يعرض 1 - 20 نتائج من 34 نتيجة بحث عن '"Teoría molecular"', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Panotopoulos, Grigoriss Tuzón, Paula 2011 The physics on a new gauge boson in a Stueckelberg extension of the two-Higgs-doublet model The Journal of high energy physics

    مصطلحات موضوعية: física, teoria atòmica, teoria molecular, UNESCO::FÍSICA

    وصف الملف: application/pdf

    Relation: The Journal of high energy physics, 2011; Panotopoulos, G., & Tuzón, P. (2011). The physics of a new gauge boson in a Stueckelberg extension of the two-Higgs-doublet model. En Journal of High Energy Physics (Vol. 2011, Issue 7). Springer Science and Business Media LLC. https://doi.org/10.1007/jhep07(2011)039; https://hdl.handle.net/10550/95020; 074778

  2. 2
  3. 3
    Academic Journal
  4. 4
  5. 5
    Academic Journal

    المساهمون: Ministerio de Educación y Cultura. Dirección General de Enseñanza Superior e Investigación Científica

    وصف الملف: application/pdf

    Relation: DGESIC/PN 1999-2002/PB98-0457-C02-01; Reproducció digital del document publicat a: http://dx.doi.org/10.1063/1.1381407; © Journal of Chemical Physics, 2007, vol. 115, núm. 3, p. 1153-1157; Articles publicats (D-Q); 0021-9606 (versió paper); 1089-7690 (versió electrònica); http://dx.doi.org/10.1063/1.1381407; http://hdl.handle.net/10256/3283

  6. 6
    Dissertation/ Thesis

    المؤلفون: Cañas Marín, Wilson Antonio

    المساهمون: Gonzalez, Doris, Hoyos Madrigal, Bibian Alonso, Termodinámica Aplicada y Energías Alternativas

