 1976; 100:117-28.; Núm. 1 , Año 2016 : Enero - Junio; https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/3763/3476; https://doi.org/10.17151/biosa.2016.15.1.2; https://repositorio.ucaldas.edu.co/handle/ucaldas/16033
-
14Academic Journal
مصطلحات موضوعية: rabies, calbindin, cerebellum, Purkinje cells, calcium binding proteins, rabia, calbindina, cerebelo, células de Purkinje, proteínas de unión a calcio
وصف الملف: application/pdf
Relation: 19; 15; Biosalud; World Health Organization. WHO expert consultation on rabies. En: Technical Report Series No. 982. Geneva: WHO Press 2013; p. 1-139.; Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. Current status of rabies and prospects for elimination. Lancet 2014; 384:1389–99.; Vigilato M, Cosivi O, Clavijo A, Silva H. Rabies update for Latin America and the Caribbean. Emerg Infect Dis 2013; 19:678-9.; Cediel N, de la Hoz F, Villamil LC, Romero J, Díaz A. Epidemiología de la rabia canina en Colombia. Rev Salud Pública 2010; 12: 368–79.; Jackson AC. Rabies. Neurol Clin 2008; 26:717–26.; Hemachudha T, Ugolini G, Wacharapluesadee S, Sungkarat W, Shuangshoti S, Laothamatas J. Human rabies: neuropathogenesis, diagnosis, and management. Lancet Neurol 2013; 12:498–513.; Iwasaki Y, Tobita M. Pathology. En: Jackson AC, Wunner WH, editores. Rabies. San Diego: Academic Press 2002. p. 283-306.; Jackson AC, Randle E, Lawrance G, Rossiter JP. Neuronal apoptosis does not play an important role in human rabies encephalitis. J Neurovirol 2008; 14:368–75.; Suja MS, Mahadevan A, Madhusudana SN, Shankar SK. Role of apoptosis in rabies viral encephalitis: A comparative study in mice, canine, and human brain with a review of literature. Patholog Res Int 2011; 2011:374286. doi:10.4061/2011/374286.; Fu ZF, Jackson AC. Neuronal dysfunction and death in rabies virus infection. J Neurovirol 2005; 11:101–6.; Torres-Fernández O, Yepes G, Gómez J, Pimienta H. Efecto de la infección por el virus de la rabia sobre la expresión de parvoalbúmina, calbindina y calretinina en la corteza cerebral de ratones. Biomédica 2004; 24:63-78.; Andressen C, Blumcke I, Celio M. Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 1993; 271:181-208.; Leuba G, Kraftsik R, Saini K. Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol 1998; 152:278–91.; Ahmadian SS, Rezvanian A, Peterson M, Weintraub S, Bigio EH, Mesulam MM, Geula C. Loss of calbindin-D28K is associated with the full range of tangle pathology within basal forebrain cholinergic neurons in Alzheimer’s disease. Neurobiol aging 2015; 36:3163-70.; Iacopino AM, Christakos S. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci U S A 1990; 87:4078–82.; Beasley C, Zhang Z, Patten I, Reynolds G. Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium binding proteins. Biol Psychiatry.2002; 52:708- 15.; Masliah E, Ge N, Achim CL, Wiley CA. Differential vulnerability of calbindin-immunoreactive neurons in HIV encephalitis. J. Neuropathol Exp Neurol 1995; 54:350-7.; Schmidt H. Three functional facets of calbindin D-28k. Front Mol Neurosci 2012; 5:25. doi:10.3389/fnmol.2012.00025.; Schwaller B. The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci 2009; 66:275–300.; Flace P, Lorusso L, Laiso G, Rizzi A, Cagiano R, Nico B, et al. Calbindin-D28K immunoreactivity in the human cerebellar cortex. Anat Rec 2014; 297:1306–15.; Torres-Fernández O, Yepes GE, Gómez JE, Pimienta HJ. Calbindin distribution in cortical and subcortical brain structures of normal and rabies-infected mice. Int J Neurosci 2005; 115:1375–82.; Ladogana A, Bouzamondo E, Pocchiari M, Tsiang H. Modification of tritiated γ-amino-n-butyric acid transport in rabies virus-infected primary cortical cultures. J Gen Virol 1994; 75:623–7.; Rengifo AC, Torres-Fernández O. Disminución del número de neuronas que expresan GABA en la corteza cerebral de ratones infectados con rabia. Biomédica 2007; 27:548–58.; Lamprea N, Torres-Fernández O. Evaluación inmunohistoquímica de la expresión de calbindina en el cerebro de ratones en diferentes tiempos después de la inoculación con el virus de la