-
1Conference
المؤلفون: Aquino Rocha, Joaquin Humberto, Cayo Chileno, Nahúm Gamalier, Tinoco, Matheus Pimentel, Toledo Filho, Romildo Dias
المصدر: V.PRE, V International Conference Progress of Recycling in the Built Environment, Weimar, Germany, 10-12 October 2023
Relation: https://doi.org/10.5281/zenodo.10251918; https://doi.org/10.5281/zenodo.10251919; oai:zenodo.org:10251919
-
2Academic Journal
المصدر: Materiales de Construcción; Vol. 73 No. 352 (2023); e325 ; Materiales de Construcción; Vol. 73 Núm. 352 (2023); e325 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2023.v73.i352
مصطلحات موضوعية: Recycled Concrete Powder, Hydration, Rheology, Compressive strength, Sustainability, Polvo reciclado de concreto, Hidratación, Reología, Resistencia a la compresión, Sostenibilidad
وصف الملف: text/html; application/pdf; text/xml
Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3519/4277; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3519/4278; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3519/4279; Rahla, K.M.; Mateus, R.; Bragança, L. (2019) Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC). J. Clean. Prod. 220, 445-459. https://doi.org/10.1016/j.jclepro.2019.02.010; Ashish, D.K. (2019) Concrete made with waste marble powder and supplementary cementitious material for sustainable development. J. Clean. Prod. 211, 716-729. https://doi.org/10.1016/j.jclepro.2018.11.245; Lothenbach, B.; Scrivener, K.; Hooton, R.D. (2011) Supplementary cementitious materials. Cem. Concr. Res. 41 [12], 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001; Juenger, M.C.G.; Snellings, R.; Bernal, S.A. (2019) Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 122, 257-273. https://doi.org/10.1016/j.cemconres.2019.05.008; de Matos, P.R.; Sakata, R.D.; Onghero, L.; Uliano, V.G.; de Brito, J.; Campos, C.E.M.; Gleize, P.J.P. (2021) Utilization of ceramic tile demolition waste as supplementary cementitious material: An early-age investigation. J. Build. Eng. 38, 102187. https://doi.org/10.1016/j.jobe.2021.102187; Suraneni, P.; Hajibabaee, A.; Ramanathan, S.; Wang, Y.; Weiss, J. (2019) New insights from reactivity testing of supplementary cementitious materials. Cem. Concr. Compos. 103, 331-338. https://doi.org/10.1016/j.cemconcomp.2019.05.017; Menegaki, M.; Damigos, D. (2018) A review on current situation and challenges of construction and demolition waste management. Curr. Opin. Green Sustain. Chem. 13, 8-15. https://doi.org/10.1016/j.cogsc.2018.02.010; Li, Y.; Zhang, X.; Ding, G.; Feng, Z. (2016) Developing a quantitative construction waste estimation model for building construction projects. Resour. Conserv. Recycl. 106, 9-20. https://doi.org/10.1016/j.resconrec.2015.11.001; Wu, H.; Yang, D.; Xu, J.; Liang, C.; Ma, Z. (2021) Water transport and resistance improvement for the cementitious composites with eco-friendly powder from various concrete wastes. Constr. Build. Mater. 290, 123247. https://doi.org/10.1016/j.conbuildmat.2021.123247; Wang, H.; Wang, L.; Shen, W.; Cao, K.; Sun, L.; Wang, P.; Cui, L. (2022) Compressive strength, hydration and pore structure of alkali-activated slag mortars integrating with recycled concrete powder as binders. KSCE J. Civ. Eng. 26, 795-805. https://doi.org/10.1007/s12205-021-0406-1; Liu, C.; Liu, H.; Wu, J. (2022) Effect of recycled mixed powder on the mechanical properties and microstructure of concrete. J. Renew. Mater. 10 [5], 1397-1414. https://doi.org/10.32604/jrm.2022.018386; Tang, Q.; Ma, Z.; Wu, H.; Wang, W. (2020) The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: A critical review. Cem. Concr. Compos. 