    وصف الملف: 227 páginas; application/pdf

    Relation: [1] J. D. van der Waals, Thermodynamic theory of capillarity in the assumption of continuous density change. Verh K Akad Wet Amsterdam. 1-8, 1893.; [2] J. C. Dyre, Simple liquids quasiuniversality and the hard-sphere paradigm, J. Phys.: Condens. Matter, 28, 323001, 2016.; [3] D. Henderson, M. Holovko, I. Nezbeda, A. Trokhymchuk, What is Liquid?, Condens Matter Phys. 18(1), 10101: 1-4, 2015.; [4] T. S. Ingebrigtsen, T. B. Schrøder, J. C. Dyre, What Is a Simple Liquid?, Phys. Review X, 2, 011011, 2012.; [5] G. A. Baker, P. Graves-Morris, P. A. Carruthers, Padé Approximants, Vols. I and II, Addison-Wesley, Reading (1981).; [6] M. Baus, J. L. Colot, Thermodynamics and structure of a fluid of hard rods, disks, spheres, or hyperspheres from rescaled virial expansions, Phys. A, 36, 3912, 1987.; [7] J. L. Largo, Teoría y simulación de las propiedades de Equilibrio de Fluidos de Pozo Cuadrado. Tesis Doctoral. Departamento de física aplicada, Universidad de Cantabria, 2003.; [8] T. Young, III. An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95, 65, 1805.; [9] P. S. Laplace, Traité de Mécanique Céleste; Supplément au Dixième Livre, sur LAction Capillaire, Courcier, Paris, 1806.; [10] O. F. Mosotti, On the Forces that Govern the Internal Constitution of the Body, Insight to Serve to Determine the Cause of the Laws of the Body Action Moléculaire (Turin, 1836) [English translation in Taylors Scientific Memoirs, Vol. 1, 448-469, 1836].; [11] H. Yukawa, On the Interaction of Elementary Particles. I, Phys. Math. Soc. Jpn., 17, 48, 1935.; [12] R. Clausius, XI. On the nature of the motion which we call heat, Ann. Phys. (Berlin), 176, 353, 1857.; [13] J. C. Maxwell, Iv. on the dynamical theory of gases, Philos. Trans. R. Soc. London, 157, 49, 1867.; [14] L. Boltzmann, Sitz. Akad. Naturwiss. Kaiser Akad Class. Wissen Wien 66, 275, 1872.; [15] W. Sutherland, XI. The law of attraction amongst the molecules of a gas, Philos. Mag., 22, 81, 1886.; [16] W. Sutherland, XXXVI. On the law of molecular force, Philos. Mag., 27, 305, 1889.; [17] W. Sutherland, LII. The viscosity of gases and molecular force, Philos. Mag., 36, 507, 1893.; [18] G. Mie, Ann. Phys. (Berlin), 316, 657, 1903.; [19] W. H. Keesom, Commun. Phys. Lab. Leiden University 32(Suppl. 24B), 6, 1912.; [20] J. E. Jones, On the determination of molecular fields. —I. From the variation of the viscosity of a gas with temperature, Proc. R. Soc. London, Ser. A, 106, 441, 1924.; [21] J. E. Jones, On the determination of molecular fields. —II. From the equation of state of a gas, Proc. R. Soc. London, Ser. A, 106, 463, 1924.; [22] J. E. Lennard-Jones, Cohesion, Proc. R. Soc. London, 43, 461, 1931.; [23] J. C. Slater, The Normal State of Helium, Phys. Rev., 32, 349, 1928.; [24] J. C. Slater, J. G. Kirkwood, The Van Der Waals Forces in Gases, Phys. 37, 682, 1931.; [25] S. C. Wang, The mutual energy of two hydrogen atoms, Phys. Z., 28, 663, 1927.; [26] R. Eisenschitz and F. London, On the ratio of the van der Waals forces and the homo-polar binding forces, Z. Phys., 60, 491, 1930.; [27] T. Kihara, Nippon Sugaku-Buturegakukaisi, 17, 11, 1943.; [28] T. Kihara, Virial Coefficients and Models of Molecules in Gases, Rev. Mod. Phys. 25, 831, 1953.; [29] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1954.; [30] G. C. Maitland, M. Rigby, E. B. Smith, W. A. Wakeham, Intermolecular Forces: Their Origin and Determination, International Series of Monographs on Chemistry No. 3, Clarendon Press, Oxford, 1981.; [31] D. Chandler, Liquids: Condensed, disordered, and sometimes complex, PNAS, 106, 15111-15112, 2009.; [32] R. W. Zwanzig, High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases, J. Chem. Phys., 22, 1420, 1954.; [33] J.A. Barker, D. Henderson, Perturbation Theory and Equation of State for Fluids: The Square-Well Potential, J. Chem. Phys. 47 (1967) 2856-2861.; [34] J.A. Barker, D. Henderson, Perturbation theory and equation of state for fluids. II. A successful theory of liquids, J. Chem. Phys. 47 (1967) 4714-4721.; [35] J. A. Barker, D. Henderson, Theories of Liquids, Ann. Rev. Phys. Chem. 23, 439, 1972.; [36] J. D. Weeks, D. Chandler, H. C. Andersen, Perturbation Theory of the Thermodynamic Properties of Simple Liquids, J. Chem. Phys., 55, 5422, 1971.; [37] J. S. Rowlinson, The statistical mechanics of systems with steep intermolecular potentials Mol. Phys. 8, 107, 1964.; [38] J. S. Rowlinson, An equation of state of gases at high temperatures and densities, Mol. Phys. 7, 349, 1964.; [39] J. S. Rowlinson, Molecular theory of liquids and liquid mixtures, Ber. Bunsenges Phys. Chem. 85, 970, 1981.; [40] L. S. Ornstein, F. Zernike, Accidental deviations of density and opalescence at the critical point of a single substance, Proc. Acad. Sci., Amsterdam, 17 (1914) 793-806.; [41] J. K. Percus, G. J. Yevick, J. K. Percus, G. J. Yevick, Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev., 110 (1) (1958) 1-13.; [42] J.A. Barker, D. Henderson, what is "liquid"? Understanding the states of matter, Rev. mod. Phys., 48, 587, 1976.; [43] Y. Tang, Role of the Barker–Henderson diameter in thermodynamics, J. Chem. Phys. 116 (2002) 6694-6700.; [44] L. Benavides, A. Gil-Villegas, The thermodynamics of molecules with discrete potentials, Molecular Physics, 97, 12, 1225, 1999.; [45] A. Lang, G. Kahl, C. N. Likos, H. Lowen, M. Watzlawek, Structure and thermodynamics of square-well and square-shoulder fluids, J. Phys.: Condens. Matter, 11, 10143, 1999.; [46] C. Rascón, E. Velasco, L. Mederos, G. Nevascués, Phase diagrams of systems of particles interacting via repulsive potentials, J. Chem. Phys. 106,16, 6689, 1997.; [47] A. Vidales, L. Benavides, A. Gil-Villegas, Perturbation theory for mixtures of discrete potential fluids, Molecular Physics, 99, 9, 703, 2001; [48] L. A. Cervantes, G. Jaime-Muñoz, A. L. Benavides, J. Torres-Arenas, F. Sartre, Discrete perturbation theory for continuous soft-core potential fluids, J. Chem. Phys., 142, 114501, 2015.; [49] J. Gross, G. Sadowski, Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains, Fluid. Phase. Equilib. 