يعرض 1 - 20 نتائج من 150 نتيجة بحث عن '"Talero Sarmiento, Leonardo"', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Report

    المساهمون: Cárdenas Fontecha, Mauren 0001950200, Roa Prada, Sebastián 295523, Talero Sarmiento, Leonardo 31387, Roa Prada, Sebastián xXcp5HcAAAAJ, Cárdenas Fontecha, Mauren 0000-0001-8397-5679, Roa Prada, Sebastián 0000-0002-1079-9798, Talero Sarmiento, Leonardo 0000-0002-4129-9163, Roa Prada, Sebastián 24333336800, Roa Prada, Sebastián Sebastian_Roa-Prada, Talero Sarmiento, Leonardo Leonardo_Talero, Cárdenas Fontecha, Mauren mauren-slendy-cárdenas-fontecha, Roa Prada, Sebastián sebastián-roa-prada, Talero Sarmiento, Leonardo leonardo-talero, Talero Sarmiento, Leonardo leonardo-talero-sarmiento

    وصف الملف: application/pdf

    Relation: 1. Afoakwa, E. O. (2010). Chocolate Science and Technology. Wiley-Blackwell; 2. Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2008). Flavor Formation and Character in Cocoa and Chocolate: A Critical Review. Critical Reviews in Food Science and Nutrition, 48(9), 840-857.; 3. Agencia de Cooperación Internacional de Japón (JICA). (2017). Proyectos de mejora en la producción de cacao en Colombia. Bogotá: JICA.; 4. Beckett, S. T. (2011). Industrial Chocolate Manufacture and Use. Wiley-Blackwell; 5. Castaño, F. (2019). Evolución de las prácticas agrícolas en el cultivo del cacao. Journal of Agricultural Innovations, 15(1), 45-62.; 6. Federación Nacional de Cacaoteros (FEDECACAO). (2018). Impacto económico y social del cacao en Santander. Bogotá: FEDECACAO.; 7. Federación Nacional de Cacaoteros (FEDECACAO). (2020). Informe anual de producción de cacao. Bogotá: FEDECACAO.; 8. Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of Agricultural Innovations in Developing Countries: A Survey. Economic Development and Cultural Change, 33(2), 255-298.; 9. Fowler, M. S., & Coutel, F. (2017). Cocoa Beans: From Tree to Factory. In Beckett, S. T. (Ed.), Industrial Chocolate Manufacture and Use (5th ed., pp. 10-49). Wiley-Blackwell.; 11. Gálvez, A. B., & Zambrano, G. E. (2017). Técnicas tradicionales de secado de cacao en América Latina. Revista de Agricultura Tropical, 23(2), 123-135; 12. García, P., & López, M. (2015). Análisis de mercado del cacao fino y de aroma en Santander. Revista de Economía Agrícola, 8(1), 72-89; 13. Gutiérrez, M. (2016). Transmisión de conocimientos agrícolas en comunidades cacaoteras. Revista de Etnografía y Folklore, 14(2), 55-70.; 14. Hernández, J. (2015). Historia del cultivo de cacao en Santander. Revista de Historia Agraria, 10(1), 25-40; 15. Instituto Colombiano Agropecuario (ICA). (2016). Manual de prácticas agrícolas para el cultivo de cacao en Santander. Bogotá: ICA.; 16. Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press.; 17. Leeuwis, C., & Aarts, N. (2011). Rethinking Communication in Innovation Processes: Creating Space for Change in Complex Systems. Journal of Agricultural Education and Extension, 17(1), 21-36.; 18. López, J., & Ramírez, D. (2020). Métodos de transmisión de conocimientos en la agricultura moderna. Revista de Tecnología y Desarrollo Rural, 18(4), 80-95.; 19. Martínez, R. (2013). Historia del cacao en Colombia: De los indígenas a los colonizadores. Bogotá: Editorial Universitaria.; 20. Morales, H., Torres, J., & Rodríguez, L. (2013). Híbridos y clones de cacao: Mejoramiento genético para la resistencia a enfermedades. Journal of Agricultural Research, 11(4), 112-128; 21. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2019). Desafíos en la producción de cacao frente al cambio climático. Roma: FAO; 22. Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2021). Programas de capacitación y asistencia técnica en el cultivo de cacao. Roma: FAO.; 23. Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO). (2015). Informe sobre la Diversidad Cultural y el Desarrollo Sostenible. París: UNESCO.; 24. Pérez, L. (2018). Conocimientos tradicionales en el cultivo del cacao en Santander. Revista de Antropología, 22(3), 112-128.; 25. Pretty, J. (2008). Agricultural Sustainability: Concepts, Principles and Evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 447-465.; 26. Ramírez, J., López, A., & González, M. (2014). Caracterización agroecológica de los suelos cacaoteros en Santander. Revista de Agroecología, 12(2), 45-58.; 27. Rogers, E. M. (2003). Diffusion of Innovations (5th ed.). Free Press; 28. Salgado-Mora, C. (2017). Conservación de la biodiversidad en sistemas agroforestales de cacao. Revista Colombiana de Ecología, 19(3), 100-115.; 29. Schwan, R. F., & Fleet, G. H. (2014). Cocoa and Coffee Fermentations. CRC Press.; 30. Schwan, R. F., & Wheals, A. E. (2004). The Microbiology of Cocoa Fermentation and Its Role in Chocolate Quality. Critical Reviews in Food Science and Nutrition, 44(4), 205-221; 31. Wood, G. A. R., & Lass, R. A. (2008). Cocoa (4th ed.). Wiley-Blackwell; 32. World Bank. (2017). Agricultural Innovation Systems: An Investment Sourcebook. Washington, D.C.: World Bank.; https://apolo.unab.edu.co/en/persons/mauren-slendy-c%C3%A1rdenas-fontecha; http://hdl.handle.net/20.500.12749/27913; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Book
  8. 8
    Book
  9. 9
    Report

    المساهمون: Talero Sarmiento, Leonardo Hernán 0000031387, Escobar Rodríguez, Laura Yeraldin 0001653083, Talero Sarmiento, Leonardo Hernán 0000-0002-4129-9163, Escobar Rodríguez, Laura Yeraldin 0000-0003-3350-9113, Talero Sarmiento, Leonardo Hernán Leonardo_Talero, Grupo de Investigación Ingeniería Financiera - GIF, Grupo de Investigación Tecnologías de Información - GTI, Grupo de Investigaciones Clínicas, Talero Sarmiento, Leonardo Hernán leonardo-talero, Escobar Rodríguez, Laura Yeraldin laura-yeraldin-escobar-rodríguez

    وصف الملف: application/pdf

    Relation: http://hdl.handle.net/20.500.12749/21052; instname:Universidad Autónoma de Bucaramanga - UNAB; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  10. 10
    Academic Journal

    المؤلفون: Talero-Sarmiento, Leonardo1 (AUTHOR) ltalero@unab.edu.co, Roa-Prada, Sebastian2 (AUTHOR) sroa@unab.edu.co, Caicedo-Chacon, Luz3 (AUTHOR) lcaicedo@unisangil.edu.co, Gavanzo-Cardenas, Oscar4 (AUTHOR) formacion_cacao1@fedecacao.com.co

    المصدر: AgriEngineering. Jan2025, Vol. 7 Issue 1, p6. 38p.