114, 103807. https://doi.org/10.1016/j.cemconcomp.2020.103807; Likes, L.; Markandeya, A.; Haider, M.M.; Bollinger, D.; McCloy, J.S.; Nassiri, S. (2022) Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete. J. Clean. Prod. 364, 132651. https://doi.org/10.1016/j.jclepro.2022.132651; Rangel, C.S.; Toledo Filho, R.D.; Amario, M.; Pepe, M.; de Castro Polisseni, G.; Puente de Andrade, G. (2019) Generalized quality control parameter for heterogenous recycled concrete aggregates: A pilot scale case study. J. Clean. Prod. 208, 589-601. https://doi.org/10.1016/j.jclepro.2018.10.110; Oliveira, T.C.F.; Dezen, B.G.S.; Possan, E. (2020) Use of concrete fine fraction waste as a replacement of Portland cement. J. Clean. Prod. 273, 123126. https://doi.org/10.1016/j.jclepro.2020.123126; Oh, D.; Noguchi, T.; Kitagaki, R.; Choi, H. (2021) Proposal of demolished concrete recycling system based on performance evaluation of inorganic building materials manufactured from waste concrete powder. Renew. Sust. Energ. Rev. 135, 110147. https://doi.org/10.1016/j.rser.2020.110147; Oksri-Nelfia, L.; Mahieux, P.Y.; Amiri, O.; Turcry, P.; Lux, J. (2016) Reuse of recycled crushed concrete fines as mineral addition in cementitious materials. Mater. Struct. 49, 3239-3251. https://doi.org/10.1617/s11527-015-0716-1; Cantero, B.; Bravo, M.; de Brito, J.; Del Bosque, I.F.S.; Medina, C. (2022) The influence of fly ash on the mechanical performance of cementitious materials produced with recycled cement. Appl. Sci. 12 [4], 12042257. https://doi.org/10.3390/app12042257; Deng, X.; Guo, H.; Tan, H.; He, X.; Zheng, Z.; Su, Y.; Yang, J. (2021) An accelerator prepared from waste concrete recycled powder and its effect on hydration of cement-based materials. Constr. Build. Mater. 296, 123767. https://doi.org/10.1016/j.conbuildmat.2021.123767; Chen, X.; Li, Y.; Bai, H.; Ma, L. (2021) Utilization of recycled concrete powder in cement composite: Strength, microstructure and hydration characteristics. J. Renew. Mater. 9 [12], 2189-2208. https://doi.org/10.32604/jrm.2021.015394; Hou, S.; Xiao, J.; Duan, Z.; Ma, G. (2021) Fresh properties of 3D printed mortar with recycled powder. Constr. Build. Mater. 309, 125186. https://doi.org/10.1016/j.conbuildmat.2021.125186; Kim, J.; Jang, H. (2022) Closed-loop recycling of C&D waste: Mechanical properties of concrete with the repeatedly recycled C&D powder as partial cement replacement. J. Clean. Prod. 343, 130977. https://doi.org/10.1016/j.jclepro.2022.130977; Ma, Z.; Yao, P.; Yang, D.; Shen, J. (2021) Effects of fire-damaged concrete waste on the properties of its preparing recycled aggregate, recycled powder and newmade concrete.J. Mater. Res. Technol. 15, 1030-1045. https://doi.org/10.1016/j.jmrt.2021.08.116; Xiao, J.; Ma, Z.; Sui, T.; Akbarnezhad, A.; Duan, Z. (2018) Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste. J. Clean. Prod. 188, 720-731. https://doi.org/10.1016/j.jclepro.2018.03.277; Mehdizadeh, H.; Cheng, X.; Mo, K.H.; Ling, T.C. (2022) Upcycling of waste hydrated cement paste containing high-volume supplementary cementitious materials via CO2 pre-treatment. J. Build. Eng. 52, 104396. https://doi.org/10.1016/j.jobe.2022.104396; Horsakulthai, V. (2021) Effect of recycled concrete powder on strength, electrical resistivity, and water absorption of self-compacting mortars. Case Stud. Constr. 15, e00725. https://doi.org/10.1016/j.cscm.2021.e00725; Letelier, V.; Tarela, E.; Muñoz, P.; Moriconi, G. (2017) Combined effects of recycled hydrated cement and recycled aggregates on the mechanical properties of concrete. Constr. Build. Mater. 