168, 183, 2000.; [50] J. Gross, G. Sadowski, Ind. Eng. Chem. Res., Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains, 40, 1244, 2001.; [51] J. A. Barker, D. Henderson, in proceeding of the fourth symposium on thermophycical properties, edited by J.R. Moszynski (ASTM, New York), page 30.; [52] J. P. Hansen, I. R. McDonald, Theory of simple liquids, Ed. Academic Press, London, 1976.; [53] L. Berthier, G. Tarjus, Nonperturbative Effect of Attractive Forces in Viscous Liquids, Phys. Lett. 103, 170601, 2009.; [54] L. Berthier, G. Tarjus, The role of attractive forces in viscous liquids, J. Chem. Phys., 134, 214503, 2011.; [55] S. Toxvaerd, J. C. Dyre, Communication: Shifted forces in molecular dynamics, J. Chem. Phys., 134, 081102, 2011.; [56] S. Toxvaerd and J. C. Dyre, Role of the first coordination shell in determining the equilibrium structure and dynamics of simple liquids, J. Chem. Phys., 135, 134501, 2011.; [57] H. Touba, G. A. Mansoori, Subcritical and Supercritical Water Radial Distribution Function, Inter. J. Journal of Thermophys., 18, 5, 1217, 1997.; [58] Y.S. Wei, R. J. Sadus, Equations of state for the calculation of fluid‐phase equilibria, AIChE Journal, 46, 1, 2000.; [59] J. Reščič, Y. V. Kalyuzhnyi, P. T. Cummings, Shielded attractive shell model again: resummed thermodynamic perturbation theory for central force potential, J. Phys. Condens. Matter, 28 (41), 414011, 2016.; [60] R. Elliot, Lessons learned from theory and simulation of step potentials, Fluid Phase Equilib. 416, 27-41, 2016; [61] K. E. Gubbins, Perturbation theories of the thermodynamics of polar and associating liquids: A historical perspective, Fluid Phase Equilib., 416, 3-17, 2016; [62] W. Zmpitas, J. Gross, A new equation of state for linear hard chains: Analysis of a third-order expansion of Wertheims Thermodynamic Perturbation Theory, Fluid Phase Equilib. 416, 18-26, 2016.; [63] T. H. Westen, An analytical equation of state for describing isotropic-nematic phase equilibria of Lennard-Jones chain fluids with variable degree of molecular flexibility, J. Chem. Phys., 142, 244903, 2015.; [64] A. S. V. Ramana, Generalized coupling parameter expansion: Application to square well and Lennard-Jones fluids, J. Chem. Phys., 139, 044106, 2013.; [65] D. Pini, A. Parola, J. Colombo, L. Reatto, An investigation of the SCOZA for narrow square-well potentials and in the sticky limit, Mol. Phys. 109, 1343, 2011.; [66] Y. Duda, C. Lira-Galena, Thermodynamics of asphaltene structure and aggregation, Fluid Phase Equilib. 241, 257-267, 2006.; [67] O. Redlich, J. N. S. Kwong, On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chem. Rev., 44, 233, 1949.; [68] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci., 27, 1197, 1972.; [69] D. Y. Peng, D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 59, 1976.; [70] N. F. Carnahan, K. E. Starling, Equation of State for Nonattracting Rigid Spheres, J. Chem. Phys., 51, 635, 1969.; [71] M. Khanpour, G. A. Parsafar, A simple method of generating equations of state for hard sphere fluid, Chem. Phys., 333, 208, 2007.; [72] A. C. Mulero, C. Galán, F. Cuadros, Equations of state for hard spheres. A review of accuracy and applications, Phys.Chem. Phys., 3, 4991-4999, 2001.; [73] M. du Rand, I. Nieuwoudt, C. E. Schwarz, j. h. Knoetze, A practical equation of state for non‐spherical and asymmetric systems for application at high pressures. Part 1: Development of the pure component model, The Canadian Journal of Chemical Engineering, 90, 584-596, 2012.; [74] J. Wu, J.M. Prausnitz, Phase equilibria for systems containing hydrocarbons, water, and salt: An extended Peng− Robinson equation of state, Ind. Eng. Chem. Res., 37, 1634, 1998.; [75] S.B. Kiselev, Cubic crossover equation of state, Fluid Phase Equilib., 147, 7, 1998.; [76] A. Bakhshandeh, H. Behnejad, Crossover parametric equation of state for asymmetric fluids, Chem. Phys., 409, 32, 2012.; [77] L. Yelash, M. Müller, W. Paul, K. Binder, A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach, J. Chem. Phys., 123, 014908, 2005.; [78] U. K. Deiters, Private Communication, 2009.; [79] M. A. Van Schilt, R. M. Wering, W. J. van Meerendonk, M. F. Kemmere, J. T. F. Keurentjes, High-Pressure Phase Behavior of the System PCHC−CHO−CO2 for the Development of a Solvent-Free Alternative toward Polycarbonate Production, Ind. Eng. Chem. Res., 44, 3363, 2005.; [80] S. Mohebbinia, K. Sepehrnoori, R. T. Johns, A. Kazemi-Nia-Korrani, Simulation of Asphaltene Precipitation During Gas Injection Using PC-SAFT EOS, SPE Annual Technical Conference and Exhibition, Amsterdam, Netherlands, 2014.; [81] T. Laffite, A. Apostolakau, C. Avendaño, A. Galindo, C. S. Adjiman, E. Muller, G. Jackson, Accurate statistical associating fluid theory for chain molecules formed from Mie segments, J. Chem. Phys., 139, 154504, 2013.; [82] S. Dufal, T. Lafitte, A. Galingo, G. Jackson, A. J. Haslam, Developing intermolecular‐potential models for use with the SAFT‐VR Mie equation of state, AIChE J., 61(9), 2891-2912, 2015.; [83] V. Szewczyk, E. Béhar, Compositional model for predicting asphaltenes flocculation, Fluid Phase Equilib. 158-160, 459, 1999.; [84] S. Ashoori, M. Sharifi, M. Masoumi, The relationship between SARA fractions and crude oil stability, Egyptian J. Petrol. 26, 209, 2017.; [85] K. J. Leontaritis, G. A. Mansoori, Asphaltene flocculation during oil production and processing: A thermodynamic collodial model, SPE International Symposium on Oilfield Chemistry, 4-6 february, 1987.; [86] A. I. Victorov, A. Firoozabadi, Thermodynamic micellizatin model of asphaltene precipitation from petroleum fluids, AIChE J., 42 (6), 1753, 1996.; [87] H. Pan, A. Firoozabadi, H. Pan, A. Firoozabadi, AIChE J., 46 (2), 416, 2000, AIChE J., 46 (2), 416, 2000.; [88] A. K. Gupta, A model for asphaltene flocculation using an equation of state. MSc. thesis, University of Calgary, 1986. [89] L. X. Nghiem, M. S. Hassam, R. Nutakki, A. E. D. George, Efficient Modelling of Asphaltene Precipitation, 3-6 October; Houston, TX: Society of Petroleum Engineers, 1993.; [90] L. X. Nghiem, D. A. Coombe, Modelling asphaltene precipitation during primary depletion, SPE J., 2 (2), 170, 1997.; [91] B. F. Kohse, L. X. Nghiem, H. Maeda, K. Ohno, Modelling Phase Behavior Includingthe Effect of Pressure and Temperature on Asphaltene Precipitation, SPE Asia Pacific Oil and Gas Conference and Exhibition, 16-18 October; Brisbane, Australia: Society of Petroleum Engineers, 2000.; [92] N. Lindeloff, R. H. Heidemann, S. I. Andersen, E. H. Stenby, A thermodynamic mixedsolid asphaltene precipitation model, Pet. Sci. Technol. 16 (3-4), 307, 1998.; [93] J. L. Du, D. Zhang, A Thermodynamic Model for the Prediction of Asphaltene Precipitation, Pet. Sci. Technol. 