rabia. Colomb Med 2008; 39 (Supl.3): 7–13.; Monroy-Gómez J, Torres-Fernández O. Distribución de calbindina y parvoalbúmina y efecto del virus de la rabia sobre su expresión en la médula espinal de ratones. Biomédica 2013; 33:564–73.; Vigot R, Kado RT, Batini C. Increased calbindin-D28K immunoreactivity in rat cerebellar Purkinje cell with excitatory amino acids agonists is not dependent on protein synthesis. Arch Ital Biol 2004; 142:69–75.; Koprowski H. The mouse inoculation test. En: Meslin FX, Kaplan MM, Koprowski H, editores. Laboratory Techniques in Rabies. Geneva: World Health Organization, 4th ed; 1996. p. 80–7.; Lamprea NP, Ortega LM, Santamaría G, Sarmiento L, Torres-Fernández O. Elaboración y evaluación de un antisuero para la detección inmunohistoquímica del virus de la rabia en tejido cerebral fijado en aldehídos. Biomédica 2010; 30:146-51.; Paxinos G, Franklyn, KB. The mouse brain in stereotaxic coordinates. San Diego: Academic Press; 2001.; Torres-Fernández O, Santamaría G, Monroy-Gómez J. Dinámica neuroanatómica de infección celular en la ruta de dispersión del virus de la rabia en ratones inoculados por vía intramuscular. Biomédica 2015; 35 (Supl. 3):113-4.; Jackson AC, Rossiter JP. Apoptosis plays an important role in experimental rabies virus infection. J Virol 1997; 71:5603-07.; Jackson AC, Park H. Apoptotic cell death in experimental rabies in suckling mice. Acta Neuropathol 1998; 95:159-64.; Johnson R. Selective vulnerability of neural cells to viral infection. Brain 1980; 103:447-72.; Schwaller B, Meyer M, Schiffmann S. ‘New’ functions for ‘old’ proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 2002; 1:241–58; Krebs J, Heizmann CW. Calcium-binding proteins and EF-hand principle. En: Krebs J, Michalak M, editores. Calcium: A matter of life or death. Amsterdam: Elsevier B.V.; 2007. p. 51-93.; Rengifo AC, Torres-Fernández O. Cambios en los sistemas de neurotransmisión excitador e inhibitorio en el cerebelo de ratones infectados con virus de la rabia. Biomédica 2013; 33 (Supl. 2):80-81.; Winsky L, Kuźnicki J. Antibody recognition of calcium-binding proteins depends on their calciumbinding status. J Neurochem 1996; 66:764–71.; Verdes JM, de Sant’Ana FJ, Sabalsagaray MJ, Okada K, Calliari A, Moraña JA, de Barros CS. Calbindin D28k distribution in neurons and reactive gliosis in cerebellar cortex of natural rabies virus-infected cattle. J Vet Diagn Invest 2016. May 6. doi:10.1177/1040638716644485.; Hof P, Glezer I, Condé F, Flagg R, Rubin M, Nimchinsky E, Vogt DM. Cellular distribution of the calciumbinding proteins parvalbumin, calbindin and calretinin in the neocortex of ammals: phylogenetic and developmental patterns. J Chem Neuroanat 1999; 16:77-116; Rockel A, Hiorns R, Powell T. The basic uniformity in structure of the neocortex. Brain 1980; 103: 221-44.; Núm. 2 , Año 2016 : Julio - Diciembre; https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/download/3747/3460; https://doi.org/10.17151/biosa.2016.15.2.2; https://repositorio.ucaldas.edu.co/handle/ucaldas/16021
-
15Academic Journal
المؤلفون: Rivera, Jorge, Corchuelo, Sheryll, Naizque, Julián, Parra, Édgar, Aladino Meek, Eugenio, Álvarez-Díaz, Diego, Mercado, Marcela, Torres-Fernández, Orlando
المصدر: Biomédica: Revista del Instituto Nacional de Salud; mar2023, Vol. 43 Issue 1, p8-21, 14p
مصطلحات موضوعية: HISTOPATHOLOGY, COVID-19, SARS disease, CORONAVIRUS diseases, SARS-CoV-2, ANIMAL diseases
-
16Academic Journal
المؤلفون: Torres-Fernández, Orlando
المصدر: REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS; Vol. 1 Núm. 26 (2014): REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS ; 2500-7459 ; 0120-4173
وصف الملف: application/pdf
-
17Academic Journal
المؤلفون: Lamprea, Natalia, Torres Fernández, Orlando
مصطلحات موضوعية: Rabia, Proteínas de enlace del calcio, Corteza cerebral, Enfermedades cerebrales, Inmunohistoquímica, Rabies, Calcium-binding proteins, Calbindin, Cerebral cortex, Brain diseases, Immunohistochemistry
وصف الملف: application/pdf
Relation: https://hdl.handle.net/10893/4199
الاتاحة: https://hdl.handle.net/10893/4199