132, 365-375. https://doi.org/10.1016/j.conbuildmat.2016.12.010; Zhang, J.; Tan, H.; He, X.; Zhao, R.; Yang, J.; Su, Y. (2021) Nano particles prepared from hardened cement paste by wet grinding and its utilization as an accelerator in Portland cement. J. Clean. Prod. 283, 124632. https://doi.org/10.1016/j.jclepro.2020.124632; Yang, J.; Zeng, L.; Su, Z.; He, X.; Su, Y.; Zhao, R.; Gan, X. (2020) Wet-milling disposal of autoclaved aerated concrete demolition waste - A comparison with classical supplementary cementitious materials. Adv. Powder Technol. 31 [9], 3736-3746. https://doi.org/10.1016/j.apt.2020.07.016; Prošek, Z.; Trejbal, J.; Nežerka, V.; Goliáš, V.; Faltus, M.; Tesárek, P. (2020) Recovery of residual anhydrous clinker in finely ground recycled concrete. Resour. Conserv. Recycl. 155, 104640. https://doi.org/10.1016/j.resconrec.2019.104640; He, Z.; Han, X.; Zhang, M.; Yuan, Q.; Shi, J.; Zhan, P. (2022) A novel development of green UHPC containing waste concrete powder derived from construction and demolition waste. Powder Technol. 398, 117075. https://doi.org/10.1016/j.powtec.2021.117075; He, X.; Zheng, Z.; Yang, J.; Su, Y.; Wang, T.; Strnadel, B. (2020) Feasibility of incorporating autoclaved aerated concrete waste for cement replacement in sustainable building materials. J. Clean. Prod. 250, 119455. https://doi.org/10.1016/j.jclepro.2019.119455; Sun, C.; Chen, L.; Xiao, J.; Liu, Q.; Zuo, J. (2021) Low-Carbon and fundamental properties of eco-efficient mortar with recycled powders. Materials 14 [24], 7503. https://doi.org/10.3390/ma14247503; Wu, H.; Xu, J.; Yang, D.; Ma, Z. (2021) Utilizing thermal activation treatment to improve the properties of waste cementitious powder and its newmade cementitious materials. J. Clean. Prod. 322, 129074. https://doi.org/10.1016/j.jclepro.2021.129074; ABNT (2018). NBR 16697: Cimento portland - requisitos. ABNT, Rio de Janeiro.; Kaliyavaradhan, S.K.; Li, L.; Ling, T.-C. (2022) Response surface methodology for the optimization of CO2 uptake using waste concrete powder. Constr. Build. Mater. 340, 127758. https://doi.org/10.1016/j.conbuildmat.2022.127758; Li, X.; Lv, X.; Zhou, X.; Meng, W.; Bao, Y. (2022) Upcycling of waste concrete in eco-friendly strain-hardening cementitious composites: Mixture design, structural performance, and life-cycle assessment. J. Clean. Prod. 330, 129911. https://doi.org/10.1016/j.jclepro.2021.129911; ABNT (2012). NBR NM18: Cimento portland - análise química - determinação de perda ao fogo. abnt, rio de janeiro.; ASTM (2019). ASTM C204: Standard test methods for fineness of hydraulic cement by air-permeability apparatus. ASTM: West Conshohocken, PA, USA, 2019.; ABNT (2019). NBR7215: Cimento portland - determinação da resistência à compressão de corpos de prova cilíndricos. ABNT, Rio de Janeiro.; Tinoco, M.P.; Gouvêa, L.; de Cássia Magalhães Martins, K.; Dias Toledo Filho, R.; Aurelio Mendoza Reales, O. (2023) The use of rice husk particles to adjust the rheological properties of 3D printable cementitious composites through water sorption. Constr. Build. Mater. 365, 130046. https://doi.org/10.1016/j.conbuildmat.2022.130046; ASTM (2022). ASTM C469/C469M-22: Standard test method for static modulus of elasticity and poisson's ratio of concrete in compression. ASTM, West Conshohocken.; Prošek, Z.; Nežerka, V.; Hlůžek, R.; Trejbal, J.; Tesárek, P.; Karra'a, G. (2019) Role of lime, fly ash, and slag in cement pastes containing recycled concrete fines. Constr. Build. Mater. 