22 (7-8), 1023, 2004.; [94] O. Sabbagh, K. Akbarzadeh, A. Badamchi-Zadeh, W. Y. Svrcek, H. Y. Yarranton, Applying the PR-EoS to Asphaltene Precipitation from n-Alkane Diluted Heavy Oils and Bitumens, Energy & Fuels, 20 (2): 625, 2006.; [95] G.M. Kontogeorgis, E. C. Voutsas, I. V. Yakoumis, D. P. Tassios, Ind. Eng. Chem. Res., An equation of state for associating fluids, 35 (11), 4310, 1996.; [96] Z. Li, A. Firoozabadi, Modeling Asphaltene Precipitation by n-Alkanes from Heavy Oils and Bitumens Using Cubic-Plus-Association Equation of State, Energy & Fuels, 24 (2): 1106, 2010.; [97] A. H. Saeedi-Dehaghani, M. Vafaie-Sefti, A. Amerighasrodashti, The Application of a New Association Equation of State (AEOS) for Prediction of Asphaltenes and Resins Deposition During CO2 Gas Injection, Pet. Sci. Tech., 30, 1548, 2012.; [98] X. Zhang, N. Pedrosa, T. Moorwood, Modeling asphaltene phase behavior: comparison of methods for flow assurance studies, Energy & Fuels, 26(5), 2611-2620, 2012.; [99] M. S. Wertheim, Fluids with highly directional attractive forces. IV. Equilibrium polymerization, J. Stat. Phys. 42 (3-4), 477, 1986.; [100] M.S. Wertheim, Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations, J. Stat. Phys. 35 (1-2), 35, 1984.; [101] M. S. Wertheim, Fluids with highly directional attractive forces. I. Statistical thermodynamics, J. Stat. Phys. 35 (1-2), 19, 1984.; [102] M. S. Wertheim, Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres, J. Chem. Phys., 85 (5), 2929, 1986.; [103] M. S. Wertheim, Thermodynamic perturbation theory of polymerization, J. Chem. Phys. 87 (12), 7323, 1987.; [104] M. S. Wertheim, Fluids with highly directional attractive forces. III. Multiple attraction sites, J. Stat. Phys. 42 (3-4), 459, 1986.; [105] W.G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, SAFT: Equation-of-state solution model for associating fluids, Fluid Phase Equilib., 52, 31, 1989.; [106] W. G. Chapman, G. Jackson, K. E. Gubbins, Phase equilibria of associating fluids: chain molecules with multiple bonding sites, Mol. Phys. 65 (5), 1079, 1988.; [107] S. H. Huang, M. Radosz, Equation of state for small, large, polydisperse, and associating molecules, Ind. Eng. Chem. Res., 29 (11), 2294, 1990.; [108] T. Kraska, K. E. Gubbins, Phase Equilibria Calculations with a Modified SAFT Equation of State. 1. Pure Alkanes, Alkanols, and Water, Ind. Eng. Chem. Res., 35 (12), 4737, 1996.; [109] T. Kraska, K. E. Gubbins, Phase Equilibria Calculations with a Modified SAFT Equation of State. 2. Binary Mixtures of n-Alkanes, 1-Alkanols, and Water, Ind. Eng. Chem. Res., 35 (12), 4746, 1996.; [110] A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, A. N. Burgess, Statistical associating fluid theory for chain molecules with attractive potentials of variable range, J. Chem. Phys., 106 (10), 4168, 1997.; [111] J. Wu, J. M. Prausnitz, A. Firoozabadi, Molecular‐thermodynamic framework for asphaltene‐oil equilibria, AIChE J., 44 (5), 1188, 1998.; [112] J. Wu, J. M. Prausnitz, A. Firoozabadi, Molecular thermodynamics of asphaltene precipitation in reservoir fluids, AIChE J., 46 (1), 197, 2000.; [113] E. Buenrostro-Gonzalez, C. Lira-Galeana, A. Gil-Villegas, J. Wu, Asphaltene precipitation in crude oils: Theory and experiments, AIChE J., 50 (10), 2552, 2004.; [114] A. A. Alhammadi, F. M. Vargas, W. G. Chapman, Comparison of Cubic-Plus-Association and Perturbed-Chain Statistical Associating Fluid Theory Methods for Modeling Asphaltene Phase Behavior and Pressure–Volume–Temperature Properties, Energy & Fuels, 29, 2864, 2015.; [115] A. Arya, X. Liang, N. von Solms, G. M. Kontogeorgis, Modeling of Asphaltene Onset Precipitation Conditions with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) Equations of State, Energy & Fuels, 30(8), 6835, 2016.; [116] D. P. Ting, G. J. Hirasaki, W. G. Chapman, Modeling of asphaltene phase behavior with the SAFT equation of state, Pet. Sci. Technol. 21 (3-4), 647, 2003.; [117] D. L. Gonzalez, D. P. Ting, G. J. Hirasaki, W. G. Chapman, Prediction of asphaltene instability under gas injection with the PC-SAFT equation of state, Energy & Fuels, 19 (4), 1230, 2005.; [118] D. L. Gonzalez, G. J. Hirasaki, J. Creek, W. G. Chapman, Modeling of Asphaltene Precipitation Due to Changes in Composition Using the Perturbed Chain Statistical Associating Fluid Theory Equation of State, Energy & Fuels, 21 (3), 1231, 2007.; [119] S. R. Panuganti, F. M. Vargas, D. L. Gonzalez, A. S. Kurup, W. G. Chapman, PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior, Fuel, 93, 658, 2012.; [120] S. Punnapala, F. M. Vargas, Revisiting the PC-SAFT characterization procedure for an improved asphaltene precipitation prediction, Fuel, 108, 417, 2013.; [121] K. Aim, I. Nezbeda, Perturbed hard sphere equations of state of real liquids. I. Examination of a simple equation of the second order, Fluid Phase Equilib., 12, 235-251, 1983.; [122] S. S. Chen, A. Kreglewski, Ver. Bunsen-Ges., A. Kreglewski, Applications of the augmented van der Waals theory of fluids. I. pure fluids, 81 (10), 1048, 1977.; [123] D. Gonzalez, M. García, O. Diaz, Unusual asphaltene phase behavior of fluids from lake of Maracaibo, Venezuela, SPE 153602-PP, 2012.; [124] O. L. Boshkova, U. K. Deiters, Soft repulsion and the behavior of equations of state at high pressures, Int J Thermophys, 31, 227-252, 2010.; [125] L. Verlet, J. Weis, Perturbation theory for the thermodynamic properties of simple liquids, Phys. A, 5, 939, 1972.; [126] L. L. Lee, Molecular Thermodynamics of Nonideal Fluids, Butterworths, Toronto, 1988; [127] J.P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986).; [128] Y. Tang, J. Chem. Phys., Direct correlation function for the square-well potential, 127, 164504, 2007.; [129] Y. Tang, Erratum: “Direct correlation function for the square-well potential” [J. Chem. Phys. 127, 164504 (2007)], J. Chem. Phys., 133, 119903, 2010.; [130] I. Guillén-Escamilla, E. Scholl-Paschinger, R. Castañeda-Prieto, A parametrisation of the direct correlation function for the square-shoulder fluid, Physica A, 108 (2), 141-150, 2010.; [131] I. Guillén-Escamilla, E. Scholl-Paschinger, R. Castañeda-Prieto, A modified soft-core fluid model for the direct correlation function of the square-shoulder and square-well fluidsPhysica A, 390, 3637-3644, 2011.; [132] S. P. Hlushak, P.A. Hlushak, A. Trokhymchuk, An improved first-order mean spherical approximation theory for the square-shoulder fluid, J. Chem. Phys., 138, 164107, 2013.; [133] M. Khnpour, R. Hashim, Phys. Chem. of Liquids, Pair correlation function from the Barker–Henderson perturbation theory of fluids: the structure of square-well and square-shoulder potentials, 51 (2), 203-217, 2013.; [134] S. B. Yuste, A. Santos, M. López de Haro, Structure of the square-shoulder fluid, Mol. Phys. 109 (6), 987-995, 2011.; [135] W.A. Cañas-Marín, D.L. Gonzalez, B.A. Hoyos, Comment on “Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules”, Ind. Eng. Chem. Res. 58(14), 5743, 2019.; [136] J. Gross, G. Sadowski, Reply to Comment on “Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules”, Ind. Eng. Chem. Res. 58(14), 5744, 2019.; [137] M. Sabeti, A. Rahimbakhsh, M. Nikookar, A.H. Mohammadi, Estimation of asphaltene precipitation and equilibrium properties of hydrocarbon fluid phases using the PC-SAFT equation of state, Journal of Molecular Liquids. 