    مصطلحات جغرافية: COLOMBIA

  11. 11
    Academic Journal
  12. 12
    Book

    المساهمون: Universidad Industrial de Santander, Colombia

    Relation: Proceedings INNODOCT/21. International Conference on Innovation, Documentation and Education; INNODOCT 2021; Octubre 27-Noviembre 01, 2021; Valencia, España; http://ocs.editorial.upv.es/index.php/INNODOCT/INN2021/paper/view/13383; urn:isbn:9788490483657; http://hdl.handle.net/10251/187957

  13. 13
    Dissertation/ Thesis

    المساهمون: Lamos Diaz, Henry, Granollers Saltiveri, Antoni, Talero Sarmiento, Leonardo Hernán 0000031387, Lamos Díaz, Henry 0000066125, Granollers Saltiveri, Antoni 0001518482, Talero Sarmiento, Leonardo Hernán yavg17sAAAAJ, Lamos Díaz, Henry es&oi=ao, Talero Sarmiento, Leonardo Hernán orcid:0000-0002-4129-9163, Talero Sarmiento, Leonardo Hernán 57195373615, Talero Sarmiento, Leonardo Hernán Leonardo-Talero?ev=hdr_xprf, Grupo de Investigación Tecnologías de Información - GTI, Talero Sarmiento, Leonardo Hernán leonardo-talero, Talero Sarmiento, Leonardo Hernán leonardo-talero-sarmiento

    جغرافية الموضوع: Santander (Colombia), UNAB Campus Bucaramanga

    Time: 1984-2023

    وصف الملف: application/pdf; application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