-
18Academic Journal
المصدر: Caldasia, Vol 17, Iss 2, Pp 211-229 (1993)
مصطلحات موضوعية: microspora, protozoa, Polydispyrenia, parásitos, microsporidios, Simulium, Pleistophoridae, Science, Zoology, QL1-991, Botany, QK1-989
وصف الملف: electronic resource
-
19Academic Journal
Alternate Title: Detección inmunohistoquímica de antígenos de SARS-CoV-2 en tejido pulmonar. (Spanish)
المؤلفون: Rivera, Jorge, Corchuelo, Sheryll, Parra, Edgar, Meek, Eugenio Aladino, Mercado, Marcela, Torres-Fernández, Orlando
المصدر: Revista Biomedica; 2022 Supplement, Vol. 42, p9-13, 5p
مصطلحات موضوعية: CORONAVIRUS diseases, SARS disease, PNEUMONIA, IMMUNOHISTOCHEMISTRY, LUNGS
-
20Academic Journal
المؤلفون: Monroy-Gómez, Jeison, Torres-Fernández , Orlando
المصدر: Biomedica; Vol. 40 No. Supl. 2 (2020): SARS-CoV-2 y COVID-19; 173-179 ; Biomédica; Vol. 40 Núm. Supl. 2 (2020): SARS-CoV-2 y COVID-19; 173-179 ; 2590-7379 ; 0120-4157
مصطلحات موضوعية: Coronavirus infections, severe acute respiratory syndrome, nervous system, infecciones por coronavirus, síndrome respiratorio agudo grave, sistema nervioso
وصف الملف: application/pdf; text/xml
Relation: https://revistabiomedica.org/index.php/biomedica/article/view/5682/4660; https://revistabiomedica.org/index.php/biomedica/article/view/5682/4736; Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181-92. https://doi.org/10.1038/s41579-018-0118-9; Máttar S, González M. Emergencia zoonótica por coronavirus: riesgo potencial para la salud pública en América Latina. Revista MVZ Córdoba. 2018;23:6775-7. http://dx.doi.org/10.21897/rmvz.1408; van der Hoek L. Human coronaviruses, what do they cause. Antivir Ther. 2007;12:651-8.; Lim YX, Ng YL, Tam JP, Liu DX. Human coronaviruses: A review of virus-host interactions. Diseases. 2016;4:26. https://doi.org/10.3390/diseases4030026; Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. https://doi.org/10.1016/j.jaut.2020.102433; Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan. Microbes Infect. 2020;22:74-9. https://doi.org/10.1016/j.micinf.2020.01.003; Lau SK, Chan JF. Coronaviruses: Emerging and re-emerging pathogens in humans and animals. Virol J. 2015;2:209. https://doi.org/10.1186/s12985-015-0432-z; Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, et al. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses. 2019;12:14. https://doi.org/10.3390/v12010014; Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92:552-5. https://doi.org/10.1002/jmv.25728; Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: Report of a case. Acta Neurol Taiwan. 2006;15:26-8.; Stainsby B, Howitt S, Porr J. Neuromusculoskeletal disorders following SARS: A case series. J Can Chiropr Assoc. 2011;55:32-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044805/; Guo Y, Korteweg C, McNutt MA, Gu J. Pathogenetic mechanisms of severe acute respiratory syndrome. Virus Res. 2008;133:4-12. https://doi.org/10.1016/j.virusres.2007.01.022; Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170:1136-4. https://doi.org/10.2353/ajpath.2007.061088; Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: Potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005;41:1089-96. https://doi.org/10.1086/444461; Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82:7264-75. https://doi.org/10.1128/JVI.00737-08; Tseng CT, Huang C, Newman P, Wang N, Narayanan K, Watts DM, et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensinconverting enzyme 2 virus receptor. J Virol. 2007;81:1162-73. https://doi.org/10.1128/JVI.01702-06; Arabi YM, Harthi A, Hussein J, Bouchama A, Johani S, Hajeer AH, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection. 2015;43:495-501. https://doi.org/10.1007/s15010-015-0720-y; Al-Hameed FM. Spontaneous intracranial hemorrhage in a patient with Middle East respiratory syndrome coronavirus. Saudi Med J. 2017;38:196-200. https://doi.org/10.15537/smj.2017.2.16255; Kim JE, Heo JH, Kim HO, Song SH, Park SS. Neurological complications during treatment of Middle East respiratory syndrome. J Clin Neurol. 