يعرض 1 - 7 نتائج من 7 نتيجة بحث عن '"Tiempo entre eventos"', وقت الاستعلام: 0.39s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Revista de la Facultad de Ciencias; Vol. 8 No. 2 (2019); 6-38 ; Revista de la Facultad de Ciencias; Vol. 8 Núm. 2 (2019); 6-38 ; 2357-5549 ; 0121-747X

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/rfc/article/view/69524/71381; Aslam, M., Azam, M. & Jun, C.-H. (2015). A new control chart for exponential distributed life using ewma., Transactions of the Institute of Measurement and Control 37(2), 205–210. DOI:10.1177/0142331214537293.; Borror, C. M., Keats, J. B. & Montgomery, D. C. (2003). Robustness of the time between events cusum, International Journal of Production Research 41(15), 3435–3444. DOI:10.1080/0020754031000138321.; Calvin, T. W. (1983). Quality control techniques for zero-defects, IEEE Transactions on Components, Hybrids, and Manufacturing Technology 6(3), 323–328. DOI:10.1109/TCHMT.1983.1136174.; Chakraborti, S. (2007),. Run length distribution and percentiles: The shewhart chart with unknown parameters., Quality Engineering, 19(2), 119 – 127. DOI:10.1080/08982110701276653.; Chan, L. Y., Xie, M. & Goh, T. (2000). Cumulative quantity control charts for monitoring production processes, International Journal of Production Research 38(62) , 397–408. DOI:10.1080/002075400189482.; Cheng, C.-S. & Chen, P.-W. (2010). An ARL-unbiased design of time-between-events control charts with runs rules, Journal of Statistical Computation and Simulation, 81(7), 857–871. DOI:10.1080/00207543.2014.974848.; Goh, T. N. (1987). A control chart for very high yield processes, Quality Assurance, 13(1), 18–22.; Guo, B., Wang, B. X. & Xie, M. (2014). ARL-unbiased control charts for the monitoring of exponentially distributed characteristics based on type-II censored samples, Journal of Statistical Computation and Simulation, 84(12), 2734–2747. DOI:10.1080/00949655.2014.898766.; Huang, S. & Yang, J. (2015). An ARL-unbiased design of gamma control chart, in ‘2015 First International Conference on Reliability Systems Engineering (ICRSE)’, pp. 1–6.; Jensen, W. A., Jones-Farmer, A., Charles, C. & Woodall, W. (2006). Effects of parameter estimation on control chart properties: A literature review, Journal of Quality Technology, 38(4), 349–364.; Khoo, M. B., Lee, M., Teoh, W., Liew, J. & Teh, S. (2013). The effects of parameter estimation on minimising the in-control average sample size for the double sampling X¯ chart, South African Journal of Industrial Engineering, 24(3), 58-67.; Kumar, N., Chakraborti, S. & Rakitzis, A. C. (2017). Improved shewhart-type charts for monitoring times between events, Journal of Quality Technology, 49(3), 278–296. DOI:10.1080/00224065.2017.11917995.; Montgomery, C. D. (2007). Introduction to statistical quality control, John Wiley & Sons.; Ozsan, G., Testik, M. C. & Weiβ, C. H. (2010). Properties of the exponential EWMA chart with parameter estimation, Quality and Reliability Engineering International, 26(6), 555–569. DOI:10.1002/qre.1079.; Psarakis, S., Vynioua, A. K. & Castagliola, P (2014). Some recent developments on the effects of parameter estimation on control charts, Quality and Reliability Engineering International, 30(8), 1113-1129. DOI:10.1002/qre.1556.; Radaelli, G. (1998). Planning time-between-events Shewhart control charts, Total Quality Management 9(1), 133–140. DOI:10.1080/0954412989324.; Ryan, T. (2011). Statistical Methods for Quality Improvement, John Wiley & Sons.; Saghir, A., Lin, Z. & Chen, C.-W. (2015). The properties of the geometric-poisson exponentially weighted moving control chart with estimated parameters, Cogent Mathematics, 2 (1), 992381. DOI:10.1080/23311835.2014.992381.; Santiago, E. & Smith, J. (2013). Control charts based on the exponential distribution: Adapting runs rules for the t chart, Quality Engineering, 25(2), 85–96. DOI:10.1080/08982112.2012.740646.; Soetaert, K. (2015), rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary differential equations[Software]. R-package version 1.7.; Tang, L. C. & Cheong, W. T. (2004). Cumulative conformance count chart with sequentially updated parameters, IIE Transactions, 36(9), 841–853. DOI:10.1080/07408170490473024.; Knoth, S., & Schmid, W. (Eds.). (2015). Frontiers in Statistical Quality Control 11, Springer International Publishing, chapter Some Recent Results on Monitoring the Rate of a Rare Event, pp. 15–27. DOI:10.1007/978-3-319-12355-4.; Woodall, W. H. & Montgomery, D. C. (2014). Some current directions in the theory and application of statistical process monitoring, Journal of Quality Technology 46(1), 78–94.; Xie, M. & Goh, T. N. (1992). Some procedures for decision making in controlling high yield processes, Quality and Reliability Engineering International, 8(4), 355–360. DOI:10.1002/qre.4680080409.; Xie, M., Goh, T. N. & Kuralmani, V. (2000). On optimal setting of control limits for geometric chart, International Journal of Reliability, Quality and Safety Engineering, 7(01), 17–25.; Xie, M., Goh, T. & Ranjan, P. (2002). Some effective control chart procedures for reliability monitoring., Reliability Engineering and System Safety, 77(2), 143-150.; Yang, Z., Xie, M., Kuralmani, V. & Tsui, K.-L. (2002). On the performance of geometric charts with estimated control limits, Journal of Quality Technology, 34(4), 448–458.; Yen, F. Y., Chong, K. M. B. & Ha, L. M. (2013). Synthetic-type control charts for time-between-events monitoring, PLoS one 8(6), 1–13. DOI:10.1371/journal.pone.0065440.; Zhang, C. W., Xie, M. & Goh, T. N. (2005). Economic design of exponential charts for time between events monitoring, International Journal of Production Research, 43(23), 5019–5032. DOI:10.1080/00207540500219387.; Zhang, C. W., Xie, M. & Goh, T. N. (2006). Design of exponential control charts using a sequential sampling scheme, IIE Transactions, 38(12), 1105–1116. DOI:10.1080/07408170600728905.; Zhang, M., Peng, Y., Schuh, A., Megahed, F. M. & Woodall, W. H. (2013). Geometric charts with estimated control limits, Quality and Reliability Engineering International, 29(2), 209–223. DOI:10.1002/qre.1304.; https://revistas.unal.edu.co/index.php/rfc/article/view/69524

  3. 3
  4. 4
    Dissertation/ Thesis
  5. 5
  6. 6
    Dissertation/ Thesis
  7. 7
    Dissertation/ Thesis

    المساهمون: Gonzalez Alvarez, Nelfi Gertrudis

    وصف الملف: application/pdf

    Relation: Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Estadística Estadística; Estadística; Hinestroza Ramírez, Jhon Edinson (2018) Carta t con límites de control estimado. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.; https://repositorio.unal.edu.co/handle/unal/62850; http://bdigital.unal.edu.co/62094/