209 (2015) 447-460. DOI:10.1016/j.fluid.2019.04.037.; [138] W. A. Cañas-Marín, D. L. Gonzalez, B. A. Hoyos, A theoretically modified PC- SAFT equation of state for predicting asphaltene onset pressures at low temperatures, Fluid Phase Equilib. 495 (2019) 1-11. DOI:10.1016/j.fluid.2019.04.037.; [139] B-J. Zhang, Calculating thermodynamic properties from perturbation theory: I. An analytic representation of square-well potential hard-sphere perturbation theory, Fluid Phase Equilib. 1, 154, 1999.; [140] X. Zhou, F.B. Thomas, R.G. Moore, Modelling of Solid Precipitation from Reservoir Fluid, J. Can. Petrol. Tech. 35 (1996) 37-45. DOI:10.2118/96-10-03.; [141] C. Browarzik, D. Browarzik, Modeling the Onset of Asphaltene Flocculation at High Pressure by an Association Model, Petrol. Sci. Tech. 27 (2005) 795-810. DOI:10.1081/LFT-200033121.; [142] P.D. Ting, Thermodynamic Stability and Phase Behavior of Asphaltenes in Oil and of other Highly Asymmetric Mixtures, PhD Thesis, Rice University, 2003.; [143] D.L. Gonzalez, F. M. Vargas, G. J Hirasaki, W. G. Chapman, Modeling Study of CO2-Induced Asphaltene Precipitation. Energy Fuels 22 (2) (2008) 757–762. DOI:10.1021/ef700369u.; [144] A. H. Saeedi-Dehaghani, M. Vafaie-Sefti, A. Amerighasrodashti, The Application of a New Association Equation of State (AEOS) for Prediction of Asphaltenes and Resins Deposition During CO2 Gas Injection, Pet. Sci. Tech., 30, 1548-1561, 2012. DOI:10.1080/10916466.2010.506465.; [145] M. I. L. Abutaqiya, C. J. Sisco, F. M. Vargas, A Linear Extrapolation of Normalized Cohesive Energy (LENCE) for Fast and Accurate Prediction of the Asphaltene Onset Pressure, Fluid Phase Equilibria 483 (2019) 52–69. DOI:10.1016/j.fluid.2018.10.025.; [146] X. Liang, G. M. Kontogeorgis, New Variant of the Universal Constants in the Perturbed Chain-Statistical Associating Fluid Theory Equation of State. Ind. Eng. Chem. Res. 54 (4) (2015) 1373–1384. DOI:10.1021/ie503925h.; [147] Y. Tang, Role of the Barker–Henderson diameter in thermodynamics, J. Chem. Phys. 116 (2002) 6694-6700. DOI:10.1063/1.1461360.; [148] B. Saager, R. Hennenberg, J. Fischer, Construction and application of physically based equations of state: Part I. Modification of the BACK equation, Fluid Phase Equilibria 72 (1992) 41-66. DOI:10.1016/0378-3812(92)85018-4.; [149] B-J, Zhang, S. Liang, Y. Lu, Calculating thermodynamic properties from perturbation theory II. An analytic representation for the square-well chain fluid, Fluid Phase Equilibria 180 (2001) 183–194. DOI:10.1016/S0378-3812(01)00346-6.; [150] S. Lian, B-J, Zhang, S. Han, W. Hu, Z. Jin, Calculating thermodynamic properties from perturbation theory III. An analytic representation of square-well potential hard-sphere perturbation theory, Fluid Phase Equilibria 200 (2002) 337–348, DOI:10.1016/S0378-3812(02)00044-4.; [151] G.P. Oskui, M.A. Jumaa, W.A. Abuhaimed, Laboratory Investigation of Asphaltene Precipitation Problems During CO2/Hydrocarbon Injection Project for EOR Application in Kwaiti Reservoirs, SPE 126267 (2009) 1-11. DOI:10.2118/126267-MS.; [152] M. Hassanvand, B. Shahsavani, A. Anooshe, Study of temperature effect on asphaltene precipitation by visual and quantitative methods, JPTAF, 3 (2012) 8-18. DOI:10.5897/JPTAF11.035.; [153] A.K.M. Jamaluddin, N. Joshi, F. Iwere, O. Gurpinar, An Investigation of Asphaltene Instability Under Nitrogen Injection, SPE 74393 (2002) 1-10. DOI:10.2118/74393-MS.; [154] E. Buenrostro-Gonzalez, C. Lira-Galeana, A. Gill-Villegas, J. Wu, Asphaltene precipitation in crude oils: Theory and experiments, AIChE J 50 (2004) 2552-2570. DOI:10.1002/aic.10243.; [155] D.L. Gonzalez, E. Mahmoodaghdam, F.H. Lim, N.B. Joshi, Effects of Gas Additions to Deepwater Gulf of Mexico Reservoir Oil: Experimental Investigation of Asphaltene Precipitation and Deposition. Presented at SPE Annual Technical Conference and Exhibition, 8-10 October, San Antonio, Texas, USA, 2012. DOI:10.2118/159098-MS.; [156] O.C. Mullins, E.Y. Sheu, A. Hammami, A.G. Marshall, Asphaltene, Heavy Oils, and Petroleomics, Springer, 2007.; [157] M. Tavakkoli, A. Chen, F. M. Vargas, Rethinking the modeling approach for asphaltene precipitation using the PC-SAFT Equation of State, Fluid Phase Equilibria 416 (2016) 120–129, DOI:10.1016/j.fluid.2015.11.003.; [158] D.L. Gonzalez, Modeling of Asphaltene Precipitation and Deposition Tendency using the PC-SAFT Equation of State, PhD Thesis, Rice University, 2008.; [159] W.A. Burgess, B.A. Bangbade, I.K. Gamwo, Experimental and predictive PC-SAFT modeling results for density and isothermal compressibility for two oil samples at elevated temperatures and pressures, Fuel (2018) 385-395, DOI:10.1016/j.fuel.2017.12.101.; [160] L.C.C. Marques, J.O. Pereira, A. D. Bueno, V.S. Marques, E.F. Lucas, C.R.E. Mansur, A.L.C. Machado, G. González, A Study of Asphaltene-Resin Interactions, J. Braz.Chem. Soc,. 23 (2012) 1880-1888. DOI:10.1590/S0103-50532012005000060.; [161] K. Aim, I. Nezbeda, Perturbed hard sphere equations of state of real liquids. I. Examination of a simple equation of the second order, Fluid Phase Equilib. 12 (1983) 235-251. DOI:10.1016/0378-3812(83)80064-8.; [162] I. Nezbeda, K. Aim, Perturbed hard sphere equations of state of real liquids. II. Effective hard-sphere diameters and residual properties, Fluid Phase Equilib. 17 (1984) 1-18. DOI:10.1016/0378-3812(84)80010-2.; [163] W. A. Cañas-Marín, B. A. Hoyos, D. L. Gonzalez, Role of the soft- core repulsion upon the prediction of characteristic curves with PC- SAFT, Fluid Phase Equilib. 499 (2019) 112247. DOI:10.1016/j.fluid.2019.112247.; [164] P. Bahrami, R. Karrat, S. Mahdavi, H. Firoozinia, Prediction of the gas injection effect on the asphaltene phase envelope, Oil & Gas Science and Technology-Rev. IFP Energies Nouvelles 70 (2015) 1075-1086. DOI:10.2516/ogst/2014037.; [165] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, A temperature-and density-dependent effective diameter for PC- SAFT, Journal of Molecular Liquids, 300 (2020) 112277.; [166] F. del Rio, D.A. Lonngi, The mean distance of closet approach in the theory of liquids, Phys. Letters. 56A (6) (1976) 463-464. DOI:10.1016/0375-9601(76)90729-5.; [167] S. Gormsen, J.M. Mollerup, Calculation of effective hard sphere diameters from perturbation theory, Fluid Phase Equilib. 65 (1992) 127–135, DOI:10.1016/0378-3812(92)87012-C.; [168] L. Verlet, J-J. Weis, Equilibrium theory of simple liquids, Phys. Rev. A, 5 (2) (1972) 939-952. DOI:10.1103/PhysRevA.5.939.; [169] L. L. Lee, Molecular Thermodynamics of Nonideal Fluids, Butterworths, Toronto, 1988.; [170] D. Henderson, E. W. Grundke, Direct correlation function: Hard sphere fluid, J. Chem. Phys. 63 (1975) 601-607. DOI:10.1063/1.431378.; [171] T. Wang, T. Davis, Molecular theory of simple dense fluid structure and thermodynamics, Chem. Eng. Commun. 