    Relation: Donald PF. Biodiversity Impacts of Some Agricultural Commodity Production Systems. Conservation Biology 2004;18:17–38. https://doi.org/10.1111/j.1523-1739.2004.01803.x.; Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 2012;151:53–9. https://doi.org/10.1016/j.biocon.2012.01.068.; Contreras Pedraza CA. Análisis de la cadena de valor del cacao en Colombia: generación de estrategias tecnológicas en operaciones de cosecha y poscosecha, organizativas, de capacidad instalada y de mercado. Universidad Nacional de Colombia, Facultad de Ingeniería 2017.; Vogel C, Mathé S, Geitzenauer M, Ndah HT, Sieber S, Bonatti M, et al. Stakeholders’ perceptions on sustainability transition pathways of the cocoa value chain towards improved livelihood of small-scale farming households in Cameroon. Int J Agric Sustain 2020;18:55–69. https://doi.org/10.1080/14735903.2019.1696156.; Departamento Nacional de Planeación. El Campo Colombiano: Un camino hacia el bienestar y la paz. Bogotá: DNP; 2015.; Vásquez-Barajas EF, García-Torres NE, Bastos-Osorio LM, Lázaro-Pacheco JM. Análisis económico del sector cacaotero en Norte de Santander, Colombia y a nivel internacional. REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN 2018;8:237. https://doi.org/10.19053/20278306.v8.n2.2018.7963.; Arvanitis KG, Symeonaki EG. Agriculture 4.0: The Role of Innovative Smart Technologies Towards Sustainable Farm Management. Open Agric J 2020;14:130–5. https://doi.org/10.2174/1874331502014010130.; López ID, Corrales JC. A Smart Farming Approach in Automatic Detection of Favorable Conditions for Planting and Crop Production in the Upper Basin of Cauca River. Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change, 2018, p. 223–33. https://doi.org/10.1007/978-3-319-70187-5_17.; Rose DC, Chilvers J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front Sustain Food Syst 2018;2:1–7. https://doi.org/10.3389/fsufs.2018.00087.; Barreto L, Amaral A. Smart Farming: Cyber Security Challenges. 2018 International Conference on Intelligent Systems (IS), IEEE; 2018, p. 870–6. https://doi.org/10.1109/IS.2018.8710531.; Bacco M, Berton A, Ferro E, Gennaro C, Gotta A, Matteoli S, et al. Smart farming: Opportunities, challenges and technology enablers. 2018 IoT Vertical and Topical Summit on Agriculture - Tuscany (IOT Tuscany), IEEE; 2018, p. 1–6. https://doi.org/10.1109/IOT-TUSCANY.2018.8373043.; Talero-Sarmiento LH, Parra-Sanchez DT, Lamos Diaz H. Opportunities and Barriers of Smart Farming Adoption by Farmers Based on a Systematic Literature Review. Proceedings INNODOCT/22. International Conference on Innovation, Documentation and Education, Valencia: Editorial Universitat Politècnica de València; 2023, p. 53–64. https://doi.org/10.4995/INN2022.2023.15746.; Elavarasan D, Vincent DR, Sharma V, Zomaya AY, Srinivasan K. Forecasting yield by integrating agrarian factors and machine learning models: A survey. Comput Electron Agric 2018;155:257–82. https://doi.org/10.1016/j.compag.2018.10.024.; MinAgricultura. Evaluaciones agropecuarias municipales 2016. Bogotá: 2016.; Dirección de Cadenas Agrícolas y Forestales. Cadena de cacao. Bogotá: 2019.; Dirección de Cadenas Agrícolas y Forestales. Cadena de Cacao. Bogotá D.C.: 2021.; Sánchez V, Zambrano JL, Iglesias C, Rodríguez E, Villalobos V, Díaz FJ, et al. La cadena de valor del cacao en América Latina y el Caribe. 1st ed. New York: Banco Interamericano de Desarrollo; 2019.; Oyekale A. Climate change induced occupational stress and reported morbidity among cocoa farmers in South-Western Nigeria. Annals of Agricultural and Environmental Medicine 2015;22:357–61. https://doi.org/10.5604/12321966.1152095.; Bhagat M, Kumar D, Kumar D. Role of Internet of Things (IoT) in Smart Farming: A Brief Survey. 2019 Devices for Integrated Circuit (DevIC), IEEE; 2019, p. 141–5. https://doi.org/10.1109/DEVIC.2019.8783800.; Khanna A, Kaur S. Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture. Comput Electron Agric 2019;157:218–31. https://doi.org/10.1016/j.compag.2018.12.039.; Kolipaka VRR. Predictive analytics using cross media features in precision farming. Int J Speech Technol 2020;23:57–69. https://doi.org/10.1007/s10772-020-09669-z.; Vijaya Saraswathi R, Nalluri S, Ramasubbareddy S, Govinda K, Swetha E. Brilliant Corp Yield Prediction Utilizing Internet of Things. Advances in Intelligent Systems and Computing 1079, 2020, p. 893–902. https://doi.org/10.1007/978-981-15-1097-7_75.; Wolfert S, Ge L, Verdouw C, Bogaardt M-J. Big Data in Smart Farming – A review. Agric Syst 2017;153:69–80. https://doi.org/10.1016/j.agsy.2017.01.023.; Shanthi DL. Smart Irrigation and Crop Yield Prediction Using Wireless Sensor Networks and Machine Learning. Communications in Computer and Information Science 2019;1037:443–52. https://doi.org/10.1007/978-981-13-9187-3_40.; Sana SS, Herrera-Vidal G, Acevedo-Chedid J. Collaborative Model on the Agro-Industrial Supply Chain of Cocoa. Cybern Syst 2017;48:325–47. https://doi.org/10.1080/01969722.2017.1285160.; Talero-Sarmiento L, Roa-Prada S, Caicedo-Chacon L, Gavanzo-Cardenas O. A Data-Driven Approach to Improve Cocoa Crop Establishment in Colombia: Insights and Agricultural Practice Recommendations from an Ensemble Machine Learning Model. AgriEngineering 2024;7:6. https://doi.org/10.3390/agriengineering7010006.; Caffaro F, Cavallo E. The Effects of Individual Variables, Farming System Characteristics and Perceived Barriers on Actual Use of Smart Farming Technologies: Evidence from the Piedmont Region, Northwestern Italy. Agriculture 2019;9:111. https://doi.org/10.3390/agriculture9050111.; Caffaro F, Cavallo E. Perceived Barriers to the Adoption of Smart Farming Technologies in Piedmont Region, Northwestern Italy: The Role of User and Farm Variables. International Mid-Term Conference of the Italian Association of Agricultural Engineering, 2020, p. 681–9. https://doi.org/10.1007/978-3-030-39299-4_74.; Pivoto D, Barham B, Waquil PD, Foguesatto CR, Corte VFD, Zhang D, et al. Factors influencing the adoption of smart farming by Brazilian grain farmers. International Food and Agribusiness Management Review 2019;22:571–88. https://doi.org/10.22434/IFAMR2018.0086.; Suebsombut P, Chernbumroong S, Sureephong P, Jaroenwanit P, Phuensane P, Sekhari A. Comparison of Smart Agriculture Literacy of Farmers in Thailand. 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), IEEE; 2020, p. 242–5. https://doi.org/10.1109/ECTIDAMTNCON48261.2020.9090695.; Van Es H, Woodard J. Innovation in Agriculture and Food Systems in the Digital Age. THE GLOBAL INNOVATION INDEX 2017. 1st ed., 2017, p. 97–104.; Eastwood CR, Renwick A. Innovation Uncertainty Impacts the Adoption of Smarter Farming Approaches. Front Sustain Food Syst 2020;4. https://doi.org/10.3389/fsufs.2020.00024.; Andrieu N, Howland F, Acosta-Alba I, le Coq J-F, Osorio-Garcia AM, Martinez-Baron D, et al. Co-designing Climate-Smart Farming Systems With Local Stakeholders: A Methodological Framework for Achieving Large-Scale Change. Front Sustain Food Syst 2019;3. https://doi.org/10.3389/fsufs.2019.00037.; Klerkx L, Jakku E, Labarthe P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences 2019;90–91:100315. https://doi.org/10.1016/j.njas.2019.100315.; FAO. Developing sustainable food value chains: guilding principles. 1st ed. Rome: FAO Publications; 2014.; United Nations. United Nations Transforming Our World: the 2030 Agenda for Sustainable Development. A/RES/70/1. 2015.; Akbar H, M K, S N, A S. Erosion Prediction and Effort Management in Krueng Seulimum Watershed, Aceh Province. J Earth Sci Clim Change 2018;09:1–5. https://doi.org/10.4172/2157-7617.1000478.; Ziemski S. The typology of scientific research. Zeitschrift Für Allgemeine Wissenschaftstheorie 1975;6:276–91. https://doi.org/10.1007/BF01800790.; Piatetsky-Shapiro G. Knowledge Discovery in Databases. 