2017;13:227-33. https://doi.org/10.3988/jcn.2017.13.3.227; Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213:712-22. https://doi.org/10.1093/infdis/jiv499; Giwa AL, Desai A, Duca A. Novel 2019 coronavirus SARS-CoV-2 (COVID-19): An updated overview for emergency clinicians. Emerg Med Pract. 2020;22:1-28; Hsu LY, Chia PY, Lim JF. The novel coronavirus (SARS-CoV-2) epidemic. Ann Acad Med Singapore. 2020;49:1-3.; WHO. Coronavirus disease (COVID-19) outbreak situation. World Health Organization. Fecha de consulta: 11 de agosto de 2020. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019; Guery B, Poissy J, el Mansouf L, Séjourné C, Ettahar N, Lamaire X, et al. Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission. Lancet. 2013;381:2265-72. https://doi.org/10.1016/S0140-6736(13)60982-4; Cheng H, Wang Y, Wang GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020;92:726-30. https://doi.org/10.1002/jmv.25785; Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J. 2020;19:410-7. https://doi.org/10.17179/excli2020-1167; Cao Y, Li L, Feng Z, Wam S, Huang P, Sun X, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020;6:1-4. https://doi.org/10.1038/s41421-020-0147-1; Li M-Y, Li L, Zhang Y, Wang X-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9:1-7. https://doi.org/10.1186/s40249-020-00662-x; Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:1-9. https://doi.org/10.1001%2Fjamaneurol.2020.1127; Bender-del-Busto J, León-Castellón R, Mendieta-Pedroso M, Rodríguez-Labrada R, Velázquez-Pérez L. Infección por el SARS-CoV-2: de los mecanismos neuroinvasivos a las manifestaciones neurológicas. Anales de la Academia de Ciencias de Cuba. 2020;10.; Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme-2 (ACE2), SARS-CoV-2 and pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;17:10. https://doi.org/10.1002/path.5471; Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:54-8. https://doi.org/10.1016%2Fj.ijid.2020.03.062; Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11:995-8. https://doi.org/10.1021/acschemneuro.0c00122; Natoli S, Oliveira V, Calabresi P, Maia L, Pisani A. Does SARS-Cov-2 invade the brain? Translational lessons from animal models. Eur J Neurol. 2020. https://doi.org/10.1111/ene.14277; Mao L, Wang M, Chen S, He Q, Chang J, Candong H, et al. Neurological manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:1-9. https://doi:10.1001/jamaneurol.2020.1127; Paybast S, Emami A, Koosha M, Baghalha F. Novel coronavirus disease (COVID-19) and central nervous system complications: What neurologist need to know. Acta Neurol Taiwan. 2020;29:24-31.; Chen T, Wu D, Chen H, Yan W, Yang D. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 2020;368. https://doi.org/10.1136/bmj.m1091; Asadi-Pooya A, Simani, L. Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci. 2020;413:116832. https://doi.org/10.1016/j.jns.2020.116832; Li H, Xue Q, Xu X. Involvement of the nervous system in SARS-CoV-2 Infection. Neurotox Res. 2020;38:1-7. https://doi.org/10.1007%2Fs12640-020-00219-8; Koralnik IJ, Tyler KL. COVID-19: A global threat to the nervous system. Ann Neurol. 2020;88:1-11. https://doi.org/10.1002%2Fana.25807; Zubair A, McAlpine L, Gardin T, Farhadian S, Kuruvilla D, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol. 2020;77:1018-27. https://doi.org/10.1001/jamaneurol.2020.2065; DosSantos MF, Devalle S, Aran V, Capra D, Roque N, Coelho-Aguiar J, et al. Neuromechanisms of SARS-CoV-2: A review. Front Neuroanat. 2020;14:37. https://doi.org/10.3389%2Ffnana.2020.00037; Varatharaj A, Thomas N, Ellul MA, Davies N, Pollak T, Tenorio E, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. Lancet Psychiatry. 2020;S2215-0366:30287-X. https://doi.org/10.1016%2FS2215-0366(20)30287-X; Zhou L, Zhang M, Gao J, Wang J. Sars-Cov-2: Underestimated damage to nervous system. Travel Med Infect Dis. 2020;101642. https://doi.org/10.1016/j.tmaid.2020.101642; Carod-Artal FJ. Neurological complications of coronavirus and Covid-19. Rev Neurol 2020;70:311-22. https://doi:10.33588/rn.7009.2020179; https://revistabiomedica.org/index.php/biomedica/article/view/5682