4 (1980) 343-352. DOI:10.1080/00986448008935914.; [172] H. Nikoofard, T. Rezaye, A. H. Amin, The static structure factor of monatomic liquids using an analytical expression for the hard-sphere correlation function, PCAIJ. 8(4) (2013) 126-131. ISSN: 0974 – 7524.; [173] A. M. Bratkovsky, V. G. Vaks, A. V. Trefilov, On the accuracy of the liquid theory approximate methods for calculating the structure factors in liquid metals, J. Phys. F: Met. Phys. 12 (1982) 611-632. DOI:10.1088/0305-4608/12/4/004; [174] M. Giordano, D. de Angelis, A. Forlani, The one-component plasma liquid: and equation for the strongly coupled limit. J. Phys. C: Solid State phys. 17 (1984) 4089-4100. DOI:10.1088/0022-3719/17/23/010.; [175] A. D. Law, D. M. A. Buzza, Determination of interaction potentials of colloidal monolayers from the inversion of pair correlation functions: A two-dimensional predictor-corrector method, J. Chem. Phys. 131 (2009) 094704. DOI:10.1063/1.3216568.; [176] Y. Tang, B.C.-Y. Liu, A study of associating Lennard-Jones chains by a new reference radial distribution function, Fluid Phase Equilib. 171 (2000) 27-44. DOI:10.1016/S0378-3812(00)00346-0.; [177] R. P. Brent, Chapter 4: An Algorithm with Guaranteed Convergence for Finding a Zero of a Function, Algorithms for Minimization without Derivatives, Englewood Cliffs, NJ: Prentice-Hall, ISBN 0-13-0223, 1973.; [178] P. Ungerer, B. Faissat, C. Leibovici, H. Zhou, E. Behar, G. Morachini, J. P. Courcy, High pressure-high temperature reservoir fluids: investigation of synthetic condensate gases containing a solid hydrocarbon, Fluid Phase Equilib. 111 (1995) 287- 311. DOI:10.1016/S0301-9322(97)88277-8.; [179] S. Jiu-Xun, simple analytic expression with high precision for Barker-Henderson diameter, Chin. Phys. Lett. 20 (2003) 180-182. DOI:10.1088/0256-307X/20/2/302.; [180] S. Zarei, F. Feyzi, Boyle temperature from SAFT, PC-SAFT and SAFT-VR equations of state, Journal of Molecular Liquids. 187 (2013) 144-128. DOI:10.1016/j.molliq.2013.06.010.; [181] X. Liang, B. Maribo-Mogensen, K. Thomsen, W. Yan, G. M. Kontogeorgis, Approach to improve speed of sound calculation within PC-SAFT framework. Ind. Eng. Chem. Res. 51 (2012) 14903-14914. DOI:10.1021/ie3018127I.; [182] I. Polishuk, P. Privat, J.N., Jaubert, Novel methodology for analysis and evaluation of SAFT-type equation of state, Ind. Eng. Chem. Res. 2013, S2, 13875. DOI:10.1021/ie4020155.; [183] P. Paricaud, Extension of the BMCSL equation of state for hard spheres to the metastable disordered region: Application to the SAFT approach, J. Chem. Phys. 143 (2015) 044507. DOI:10.1063/1.4927148.; [184] J. Gross, G. Sadowski, Reply to comment on “Perturbed-Chain SAFT: An equation of state based on a perturbation theory for chain molecules”, Ind. Eng. Chem. Res. 58 (2019) 5744-5745. DOI:10.1021/acs.iecr.9b01515.; [185] C.P. Hicks, C.L. Young, Gas-liquid critical properties of binary mixtures, Chem. Rev. 75(2) (1975) 119-175. DOI:10.1021/cr60294a001.; [186] E. F. Gholoum, G. P. Oskui, M. Salman, Investigation of Asphaltenes Precipitation Onset Conditions for Kuwaiti Reservoirs, SPE Paper 81571, SPE 13th Middle East Oil Show & Conference, Bahrain, 2003. DOI:10.2118/81571-MS.; [187] F. Nascimento, G.M.N. Costa, S.A.B. Vieira de Melo, A comparative study of CPA and PC-SAFT equations of state to calculate the asphaltene onset pressure and phase envelope, Fluid Phase Equilibria 494 (2019) 74–92. DOI:10.1016/j.fluid.2015.11.003. 10.1016/j.fluid.2019.04.027.; [188] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Comparison of four different PC- SAFT versions to predict liquid- liquid equilibria of polymer and asphaltene systems at low temperatures, Fluid Phase Equilib. 521 (2020) 112646.; [189] E.H. Brown, On the thermodynamic properties of fluids. Bull. Int. Inst. Refrig., Paris, Annexe 1960−1961 (1960) 167-178.; [190] O.L. Boshkova, U.K. Deiters, Soft repulsion and the behavior of equations of state at high pressures, Int. J Thermophys. 31 (2010) 227-252. DOI:10.1007/s10765-010-0727-7. DOI:10.1007/s10765-010-0727-7.; [191] A.K.M. Jamaluddin, J. Creek, C.S. Kabir, J.D. McFeeden, D. D´Cruz, M.T. Joseph, N. Joshi, B. Ross, A comparison of various laboratory techniques to measure thermodynamic asphaltene instability, SPE 72154 (2001) 1-17. DOI:10.2118/72154-MS.; [192] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Prediction of extreme asphaltene onset pressures with PC- SAFT for petroleum reservoir fluids, Fluid Phase Equilib. 522 (2020) 112769.; [193] C.H. Whitson, M.R. Brule, Phase Behavior. SPE monograph series vol. 20 (2000).; [194] K.S. Pedersen, P.L. Christensen, Phase behavior of petroleum reservoir fluids. CRC press. Taylor & Francis Group (2007).; [195] C. S. Agger, H. Sorensen, Algorithm for constructing complete asphaltene PT and Px phase diagrams, Ind. Eng. Chem. Res. 57 (1) (2017) 392-400. DOI:10.1021/acs.iecr.7b04246.; [196] R. R. Boesen, H. Sorensen, K. S. Pedersen, Asphaltene predictions using screening methods and equations of state, SPE 190401-MS (2018) 1-19. DOI:10.2118/190401-MS.; [197] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27 (6) (1972) 1197-1203.; [198] M. Robles, M. López de Haro, A. Santos, Note: Equation of state and the freezing point in the hard-sphere model. J. Chem. Phys. 140 (2014) 136101.; [199] H.S. Kang, C.S. Lee, T. Ree, A perturbation theory of classical equilibrium fluids. J. Chem. Phys. 82(1) (1985) 414-423.; [200] C.F. Leibovici, J. Neoschil, A solution of Rachford-Rice equations for multiphase systems, Fluid Phase Equilib. 112 (1995) 217–221. DOI:10.1016/0378-3812(95)02797-I.; [201] M.L. Michelsen, Calculation of multiphase equilibrium. Comput. Chem. Eng. 18 (7) (1994) 545-550. DOI:10.1016/0098-1354(93)E0017-4.; [202] M.L. Michelsen, The isothermal flash problem. Part I. Stability. Fluid Phase Equilib. 9 (1) (1982) 1-19. DOI:10.1016/0378-3812(82)85001-2.; [203] W.A. Cañas-Marín, J.D. Ortiz-Arango, U.E. Guerrero-Aconcha, Improved two-sided tangent plane initialization and two-phase-split calculations. Ind. Eng. Chem. Res. 46 (2007) 5429-5436. DOI:10.1021/ie061361b.; [204] M.A. Trebble, A preliminary evaluation of two and three phase flash initialization procedures. Fluid Phase Equilib. 53 (1989) 113–122. DOI:10.1016/0378-3812(89)80078-0.; [205] M.L. Michelsen, J.M. Mollerup, Thermodynamic models: Fundamentals & computational aspects. Tie-Line Publications (2004).; [206] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Role of the soft-core repulsion upon density-and temperature-dependent effective diameters from two thermodynamic perturbation theories, Fluid Phase Equilib. 