201, 702-714. https://doi.org/10.1016/j.conbuildmat.2018.12.227; ASTM (2022). ASTM C618-22: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM, West Conshohocken.; Gao, Y.; Cui, X.; Lu, N.; Hou, S.; He, Z.; Liang, C. (2022) Effect of recycled powders on the mechanical properties and durability of fully recycled fiber-reinforced mortar. J. Build. Eng. 45, 103574. https://doi.org/10.1016/j.jobe.2021.103574; Real, S.; Bogas, J.A.; Carriço, A.; Hu, S. (2021) Mechanical characterisation and shrinkage of thermoactivated recycled cement concrete. Appl. Sci. 11 [6], 11062454. https://doi.org/10.3390/app11062454; Shen, P.; Sun, Y.; Liu, S.; Jiang, Y.; Zheng, H.; Xuan, D.; Lu, J.; Poon, C.S. (2021) Synthesis of amorphous nano-silica from recycled concrete fines by two-step wet carbonation. Cem. Concr. Res. 147, 106526. https://doi.org/10.1016/j.cemconres.2021.106526; Liu, M.; Wu, H.; Yao, P.; Wang, C.; Ma, Z. (2022) Microstructure and macro properties of sustainable alkali-activated fly ash mortar with various construction waste fines as binder replacement up to 100%. Cem. Concr. Compos. 134, 104733. https://doi.org/10.1016/j.cemconcomp.2022.104733; Qin, L.; Gao, X. (2019) Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation. Waste Manage. 89, 254-264. https://doi.org/10.1016/j.wasman.2019.04.018 PMid:31079738; Sui, Y.; Ou, C.; Liu, S.; Zhang, J.; Tian, Q. (2020) Study on properties of waste concrete powder by thermal treatment and application in mortar.Appl. Sci. 10 [3], 10030998. https://doi.org/10.3390/app10030998; Chen, X.; Li, Y.; Zhu, Z.; Ma, L. (2022) Evaluation of waste concrete recycled powder (WCRP) on the preparation of low-exothermic cement. J. Build. Eng. 53, 104511. https://doi.org/10.1016/j.jobe.2022.104511; Li, S.; Gao, J.; Li, Q.; Zhao, X. (2021) Investigation of using recycled powder from the preparation of recycled aggregate as a supplementary cementitious material. Constr. Build. Mater. 267, 120976. https://doi.org/10.1016/j.conbuildmat.2020.120976; Ma, Z.; Shen, J.; Wu, H.; Zhang, P. (2022) Properties and activation modification of eco-friendly cementitious materials incorporating high-volume hydrated cement powder from construction waste. Constr. Build. Mater. 316, 125788. https://doi.org/10.1016/j.conbuildmat.2021.125788; Ge, Z.; Gao, Z.; Sun, R.; Zheng, L. (2012) Mix design of concrete with recycled clay-brick-powder using the orthogonal design method. Constr. Build. Mater. 31, 289-293. https://doi.org/10.1016/j.conbuildmat.2012.01.002; Moreno-Juez, J.; Vegas, I.J.; Frías Rojas, M.; Vigil de la Villa, R.; Guede-Vázquez, E. (2021) Laboratory-scale study and semi-industrial validation of viability of inorganic CDW fine fractions as SCMs in blended cements. Constr. Build. Mater. 271, 121823. https://doi.org/10.1016/j.conbuildmat.2020.121823; Wang, T.; He, X.; Yang, J.; Zhao, H.; Su, Y. (2020) Nano-treatment of autoclaved aerated concrete waste and its usage in cleaner building materials. Journal of Wuhan University of Technology-Mater. Sci. Ed. 35, 786-793. https://doi.org/10.1007/s11595-020-2321-6; Wang, L.; Wang, J.; Wang, H.; Fang, Y.; Shen, W.; Chen, P.; Xu, Y. (2022) Eco-friendly treatment of recycled concrete fines as supplementary cementitious materials. Constr. Build. Mater. 322, 126491. https://doi.org/10.1016/j.conbuildmat.2022.126491; Liu, X.; Liu, L.; Lyu, K.; Li, T.; Zhao, P.; Liu, R.; Zuo, J.; Fu, F.; Shah, S.P. (2022) Enhanced early hydration and mechanical properties of cement-based materials with recycled concrete powder modified by nano-silica. J. Build. Eng. 50, 104175. https://doi.org/10.1016/j.jobe.2022.104175; Dun, Z.; Wang, M.; Ren, L.; Dun, Z. (2021) Tests research on grouting materials of waste-concrete-powder cement for goaf ground improvement. Adv. Mater. Sci. Eng. 2021, 9598418. https://doi.org/10.1155/2021/9598418; Singh, A.; Arora, S.; Sharma, V.; Bhardwaj, B. (2019) Workability retention and strength development of self-compacting recycled aggregate concrete using ultrafine recycled powders and silica fume. J. Hazard. Toxic Radioact. Waste 23 [4], 04019016. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000456; Liang, G.; Liu, T.; Li, H.; Wu, K. (2022) Shrinkage mitigation, strength enhancement and microstructure improvement of alkali-activated slag/fly ash binders by ultrafine waste concrete powder. Compos. B Eng. 231, 109570. https://doi.org/10.1016/j.compositesb.2021.109570; Tang, Y.; Xiao, J.; Zhang, H.; Duan, Z.; Xia, B. (2022) Mechanical properties and uniaxial compressive stress-strain behavior of fully recycled aggregate concrete. Constr. Build. Mater. 323, 126546. https://doi.org/10.1016/j.conbuildmat.2022.126546; Wang, D.; Shi, C.; Farzadnia, N.; Shi, Z.; Jia, H.; Ou, Z. (2018) A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater. 181, 659-672. https://doi.org/10.1016/j.conbuildmat.2018.06.075; Benachour, Y.; Davy, C.A.; Skoczylas, F.; Houari, H. (2008) Effect of a high calcite filler addition upon microstructural, mechanical, shrinkage and transport properties of a mortar. Cem. Concr. Res. 38 [6], 727-736. https://doi.org/10.1016/j.cemconres.2008.02.007; Bogas, J.A.; Carriço, A.; Pereira, M.F.C. (2019) Mechanical characterization of thermal activated low-carbon recycled cement mortars. J. Clean. Prod. 218, 377-389. https://doi.org/10.1016/j.jclepro.2019.01.325; Zhang, H.; Xiao, J.; Tang, Y.; Duan, Z.; Poon, C. (2022) Long-term shrinkage and mechanical properties of fully recycled aggregate concrete: Testing and modelling. Cem. Concr. Compos. 130, 104527. https://doi.org/10.1016/j.cemconcomp.2022.104527; Wu, Y.; Mehdizadeh, H.; Mo, K.H.; Ling, T.C. (2022). High-temperature CO2 for accelerating the carbonation of recycled concrete fines. J. Build. Eng. 52, 104526. https://doi.org/10.1016/j.jobe.2022.104526; Caneda-Martínez, L.; Monasterio, M.; Moreno-Juez, J.; Martínez-Ramírez, S.; García, R.; Frías, M. (2021) Behaviour and properties of eco-cement pastes elaborated with recycled concrete powder from construction and demolition wastes. Materials 14 [5], 1299. https://doi.org/10.3390/ma14051299 PMid:33800479 PMCid:PMC7962962; Real, S.; Carriço, A.; Bogas, J.A.; Guedes, M. (2020) Influence of the treatment temperature on the microstructure and hydration behavior of thermoactivated recycled cement. Materials. 13 [18], 3937. https://doi.org/10.3390/ma13183937 PMid:32899578 PMCid:PMC7558280; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3519
-
3Academic Journal
المؤلفون: Tinoco, Matheus Pimentel, de Andrade Silva, Flávio
المساهمون: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
المصدر: Journal of Materials Research and Technology ; volume 11, page 754-768 ; ISSN 2238-7854
-
4Academic Journal
المؤلفون: Tinoco, Matheus Pimentel, de Mendonça, Érica Martinho, Fernandez, Letícia Ikeda Castrillon, Caldas, Lucas Rosse, Reales, Oscar Aurelio Mendoza, Toledo Filho, Romildo Dias
المصدر: Journal of Building Engineering ; volume 52, page 104456 ; ISSN 2352-7102
-
5Academic Journal
المؤلفون: Varela, Hugo1 (AUTHOR) hugo.varela@uah.es, Tinoco, Matheus Pimentel2 (AUTHOR), Reales, Oscar Aurelio Mendoza2 (AUTHOR), Toledo Filho, Romildo Dias2 (AUTHOR), Barluenga, Gonzalo1 (AUTHOR)
المصدر: Construction & Building Materials. Nov2024, Vol. 450, pN.PAG-N.PAG. 1p.
مصطلحات موضوعية: *SISAL (Fiber), *STRAINS & stresses (Mechanics), *NATURAL fibers, *FIBROUS composites, *THREE-dimensional printing, *MORTAR