528 (2021) 112849. DOI:10.1016/j.fluid.2020.112849.; [207] D. Henderson, Rowlinson´s concept of an effective hard sphere diameter, J. Chem. Eng. Data. 55(10) (2010) 4507-4508.; [208] B. J. Alder, C.E. Hecht, Studies in Molecular Dynamics. VII. Hard‐Sphere Distribution Functions and an Augmented van der Waals Theory. J. Chem. Phys. 50 (1969) 2032-2037.; [209] D.M. Heyes, Thermodynamics and elastic moduli of fluids with steeply repulsive potentials. J. Chem. Phys. 107(6) (1997) 1963-1969.; [210] E.H. Brown, On the thermodynamic properties of fluids. Bull. Int. Inst. Refrig., Paris, Annexe 1960−1961 (1960) 167-178.; [211] G.A. Parsafar, C. Izanloo, Deriving analytical expressions for the ideal curves and using the curves to obtain the temperature dependence of equation-of-state parameters. Int. J Thermophys. 27 (5) (2006) 1564-1589.; [212] U.K. Deiters, A. Neumaier, Computer simulation of the characteristic curves of pure fluids. J. Chem. Eng. Data. 61 (8) (2016) 2720-2728.; [213] U.K. Deiters, K.M. De Reuck, Guidelines for publication of equations of state-I. Pure fluids. Pure & Appl. Chem., 68 (6) (1997) 1237-1249.; [214] L. Boltzmann, Lectures on gas theory, University of California Press, Berkeley, CA, 1964.; [215] M. Shokouhi, G.A. Parsafar, A new equation of state derived by the statistical mechanical perturbation theory, Fluid Phase Equilib. 264 (2008) 1-11.; [216] C.M. Silva, H. Liu, E.A. Macedo, Comparison between different explicit expressions of the effective hard sphere diameter of Lennard-Jones fluids: Application to self-diffusion coefficients, Ind. Eng. Chem. Res. 37 (1998) 221-227.; [217] U.K. Deiters, The equation of state of soft repulsive spherical molecules, Molecular Physics. 74 (1) (1991) 153-160.; [218] U.K. Deiters, S.L. Randzio, The equation of state for molecules with shifted Lennard-Jones pair potentials, Fluid Phase Equilib. 103 (1995) 199-212.; [219] R.L. Cotterman, B.J., Schwardz, J.M. Prausnitz, Molecular thermodynamics for fluids al low and high densities. Part I. Pure fluids containing small or large molecules, AIChE J. 32 (11) (1986) 1787-1798.; [220] Y. Tang, B.C.-Y. Liu, A study of associating Lennard-Jones chains by a new reference radial distribution function, Fluid Phase Equilib. 171 (2000) 27-44.; [221] Y. Tang, B.C.-Y. Liu, On the mean spherical approximation for the Lennard-Jones fluid, Fluid Phase Equilib. 190 (2001) 149-158.; [222] I. Polishuk, Standardized critical point-based numerical solution of statistical association fluid theory parameters: The perturbed chain-statistical association fluid theory equation of state revisited, Ind. Eng. Chem. Res. 53 (2014) 14127-14141.; [223] Ch. Tegeler, R. Span, W. Wagner, A New Equation of State for Argon Covering the Fluid Region for Temperatures From the Melting Line to 700 K at Pressures up to 1000 MPa. Journal of Physical and chemical Reference Data, 28 (3) (1999) 779-850.; [224] R. Span, E. Lemmon, R. Jacobsen, W. Wagner, A, Yokozeki, A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. Journal of Physical and chemical Reference Data, 29 (6) (2000) 1361-1433.; [225] R. Span, W. Wagner, A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and chemical Reference Data, 25 (6) (1996) 1509-1596.; [226] M. Shokouhi, G.A. Parsafar, The effect of steepness of soft-core square-well potential model on some fluid properties. Molecular Physics, 106 (1) (2008) 103-112.; [227] D. Ghie Chae, F.H. Ree, T. Ree, Radial distribution functions and equation of state of the hard-disk fluid, J. Chem. Phys, 50 (4) (1969) 1581-1589.; [228] D. Henderson, A simple equation of state for hard discs, Molecular Physics, 30 (3) (1975) 971-972.; [229] A. Santos, M. López de Haro, S. Bravo Yuste, An accurate and simple equation of state for hard disks, J. Chem. Phys, 103 (11) (1995) 4622-4625.; [230] D.P. Fraser, M.J. Zuckerman, O.G. Mouritsen, Theory and simulations for hard-disk models of binary mixtures of molecules with internal degrees of freedom, Phys. Rev. A, 43 (12) (1991) 6642-6656.; [231] S. Luding, A. Santos. Molecular dynamics and theory for the contact values of the radial distribution functions of hard-disk fluid mixtures, J. Chem. Phys, 121 (17) (1995) 8458-8465.; [232] A. Santos, S.B. Yuste, M. López de Aro, V. Ogarko. Equation of state of polydisperse hard-disk mixtures in the high-density regime, Phys. Rew. E, 96 (2017) 0626031- 06260311.; [233] P.M. Ndiaye, C. Dariva, J.V. Oliveira, F.W. Tavares, Improving the SAFT-EoS by using an effective WCA segmaent diameter, Fluid Phase Equilib., 194-197 (2002) 531-539. [234] S. Beret, J.M. Prausnitz, Perturbed Hard-Chain Theory: An Equation of State for Fluids Containig Small or Large Molecules, AIChE J., 21 (1975) 1123-1132.; [235] C-H. Kim, P. Vimalchand, M.D. Donohue, S.I. Sandler, Local composition model for chainlike molecules: A new simplified version of the perturbed hard chain theory, AIChE J., 32 (10) (1986) 1726-1734.; [236] A. Galindo, P.J. Whitehead, G. Jackson, A.N. Burgess, Predicting the high-pressure phase equilibria of water + n-alkanes using a simplified SAFT theory with transferable intermolecular interaction parameters, J. chem. Phys., 100 (1996) 6781-6792.; [237] C.J. Sisco, M.I.L. Abutaqiya, F.M. Vargas, Cubi-Plus-Chain (CPC). I: A Statistical Association Fluid Theory-Based Chain Modification to the Cubic Equation of State for Large Nonpolar Molecules, Ind. Eng. Chem. Res., 58 (2019) 7341-7351.; [238] M.I.L. Abutaqiya, C.J. Sisco, Y. Khemka, M.A. Safa, E.F. Gholum, A.M. Rashed, R. Gharbi, S. Santhanagopalan, M. AL-Qahtani, E. AL-Kandari, Accurate Modeling of Asphatene Onset Pressure in Crude Oils Under Gas Injection Using Peng-Robinson Equation of State, Energy Fuels, 34 (2020) 4055-4070.; [239] D. Gonzalez, P. Gramin, P. Haldipur, M. Pietrobon, H. Zeng, Experimental study to understand formation damage due to asphaltene deposition in a deepwater field, SPWLA Formation Testing SIG, 2020 Weminar series.; [240] K.J. Leontaritis, G.A. Mansoori, T-S, Jiang, Asphaltene Deposition in Oil Recovery: A Survey of Field Experiences and Field Approaches, Proceeding of International Conference on Advanced Technologies (ICAT), IL, USA, 1986.; [241] H. Belhaj, H.A. Khalifeh, N. Al-Huraibi, Asphaltene Stability in Crude Oil during Production Process, J. Pet. Environ. Biotechnol., 4(3) (2013) 1-5.; [242] F. Gonzalez, Private Communication, 2021.; https://repositorio.unal.edu.co/handle/unal/79496; Universidad Nacional de Colombia; Repositorio Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  7. 7
    Academic Journal

    المصدر: Articles publicats en revistes (Enginyeria Química i Química Analítica)

    وصف الملف: 6 p.; application/pdf

    Relation: Reproducció del document publicat a: http://dx.doi.org/10.1103/PhysRevE.72.026704; Physical Review E, 2005, vol. 72, núm. 2, p. 026704-1-026704-6; http://dx.doi.org/10.1103/PhysRevE.72.026704; http://hdl.handle.net/2445/18683; 539773

  8. 8
  9. 9
    Academic Journal

    المصدر: Articles publicats en revistes (Física Quàntica i Astrofísica)

    وصف الملف: 4 p.; application/pdf

    Relation: Reproducció digital del document publicat en format paper, proporcionada per PROLA i http://dx.doi.org/10.1103/PhysRevA.47.R1601; Physical Review A, 1993, vol. 47, núm. 3, p. 1601-1604.; http://dx.doi.org/10.1103/PhysRevA.47.R1601; http://hdl.handle.net/2445/9549; 76010

  10. 10
  11. 11
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Dissertation/ Thesis
  15. 15
  16. 16
    Dissertation/ Thesis

    المساهمون: DEL NERO, Jordan, http://lattes.cnpq.br/5168545718455899

    وصف الملف: application/pdf

    Relation: SILVA, Shirsley Joany dos Santos da. Transporte eletrônico e quiralidade molecular: um estudo de dispositivos orgânicos em sistemas de dois terminais. 2010. 92 f. Dissertação (Mestrado) - Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Belém, 2010. Programa de Pós-Graduação em Física.; http://repositorio.ufpa.br/jspui/handle/2011/5063

  17. 17

    المؤلفون: Ramos Organillo, Estela

    المساهمون: Alarcón Waess, Olegario, Ruiz Estrada, Honorina

    المصدر: Benemérita Universidad Autónoma de Puebla
    BUAP
    Repositorio Institucional de Acceso Abierto RIAA-BUAP

    وصف الملف: application/pdf

  18. 18
    Dissertation/ Thesis

    المساهمون: DEL NERO, Jordan, http://lattes.cnpq.br/5168545718455899

    وصف الملف: application/pdf

    Relation: SILVA JÚNIOR, Carlos Alberto Brito da. Eletrônica molecular via método híbrido DFT/FGNE em anéis fenilas acoplados a eletrodos metálicos de nanotubos de carbono: a regra de conformação e quiralidade molecular. 2011. 106 f. Tese (Doutorado) - Universidade Federal do Pará, Instituto de Tecnologia, Belém, 2011. Programa de Pós-Graduação em Engenharia Elétrica.; http://repositorio.ufpa.br/jspui/handle/2011/2889

  19. 19
    Dissertation/ Thesis
  20. 20
    Dissertation/ Thesis