1st ed. American Association for Artificial Intelligence; 1991.; Fayyad U. Knowledge discovery in databases: An overview. In: Lavrač N, Džeroski S, editors. Inductive Logic Programming, Springer; 1997, p. 1–16. https://doi.org/10.1007/3540635149_30.; Aggarwal CC. Data Mining. Cham: Springer International Publishing; 2015. https://doi.org/10.1007/978-3-319-14142-8.; Ministerio de Tecnologías de la Información y las comunicaciones. Datos abiertos. Datos Abiertos 2021:1.; Ministerio de Agricultura y Desarrollo Rural. AgroNet. Red de Información y Comunicación Del Sector Agropecuario Colombiano 2021:1.; Departamento Administrativo Nacional de Estadística - DANE. Sistema de información de precios SIPSA. Sistema de Información de Precios SIPSA 2021:1.; NASA. The Power Project. NASA Prediction Of Worldwide Energy Resources 2020:1.; NASA. Open NASA. Open NASA 2021:1.; The International Cocoa Organization (ICCO). ICCO. Statistics (Ber) 2021:1.; Hillier FS, Lieberman G. Introduction to Operations Research. 7th ed. McGraw-Hill; 2001.; Kersebaum KC, Wallor E. Process-Based Modelling of Soil–Crop Interactions for Site-Specific Decision Support in Crop Management, 2023. https://doi.org/10.1007/978-3-031-15258-0_2.; Choquet P, Gabrielle B, Chalhoub M, Michelin J, Sauzet O, Scammacca O, et al. Comparison of empirical and process-based modelling to quantify soil-supported ecosystem services on the Saclay plateau (France). Ecosyst Serv 2021;50. https://doi.org/10.1016/j.ecoser.2021.101332.; INFORMS. Mathematical Programming. Glossary 2020:1. https://glossary.informs.org/ver2/mpgwiki/index.php?title=Extra:Mathematical_programming.; Higle JL, Sen S. Two Stage Stochastic Linear Programs. Stochastic Decomposition. Nonconvex Optimization and Its Applications. 8th ed., Boston, MA: 1996, p. 1–33. https://doi.org/10.1007/978-1-4615-4115-8_1.; Sharp H, Preece J, Rogers Y. Interaction Design: Beyond Human-Computer Interaction. 5th ed. Indianapolis: John Wilei & Sons Inc.; 2019.; Usability. Personas %7C Usability.gov. Methods 2020:1–1. https://www.usability.gov/how-to-and-tools/methods/personas.html (accessed August 26, 2022).; Granollers T. user profiles, personas technique %7C Curso de Interacción Persona-Ordenador. Curso de Interacción Persona-Ordenador 2014:1–1. https://mpiua.invid.udl.cat/perfil-de-usuario-tecnica-personas/ (accessed August 27, 2022).; Nur T, Hidayatno A. Literature Review of a Multi Actor Analysis for Developing a Sustainable Agriculture Supply Chain (Case Study of Cocoa). ICITM 2020 - 2020 9th International Conference on Industrial Technology and Management, 2020. https://doi.org/10.1109/ICITM48982.2020.9080381.; UNCTAD. Cocoa Industry: Integrating Small Farmers into the Global Value Chain. New York: United Nations Conference on Trade and Development; 2016.; Asir M, Darma R, Mahyuddin, Arsyad M. Study on stakeholders position and role in supply chain of cocoa commodities. International Journal of Supply Chain Management 2019;8.; Sporchia F, Taherzadeh O, Caro D. Stimulating environmental degradation: A global study of resource use in cocoa, coffee, tea and tobacco supply chains. Current Research in Environmental Sustainability 2021;3:100029. https://doi.org/10.1016/j.crsust.2021.100029.; Keller J, Jung M, Lasch R. Sustainability Governance: Insights from a Cocoa Supply Chain. Sustainability (Switzerland) 2022;14. https://doi.org/10.3390/su141710763.; Lenou Nkouedjo L, Mathe S, Fon DE, Geitzenauer M, Awah Manga A. Cocoa marketing chain in developing countries: How do formal-informal linkages ensure its sustainability in Cameroon? Geoforum 2020;117. https://doi.org/10.1016/j.geoforum.2020.09.005.; Naranjo-Merino C, Ortíz-Rodriguez O, Villamizar-G R. Assessing Green and Blue Water Footprints in the Supply Chain of Cocoa Production: A Case Study in the Northeast of Colombia. Sustainability 2017;10:38. https://doi.org/10.3390/su10010038.; Parra-Paitan C, Meyfroidt P, Verburg PH, zu Ermgassen EKHJ. Deforestation and climate risk hotspots in the global cocoa value chain. Environ Sci Policy 2024;158:103796. https://doi.org/10.1016/j.envsci.2024.103796.; Avadí A. Environmental assessment of the Ecuadorian cocoa value chain with statistics-based LCA. International Journal of Life Cycle Assessment 2023. https://doi.org/10.1007/s11367-023-02142-4.; Martins FP, Batalhão ACS, Ahokas M, Liboni Amui LB, Cezarino LO. Rethinking sustainability in cocoa supply chain in light of SDG disclosure. Sustainability Accounting, Management and Policy Journal 2023;14. https://doi.org/10.1108/SAMPJ-03-2022-0132.; Kuhn M, Tennhardt L, Lazzarini GA. Gender Inequality in the Cocoa Supply Chain: Evidence from Smallholder Production in Ecuador and Uganda. World Development Sustainability 2023;2. https://doi.org/10.1016/j.wds.2022.100034.; Busquet M, Bosma N, Hummels H. A multidimensional perspective on child labor in the value chain: The case of the cocoa value chain in West Africa. World Dev 2021;146. https://doi.org/10.1016/j.worlddev.2021.105601.; Ramírez-Gómez CJ, Turner JA. Scenarios to promote territorial innovation systems in agri-food value chains: case of cocoa in Colombia. Journal of Agricultural Education and Extension 2023. https://doi.org/10.1080/1389224X.2023.2223534.; Talero-Sarmiento LH, Parra-Sanchez DT, Lamos-Diaz H. A Bibliometric Analysis of Computational and Mathematical Techniques in the Cocoa Sustainable Food Value Chain 2023:1–61. https://doi.org/10.2139/ssrn.4508682.; Beg MS, Ahmad S, Jan K, Bashir K. Status, supply chain and processing of cocoa - A review. Trends Food Sci Technol 2017;66:108–16. https://doi.org/10.1016/j.tifs.2017.06.007.; Nasser F, Maguire-Rajpaul VA, Dumenu WK, Wong GY. Climate-Smart Cocoa in Ghana: How Ecological Modernisation Discourse Risks Side-Lining Cocoa Smallholders. Front Sustain Food Syst 2020;4. https://doi.org/10.3389/fsufs.2020.00073.; Coulibaly SK, Erbao C. An empirical analysis of the determinants of cocoa production in Cote d’Ivoire. J Econ Struct 2019;8:5. https://doi.org/10.1186/s40008-019-0135-5.; Avellán T, Gremillion P. Constructed wetlands for resource recovery in developing countries. Renewable and Sustainable Energy Reviews 2019;99:42–57. https://doi.org/10.1016/j.rser.2018.09.024.; Postma JA, Hecht VL, Hikosaka K, Nord EA, Pons TL, Poorter H. Dividing the pie: A quantitative review on plant density responses. Plant Cell Environ 2021;44:1072–94. https://doi.org/10.1111/pce.13968.; Food and Agriculture Organization of the United Nations - FAO. Cocoa producing countries 2024. Cocoa Stats 2023:1–1. https://worldpopulationreview.com/country-rankings/cocoa-producing-countries (accessed February 16, 2024).; Escobar S, Santander M, Useche P, Contreras C, Rodríguez J. Aligning strategic objectives with research and development activities in a soft commodity sector: A technological plan for colombian cocoa producers. Agriculture (Switzerland) 2020;10. https://doi.org/10.3390/agriculture10050141.; Fernández-Niño M, Rodríguez-Cubillos MJ, Herrera-Rocha F, Anzola JM, Cepeda-Hernández ML, Aguirre Mejía JL, et al. Dissecting industrial fermentations of fine flavour cocoa through metagenomic analysis. Sci Rep 2021;11. https://doi.org/10.1038/s41598-021-88048-3.; Juby B, Minimol JS, Suma B, Santhoshkumar AV, Jiji J, Panchami PS. Drought mitigation in cocoa (Theobroma cacao L.) through developing tolerant hybrids. BMC Plant Biol 2021;21. https://doi.org/10.1186/s12870-021-03352-4.; Abdulai I, Vaast P, Hoffmann MP, Asare R, Jassogne L, Van Asten P, et al. Cocoa agroforestry is less resilient to sub-optimal and extreme climate than cocoa in full sun. Glob Chang Biol 2018;24. https://doi.org/10.1111/gcb.13885.; Acheampong K, Hadley P, Daymond A, Adu-Yeboah P. The Influence of Shade and Organic Fertilizer Treatments on the Physiology and Establishment of Theobroma cacao Clones. American Journal of Experimental Agriculture 2015;6. https://doi.org/10.9734/ajea/2015/15206.; Asare-Nuamah P, Botchway E. Understanding climate variability and change: analysis of temperature and rainfall across agroecological zones in Ghana. Heliyon 2019;5. https://doi.org/10.1016/j.heliyon.2019.e02654.; Läderach P, Martinez-Valle A, Schroth G, Castro N. Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. Clim Change 2013;119:841–54. https://doi.org/10.1007/s10584-013-0774-8.; Schroth G, Läderach P, Martinez-Valle AI, Bunn C, Jassogne L. Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Science of the Total Environment 2016;556:231–41. https://doi.org/10.1016/j.scitotenv.2016.03.024.; Balasimha D. Stomatal conductance and photosynthesis in cocoa trees. Plant Physiology and Biochemistry 1993;20.; Niether W, Armengot L, Andres C, Schneider M, Gerold G. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Ann For Sci 2018;75:38. https://doi.org/10.1007/s13595-018-0723-9.; Baligar VC, Bunce JA, Machado RCR, Elson MK. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings. Photosynthetica 2008;46. https://doi.org/10.1007/s11099-008-0035-7.; Lahive F, Hadley P, Daymond AJ. The impact of elevated CO2 and water deficit stress on growth and photosynthesis of juvenile cacao (Theobroma cacao L.). Photosynthetica 2018;56:911–20. https://doi.org/10.1007/s11099-017-0743-y.; Danso-Abbeam G, Baiyegunhi LJS. Does fertiliser use improve household welfare? Evidence from Ghana’s cocoa industry. Dev Pract 2019;29:170–82. https://doi.org/10.1080/09614524.2018.1526887.; Rajasekaran T, Anandamurugan S. Challenges and Applications of Wireless Sensor Networks in Smart Farming—A Survey, 2019, p. 353–61. https://doi.org/10.1007/978-981-13-1882-5_30.; Takyi SA, Amponsah O, Inkoom DKB, Azunre GA. Sustaining Ghana’s cocoa sector through environmentally smart agricultural practices: an assessment of the environmental impacts of cocoa production in Ghana. Africa Review 2019;11:172–89. https://doi.org/10.1080/09744053.2019.1635416.; Ertel W. Machine Learning and Data Mining. Introduction to Artificial Intelligence, 2017, p. 175–243. https://doi.org/10.1007/978-3-319-58487-4_8.; Gandhi N, Armstrong LJ. A review of the application of data mining techniques for decision making in agriculture. Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics, IC3I 2016, 2016. https://doi.org/10.1109/IC3I.2016.7917925.; Tantalaki N, Souravlas S, Roumeliotis M. Data-Driven Decision Making in Precision Agriculture: The Rise of Big Data in Agricultural Systems. Journal of Agricultural & Food Information 2019;20:344–80. https://doi.org/10.1080/10496505.2019.1638264.; Sen S. Stochastic Programming. Encyclopedia of Operations Research and Management Science, Boston, MA: Springer US; 2013, p. 1486–97. https://doi.org/10.1007/978-1-4419-1153-7_1005.; Brooks RJ, Tobias AM. Choosing the best model: Level of detail, complexity, and model performance. Math Comput Model 1996;24:1–14. https://doi.org/10.1016/0895-7177(96)00103-3.; Pilcher N, Cortazzi M. “Qualitative” and “quantitative” methods and approaches across subject fields: implications for research values, assumptions, and practices. Qual Quant 2024;58. https://doi.org/10.1007/s11135-023-01734-4.; Jeyakumar V, Rubinov A, editors. Continuous Optimization: Current Trends and Modern Applications. vol. 99. Boston, MA: Springer US; 2005. https://doi.org/10.1007/b137941.; Lin TT, Hsieh C-Shiao. A decision analysis for the dynamic crop rotation model with Markov process’s concept. 2013 IEEE International Conference on Industrial Engineering and Engineering Management, IEEE; 2013, p. 159–63. https://doi.org/10.1109/IEEM.2013.6962395.; Parker RG, Rardin RL. Introduction to Discrete Optimization. Discrete Optimization, Elsevier; 1988, p. 1–10. https://doi.org/10.1016/B978-0-12-545075-1.50006-7.; Lee J. A First Course in Combinatorial Optimization. Cambridge University Press; 2004. https://doi.org/10.1017/CBO9780511616655.; Birge JR, Louveaux F. Introduction to Stochastic Programming. New York, NY: Springer New York; 2011. https://doi.org/10.1007/978-1-4614-0237-4.; Taha HA. Operations Research: An introduction. 8th ed. Person; 2007.; Shapiro A, Dentcheva D, Ruszczyński A. Lectures on Stochastic Programming. 1st ed. Philadelphia: Society for Industrial and Applied Mathematics; 2009. https://doi.org/10.1137/1.9780898718751.; Pan H, Chen Z. Crop Growth Modeling and Yield Forecasting, 2021. https://doi.org/10.1007/978-3-030-66387-2_11.; Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, et al. Brief history of agricultural systems modeling. Agric Syst 2017;155. https://doi.org/10.1016/j.agsy.2016.05.014.; Akhavizadegan F, Ansarifar J, Wang L, Huber I, Archontoulis S V. A time-dependent parameter estimation framework for crop modeling. Sci Rep 2021;11. https://doi.org/10.1038/s41598-021-90835-x.; Müller C, Elliott J, Kelly D, Arneth A, Balkovic J, Ciais P, et al. The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Sci Data 2019;6. https://doi.org/10.1038/s41597-019-0023-8.; Marcelis LFM, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops: A review. Sci Hortic 1998;74. https://doi.org/10.1016/S0304-4238(98)00083-1.; Pasley H, Brown H, Holzworth D, Whish J, Bell L, Huth N. How to build a crop model. A review. Agron Sustain Dev 2023;43. https://doi.org/10.1007/s13593-022-00854-9.; JIANG R, WANG T tong, SHAO J, GUO S, ZHU W, YU Y jun, et al. Modeling the biomass of energy crops: Descriptions, strengths and prospective. J Integr Agric 2017;16. https://doi.org/10.1016/S2095-3119(16)61592-7.; GUROBI Optimization. Mathematical Optimization: Make Better Business Decisions. Mathematical Optimization: Make Better Business Decisions 2020:1. https://www.gurobi.com/resources/mathematical-optimization-web-page/#:~:text=Mathematical Optimization, also known as,of available resources and data.; Luenberger DG, Ye Y. Linear and Nonlinear Programming. vol. 228. Cham: Springer International Publishing; 2016. https://doi.org/10.1007/978-3-319-18842-3.; Association for Computing Machinery. Computer Classification System. Theory of Computation: Mathematical Optimization 2020:1. https://dl.acm.org/ccs.; Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Science (1979) 1983;220:671–80. https://doi.org/10.1126/science.220.4598.671.; Vikhar PA. Evolutionary algorithms: A critical review and its future prospects. 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), IEEE; 2016, p. 261–5. https://doi.org/10.1109/ICGTSPICC.2016.7955308.; Glover F. Future paths for integer programming and links to artificial intelligence. Comput Oper Res 1986;13:533–49. https://doi.org/10.1016/0305-0548(86)90048-1.; Neumann F, Wegener I. Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor Comput Sci 2007;378:32–40. https://doi.org/10.1016/j.tcs.2006.11.002.; Neumann F, Wegener I. Randomized Local Search, Evolutionary Algorithms, and the Minimum Spanning Tree Problem. Genetic and Evolutionary Computation – GECCO 2004, 2004, p. 713–24. https://doi.org/10.1007/978-3-540-24854-5_73.; Hu TC, Kahng AB. Linear and Integer Programming Made Easy. Cham: Springer International Publishing; 2016. https://doi.org/10.1007/978-3-319-24001-5.; Ramana M V., Pardalos PM. Semidefinite Programming. Interior Point Methods of Mathematical Programming. 5th ed., Boston: 1996, p. 369–98. https://doi.org/10.1007/978-1-4613-3449-1_9.; Vandenberghe L, Boyd S. Semidefinite Programming. SIAM Review 1996;38:49–95. https://doi.org/10.1137/1038003.; Nesterov Y, Nemirovskii A. Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics; 1994. https://doi.org/10.1137/1.9781611970791.; Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press; 2004. https://doi.org/10.1017/CBO9780511804441.; Frank M, Wolfe P. An algorithm for quadratic programming. Naval Research Logistics Quarterly 1956;3:95–110. https://doi.org/10.1002/nav.3800030109.; You F. Northwestern University Process Optimization Open Textbook: Quadratic programming 2020:1.; Agrawal A, Boyd S. Disciplined quasiconvex programming. Optim Lett 2020;14:1643–57. https://doi.org/10.1007/s11590-020-01561-8.; Fabbri G, Gozzi F, Święch A. Stochastic Optimal Control in Infinite Dimension. vol. 82. Cham: Springer International Publishing; 2017. https://doi.org/10.1007/978-3-319-53067-3.; Strekalovsky AS. On Nonconvex Optimization Problems with D.C. Equality and Inequality Constraints. IFAC-PapersOnLine 2018;51:895–900. https://doi.org/10.1016/j.ifacol.2018.11.431.; Kuhn HW, Tucker AW. Nonlinear Programming. In: University of California Press, editor. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA: 1951, p. 481–92.; Darwish A. Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications. Future Computing and Informatics Journal 2018;3:231–46. https://doi.org/10.1016/j.fcij.2018.06.001.; Fan X, Sayers W, Zhang S, Han Z, Ren L, Chizari H. Review and Classification of Bio-inspired Algorithms and Their Applications. J Bionic Eng 2020;17:611–31. https://doi.org/10.1007/s42235-020-0049-9.; Powell WB. A unified framework for stochastic optimization. Eur J Oper Res 2019;275:795–821. https://doi.org/10.1016/j.ejor.2018.07.014.; Marquez J, Talero-Sarmiento LH, Lamos H. Multistage Stochastic Programming to Support Water Allocation Decision-Making Process in Agriculture: A Literature Review. IOCAG 2022, Basel Switzerland: MDPI; 2022, p. 26. https://doi.org/10.3390/IOCAG2022-12307.; Robers PD, Ben-Israel A. Interval Programming. New Approach to Linear Programming with Applications to Chemical Engineering Problems. Industrial & Engineering Chemistry Process Design and Development 1969;8:496–501. https://doi.org/10.1021/i260032a011.; Bellman RE, Zadeh LA. Decision-making in a Fuzzy Environment. Manage Sci 1970;17. https://doi.org/10.1142/9789812819789_0004.; Dantzig GB. Linear Programming under Uncertainty. Manage Sci 1955;1:197–206. https://doi.org/10.1287/mnsc.1.3-4.197.; Dantzig GB, Wolfe P. Decomposition Principle for Linear Programs. Oper Res 1960;8:101–11. https://doi.org/10.1287/opre.8.1.101.; Talero-Sarmiento L, Marquez J, Lamos H. A roadmap to solve two-stage stochastic problems implementing scenario reduction for agricultural production planning under uncertainty. IX Congreso Internacional Industria y Organizaciones, Bogotá, Colombia: 2022.; Ashayerinasab HA, Nehi HM, Allahdadi M. Solving the interval linear programming problem: A new algorithm for a general case. Expert Syst Appl 2018;93:39–49. https://doi.org/10.1016/j.eswa.2017.10.020.; Kumar PS. Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set. International Journal of System Assurance Engineering and Management 2020;11:189–222. https://doi.org/10.1007/s13198-019-00941-3.; Zhang C, Li X, Guo P, Huo Z. An improved interval-based fuzzy credibility-constrained programming approach for supporting optimal irrigation water management under uncertainty. Agric Water Manag 2020;238:106185. https://doi.org/10.1016/j.agwat.2020.106185.; Mendova EA. Chance constrained stochastic programming for integrated services network management. Ann Oper Res 1998;81:213–29. https://doi.org/10.1023/a:1018901022726.; Carpentier P, Chancelier J-P, Cohen G, De Lara M. Stochastic Multi-Stage Optimization. vol. 75. Cham: Springer International Publishing; 2015. https://doi.org/10.1007/978-3-319-18138-7.; Ji L, Zhang B, Huang G, Lu Y. Multi-stage stochastic fuzzy random programming for food-water-energy nexus management under uncertainties. Resour Conserv Recycl 2020;155. https://doi.org/10.1016/j.resconrec.2019.104665.; Suo MQ, Li YP, Huang GH. An inventory-theory-based interval-parameter two-stage stochastic programming model for water resources management. Http://DxDoiOrg/101080/0305215X2010528412 2011;43:999–1018. https://doi.org/10.1080/0305215X.2010.528412.; Liu J, Li YP, Huang GH, Zeng XT. A dual-interval fixed-mix stochastic programming method for water resources management under uncertainty. Resour Conserv Recycl 2014;88:50–66. https://doi.org/10.1016/j.resconrec.2014.04.010.; Wojtkowski PA, Jordan CF, Cubbage FW. Bioeconomic modeling in agroforestry: a rubber-cacao example. Agroforestry Systems 1991;14. https://doi.org/10.1007/BF00045731.; Van Noordwijk M, Lusiana B. WaNulCAS, a model of water, nutrient and light capture in agroforestry systems. Agroforestry Systems, vol. 43, 1998. https://doi.org/10.1023/a:1026417120254.; Khasanah N, van Noordwijk M, Slingerland M, Sofiyudin M, Stomph D, Migeon AF, et al. Oil Palm Agroforestry Can Achieve Economic and Environmental Gains as Indicated by Multifunctional Land Equivalent Ratios. Front Sustain Food Syst 2020;3. https://doi.org/10.3389/fsufs.2019.00122.; Mialet-Serra I, Dauzat J, Auclair D. Using plant architectural models for estimation of radiation transfer in a coconut-based agroforestry system. Agroforestry Systems, vol. 53, 2001. https://doi.org/10.1023/A:1013320419289.; Wilson LRM, Cryer NC, Haughey E. Simulation of the effect of rainfall on farm-level cocoa yield using a delayed differential equation model. Sci Hortic 2019;253:371–5. https://doi.org/10.1016/j.scienta.2019.04.016.; Black E, Pinnington E, Wainwright C, Lahive F, Quaife T, Allan RP, et al. Cocoa plant productivity in West Africa under climate change: A modelling and experimental study. Environmental Research Letters 2020;16. https://doi.org/10.1088/1748-9326/abc3f3.; Zuidema PA, Leffelaar PA, Gerritsma W, Mommer L, Anten NPR. A physiological production model for cocoa (Theobroma cacao): Model presentation, validation and application. Agric Syst 2005;84:195–225. https://doi.org/10.1016/j.agsy.2004.06.015.; Matitschka G, Liebig H-P. Development of summary models from SUCROS (simple and universal crop growth simulator) by regression analysis - estimation of grossphotosynthesis. Acta Hortic 1996:119–26. https://doi.org/10.17660/ActaHortic.1996.417.14.; Zhao C, Liu B, Xiao L, Hoogenboom G, Boote KJ, Kassie BT, et al. A SIMPLE crop model. European Journal of Agronomy 2019;104:97–106. https://doi.org/10.1016/j.eja.2019.01.009.; Tosto A, Morales A, Rahn E, Evers JB, Zuidema PA, Anten NPR. Simulating cocoa production: A review of modelling approaches and gaps. Agric Syst 2023;206. https://doi.org/10.1016/j.agsy.2023.103614.; Lopez-Jimenez J, Vande Wouwer A, Quijano N. Dynamic Modeling of Crop–Soil Systems to Design Monitoring and Automatic Irrigation Processes: A Review with Worked Examples. Water (Switzerland) 2022;14. https://doi.org/10.3390/w14060889.; Ahmed M, Ahmad S, Raza MA, Kumar U, Ansar M, Shah GA, et al. Models Calibration and Evaluation. Systems Modeling, 2020. https://doi.org/10.1007/978-981-15-4728-7_5.; Parra-Sánchez DT, Talero-Sarmiento LH. Digital transformation in small and medium enterprises: a scientometric analysis. Digital Transformation and Society 2023. https://doi.org/10.1108/DTS-06-2023-0048.; Parra DT, Talero-Sarmiento LH, Ortiz JD, Guerrero CD. Technology readiness for IoT adoption in Colombian SMEs. Iberian Conference on Information Systems and Technologies, CISTI, 2021. https://doi.org/10.23919/CISTI52073.2021.9476499.; Parra-Sánchez DT, Talero-Sarmiento LH, Guerrero CD. Assessment of ICT policies for digital transformation in Colombia: technology readiness for IoT adoption in SMEs in the trading sector. Digital Policy, Regulation and Governance 2021;23. https://doi.org/10.1108/DPRG-09-2020-0120.; Parra-Sánchez DT, Talero-Sarmiento LH, Ortíz-Cuadros JD, Guerrero CD. Chief Information Officer’s Role for IoT-based Digital Transformation in Colombian SMEs. Revista Colombiana de Computacion 2022;23. https://doi.org/10.29375/25392115.4607.; Sott MK, Furstenau LB, Kipper LM, Giraldo FD, Lopez-Robles JR, Cobo MJ, et al. Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access 2020;8:149854–67. https://doi.org/10.1109/ACCESS.2020.3016325.; van der Burg S, Bogaardt M-J, Wolfert S. Ethics of smart farming: Current questions and directions for responsible innovation towards the future. NJAS - Wageningen Journal of Life Sciences 2019;90–91:100289. https://doi.org/10.1016/j.njas.2019.01.001.; Lezoche M, Hernandez JE, Alemany Díaz M del ME, Panetto H, Kacprzyk J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput Ind 2020;117:103187. https://doi.org/10.1016/j.compind.2020.103187.; Saiz-Rubio V, Rovira-Más F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020;10:207. https://doi.org/10.3390/agronomy10020207.; Eweoya I, Okuboyejo SR, Odetunmibi OA, Odusote BO. An empirical investigation of acceptance, adoption and the use of E-agriculture in Nigeria. Heliyon 2021;7. https://doi.org/10.1016/j.heliyon.2021.e07588.; Ingram J, Maye D, Bailye C, Barnes A, Bear C, Bell M, et al. What are the priority research questions for digital agriculture? Land Use Policy 2022;114. https://doi.org/10.1016/j.landusepol.2021.105962.; Moysiadis V, Sarigiannidis P, Vitsas V, Khelifi A. Smart Farming in Europe. Comput Sci Rev 2021;39. https://doi.org/10.1016/j.cosrev.2020.100345.; Fraser A. ‘You can’t eat data’?: Moving beyond the misconfigured innovations of smart farming. J Rural Stud 2022;91. https://doi.org/10.1016/j.jrurstud.2021.06.010.; Triantafyllou A, Sarigiannidis P, Bibi S. Precision agriculture: A remote sensing monitoring system architecture. Information (Switzerland) 2019;10. https://doi.org/10.3390/info10110348.; Ali A, Hussain T, Tantashutikun N, Hussain N, Cocetta G. Application of Smart Techniques, Internet of Things and Data Mining for Resource Use Efficient and Sustainable Crop Production. Agriculture (Switzerland) 2023;13. https://doi.org/10.3390/agriculture13020397.; Walter A, Finger R, Huber R, Buchmann N. Opinion: Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences 2017;114:6148–50. https://doi.org/10.1073/pnas.1707462114.; Lioutas ED, Charatsari C, La Rocca G, De Rosa M. Key questions on the use of big data in farming: An activity theory approach. NJAS - Wageningen Journal of Life Sciences 2019;90–91:100297. https://doi.org/10.1016/j.njas.2019.04.003.; FAO. e-Agriculture Newsletter No.1. 2018.; ITU. Resolution 200: Connect 2030 Agenda for global telecommunication/information and communication technology, including broadband, for sustainable development. Dubai: 2018.; ITU. Resolution 71: Strategic plan for the Union for 2020-2023. Dibai: 2018.; Fathallah K, Abid MA, Hadj-Alouane N Ben. Enhancing energy saving in smart farming through aggregation and partition aware IOT routing protocol. Sensors (Switzerland) 2020;20. https://doi.org/10.3390/s20102760.; Rogers EM. Diffusion of Innovations. Third Edit. New York: The Free Press; 1983.; Venkatesh, Morris, Davis, Davis. User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly 2003;27:425. https://doi.org/10.2307/30036540.; Davis FD. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly 1989;13:319–40.; Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process 1991;50. https://doi.org/10.1016/0749-5978(91)90020-T.; Schunk DH, DiBenedetto MK. Motivation and social cognitive theory. Contemp Educ Psychol 2020;60. https://doi.org/10.1016/j.cedpsych.2019.101832.; Hall GE. The concerns-base adoption model: a developmental conceptualization of the adoption process within educational institutions. Annual Meeting of the American Educational Research Association 1974.; Bass FM. Comments on “A new product growth for model consumer durables.” Manage Sci 2004;50. https://doi.org/10.1287/mnsc.1040.0300.; L. G. Tornatzky, Fleischer M. The process of technology innovation. Technological Innovation 1990.; Villani V, Lotti G, Battilani N, Fantuzzi C. Survey on usability assessment for industrial user interfaces. IFAC-PapersOnLine, vol. 52, 2019. https://doi.org/10.1016/j.ifacol.2019.12.078.; Vlachogianni P, Tselios N. Perceived usability evaluation of educational technology using the System Usability Scale (SUS): A systematic review. Journal of Research on Technology in Education 2022;54. https://doi.org/10.1080/15391523.2020.1867938.; Giacomin J. What is human centred design? Design Journal 2014;17. https://doi.org/10.2752/175630614X14056185480186.; Holeman I, Kane D. Human-centered design for global health equity. Inf Technol Dev 2020;26. https://doi.org/10.1080/02681102.2019.1667289.; Peruzzini M, Carassai S, Pellicciari M. The Benefits of Human-centred Design in Industrial Practices: Re-design of Workstations in Pipe Industry. Procedia Manuf 2017;11. https://doi.org/10.1016/j.promfg.2017.07.251.; Goodman E, Kuniavsky M, Moed A. Observing the User Experience. Elsevier; 2012. https://doi.org/10.1016/C2010-0-64844-9.; Harrison R, Flood D, Duce D. Usability of mobile applications: literature review and rationale for a new usability model. J Interact Sci 2013;1. https://doi.org/10.1186/2194-0827-1-1.; Sari I, Winoto Tj H, . F, Wahyoedi S, Tirto Widjaja B. The Effect of Usability, Information Quality, and Service Interaction on E-Loyalty Mediated by E-Satisfaction on Hallobumil Application Users. KnE Social Sciences 2023. https://doi.org/10.18502/kss.v8i2.12765.; Pascual Almenara A, Humanes J, Granollers T. MPIu+aX, User-Centered Design methodology that empathizes with the user and generates a better accessible experience. (From theory to practice). XXIII International Conference on Human Computer Interaction, New York, NY, USA: ACM; 2023, p. 1–3. https://doi.org/10.1145/3612783.3612795.; Usability. User-Centered Design Process Map %7C Usability.gov. How to & Tools 2022. https://www.usability.gov/how-to-and-tools/resources/ucd-map.html (accessed August 26, 2022).; Molich R, Nielsen J. Improving a Human-Computer Dialogue. Commun ACM 1990;33. https://doi.org/10.1145/77481.77486.; Tognazzini B. Principios del diseño de interacción, de Bruce Tognazzini. Artículos de Galinus. Artículos 2022:1–1. http://galinus.com/es/articulos/principios-diseno-de-interaccion.html (accessed August 27, 2022).; Talero-Sarmiento L, Gonzalez-Capdevila M, Granollers A, Lamos-Diaz H, Pistili-Rodrigues K. Towards a Refined Heuristic Evaluation: Incorporating Hierarchical Analysis for Weighted Usability Assessment. Big Data and Cognitive Computing 2024;8:69. https://doi.org/10.3390/bdcc8060069.; Brooke J. SUS: A “Quick and Dirty” Usability Scale. Usability Evaluation In Industry, CRC Press; 1996. https://doi.org/10.1201/9781498710411-35.; Chin JP, Diehl VA, Norman KL. Development of an instrument measuring user satisfaction of the human-computer interface. Conference on Human Factors in Computing Systems - Proceedings, vol. Part F130202, 1988. https://doi.org/10.1145/57167.57203.; Kirakowski J, Cierlik B. Measuring the Usability of Web Sites. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 1998;42:424–8. https://doi.org/10.1177/154193129804200405.; Lewis JR. Psychometric evaluation of the post-study system usability questionnaire: the PSSUQ. Proceedings of the Human Factors Society, vol. 2, 1992. https://doi.org/10.1177/154193129203601617.; Rosenzweig E. Usability Inspection Methods. Successful User Experience: Strategies and Roadmaps, Elsevier; 2015, p. 115–30. https://doi.org/10.1016/B978-0-12-800985-7.00006-5.; Xie I, Matusiak KK. Interface design and evaluation. Discover Digital Libraries, Elsevier; 2016, p. 205–30. https://doi.org/10.1016/B978-0-12-417112-1.00007-7.; Hartson R, Pyla PS. Design Production. The UX Book, Elsevier; 2012, p. 333–57. https://doi.org/10.1016/B978-0-12-385241-0.00009-9.; Holtzblatt K, Beyer H. Principles of Contextual Inquiry. Contextual Design, Elsevier; 2017, p. 43–80. https://doi.org/10.1016/B978-0-12-800894-2.00003-X.; Müller A, Steinke J, Dorado H, Keller S, Jiménez D, Ortiz-Crespo B, et al. Challenges and opportunities for human-centered design in CGIAR. Agric Syst 2024;219:104005. https://doi.org/10.1016/j.agsy.2024.104005.; Nielsen J, Molich R. Heuristic evaluation of user interfaces. Proceedings of the SIGCHI conference on Human factors in computing systems Empowering people - CHI ’90, New York, New York, USA: ACM Press; 1990, p. 249–56. https://doi.org/10.1145/97243.97281.; Talavera JM, Tobón LE, Gómez JA, Culman MA, Aranda JM, Parra DT, et al. Review of IoT applications in agro-industrial and environmental fields. Comput Electron Agric 2017;142:283–97. https://doi.org/10.1016/j.compag.2017.09.015.; Quiñones D, Rusu C. How to develop usability heuristics: A systematic literature review. Comput Stand Interfaces 2017;53. https://doi.org/10.1016/j.csi.2017.03.009.; Paz F, Pow-Sang JA. A systematic mapping review of usability evaluation methods for software development process. International Journal of Software Engineering and Its Applications 2016;10. https://doi.org/10.14257/ijseia.2016.10.1.16.; Granollers T. Usability Evaluation with Heuristics, Beyond Nielsen’s List. ACHI 2018: The Eleventh International Conference on Advances in Computer-Human Interactions 2018.; Granollers T. Usability evaluation with heuristics. New proposal from integrating two trusted sources. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10918 LNCS, 2018. https://doi.org/10.1007/978-3-319-91797-9_28.; Bonastre L, Granollers T. A set of heuristics for user experience evaluation in E-commerce websites. ACHI 2014 - 7th International Conference on Advances in Computer-Human Interactions, 2014.; Costaguta R, García G, Granollers T. Proposal for a heuristic principle to evaluate interfaces of collaborative systems. XXIII International Conference on Human Computer Interaction, New York, NY, USA: ACM; 2023, p. 1–2. https://doi.org/10.1145/3612783.3612786.; Larriba R, Granollers T, Garrido JE. User Experience Study in the Development of Videogames. XXIII International Conference on Human Computer Interaction, New York, NY, USA: ACM; 2023, p. 1–3. https://doi.org/10.1145/3612783.3612799.; Capdevila M, Rodrigues K, Pascual A, Granollers T, Monné È. Whitepaper: Remote usability laboratory to perform user and expert evaluations. XXIII International Conference on Human Computer Interaction, New York, NY, USA: ACM; 2023, p. 1–9. https://doi.org/10.1145/3612783.3612804.; Ortiz-Rodríguez OO, Villamizar-Gallardo RA, Naranjo-Merino CA, García-Caceres RG, Castañeda-galvís MT. Carbon footprint of the colombian cocoa production. Engenharia Agrícola 2016;36:260–70. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n2p260-270/2016.; Konstantas A, Jeswani HK, Stamford L, Azapagic A. Environmental impacts of chocolate production and consumption in the UK. Food Research International 2018;106:1012–25. https://doi.org/10.1016/j.foodres.2018.02.042.; Castro-Nunez A, Charry A, Castro-Llanos F, Sylvester J, Bax V. Reducing deforestation through value chain interventions in countries emerging from conflict: The case of the Colombian cocoa sector. Applied Geography 2020;123. https://doi.org/10.1016/j.apgeog.2020.102280.; Ortiz-Rodriguez OO, Naranjo CA, García-Caceres RG, Villamizar-Gallardo RA. Water footprint assessment of the Colombian cocoa production. Revista Brasileira de Engenharia Agrícola e Ambiental 2015;19:823–8. https://doi.org/10.1590/1807-1929/agriambi.v19n9p823-828.; Niether W, Jacobi J, Blaser WJ, Andres C, Armengot L. Cocoa agroforestry systems versus monocultures: a multi-dimensional meta-analysis. Environmental Research Letters 2020;15:104085. https://doi.org/10.1088/1748-9326/abb053.; Al-Shammary AAG, Al-Shihmani LSS, Fernández-Gálvez J, Caballero-Calvo A. Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impacts on soil attributes. J Environ Manage 2024;364:121487. https://doi.org/10.1016/j.jenvman.2024.121487.; Vanuytrecht E, Raes D, Steduto P, Hsiao TC, Fereres E, Heng LK, et al. AquaCrop: FAO’s crop water productivity and yield response model. Environmental Modelling & Software 2014;62:351–60. https://doi.org/10.1016/j.envsoft.2014.08.005.; Ebrahimi HP, Schillo RS, Bronson K. Systematic Stakeholder Inclusion in Digital Agriculture: A Framework and Application to Canada. Sustainability 2021;13:6879. https://doi.org/10.3390/su13126879.; Osrof HY, Tan CL, Angappa G, Yeo SF, Tan KH. Adoption of smart farming technologies in field operations: A systematic review and future research agenda. Technol Soc 2023;75:102400. https://doi.org/10.1016/j.techsoc.2023.102400.; Ansell C, Sørensen E, Torfing J. Cocreating SDGs Through Experimentation and Prototyping. Co-Creation for Sustainability, 2022. https://doi.org/10.1108/978-1-80043-798-220220008.; Thomas RJ, O’Hare G, Coyle D. Understanding technology acceptance in smart agriculture: A systematic review of empirical research in crop production. Technol Forecast Soc Change 2023;189:122374. https://doi.org/10.1016/j.techfore.2023.122374.; Bull EM, van der Cruyssen L, Vágó S, Király G, Arbour T, van Dijk L. Designing for agricultural digital knowledge exchange: applying a user-centred design approach to understand the needs of users. The Journal of Agricultural Education and Extension 2024;30:43–68. https://doi.org/10.1080/1389224X.2022.2150663.; Igawa TK, de Toledo PM, Anjos LJS. Climate change could reduce and spatially reconfigure cocoa cultivation in the Brazilian Amazon by 2050. PLoS One 2022;17. https://doi.org/10.1371/journal.pone.0262729.; Métangbo D, Lucette A, Lhaur-Yaigaiba OA, Oulaï KG, Antoine K, Blaise YK, et al. Climate and Agriculture in Côte D’ivoire: Perception and Quantification of the Impact of Climate Change on Cocoa Production by 2050. International Journal of Environment and Climate Change 2023;13. https://doi.org/10.9734/ijecc/2023/v13i61832.; Gobernación de Santander. Santander siempre contigo y para el mundo. Plan de desarrollo 2020 - 2023. Bucaramanga: 2020.; Talero-Sarmiento LH, Weber G, Lamos-Diaz H, Parra-Sanchez DT. Colombian Cocoa Sector: Unveiling the Nexus between Emerging Technologies and Government Policies, Bucaramanga: INNODOCT; 2024, p. 153–63.; Chapagain R, Remenyi TA, Harris RMB, Mohammed CL, Huth N, Wallach D, et al. Decomposing crop model uncertainty: A systematic review. Field Crops Res 2022;279:108448. https://doi.org/10.1016/j.fcr.2022.108448.; Moriondo M, Ferrise R, Trombi G, Brilli L, Dibari C, Bindi M. Modelling olive trees and grapevines in a changing climate. Environmental Modelling & Software 2015;72:387–401. https://doi.org/10.1016/j.envsoft.2014.12.016.; Wimalasiri EM, Ariyachandra S, Jayawardhana A, Dharmasekara T, Jahanshiri E, Muttil N, et al. Process-Based Crop Models in Soil Research: A Bibliometric Analysis. Soil Syst 2023;7:43. https://doi.org/10.3390/soilsystems7020043.; White JW, Hoogenboom G, Kimball BA, Wall GW. Methodologies for simulating impacts of climate change on crop production. Field Crops Res 2011;124:357–68. https://doi.org/10.1016/j.fcr.2011.07.001.; Phuoc LH, Suliansyah I, Arlius F, Chaniago I, Xuan NTT, Quang P Van. Literature Review Crop Modeling and Introduction a Simple Crop Model. Journal of Applied Agricultural Science and Technology 2023;7:197–216. https://doi.org/10.55043/jaast.v7i3.123.; Romero Vergel AP, Camargo Rodriguez AV, Ramirez OD, Arenas Velilla PA, Gallego AM. A Crop Modelling Strategy to Improve Cacao Quality and Productivity. Plants 2022;11:157. https://doi.org/10.3390/plants11020157.; Donkor E, Adu-Bredu S, Jnr EMO, Andam-Akorful SA, Mohammed Y. Biomass Estimation Models for Cocoa (Theobroma cacao) Plantations in Ghana, West Africa. Open Journal of Applied Sciences 2023;13:1588–618. https://doi.org/10.4236/ojapps.2023.139126.; Lamos-Díaz H, Puentes-Garzón DE, Zarate-Caicedo DA. Comparison Between Machine Learning Models for Yield Forecast in Cocoa Crops in Santander, Colombia. Revista Facultad de Ingenieria 2020;29. https://doi.org/10.19053/01211129.v29.n54.2020.10853.; Khan AA, Chaudhari O, Chandra R. A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation. Expert Syst Appl 2024;244:122778. https://doi.org/10.1016/j.eswa.2023.122778.; Gnecco N, Terefe EM, Engelke S. Extremal Random Forests. J Am Stat Assoc 2024:1–14. https://doi.org/10.1080/01621459.2023.2300522.; Golden CE, Rothrock MJ, Mishra A. Comparison between random forest and gradient boosting machine methods for predicting Listeria spp. prevalence in the environment of pastured poultry farms. Food Research International 2019;122:47–55. https://doi.org/10.1016/j.foodres.2019.03.062.; Bentéjac C, Csörgő A, Martínez-Muñoz G. A comparative analysis of gradient boosting algorithms. Artif Intell Rev 2021;54:1937–67. https://doi.org/10.1007/s10462-020-09896-5.; van Erp S, Oberski DL, Mulder J. Shrinkage priors for Bayesian penalized regression. J Math Psychol 2019;89. https://doi.org/10.1016/j.jmp.2018.12.004.; James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning. vol. 103. New York, NY: Springer New York; 2013. https://doi.org/10.1007/978-1-4614-7138-7.; Perez M, Lopez-Yerena A, Vallverdú-Queralt A. Traceability, authenticity and sustainability of cocoa and chocolate products: a challenge for the chocolate industry. Crit Rev Food Sci Nutr 2020:1–16. https://doi.org/10.1080/10408398.2020.1819769.; Saltini R, Akkerman R, Frosch S. Optimizing chocolate production through traceability: A review of the influence of farming practices on cocoa bean quality. Food Control 2013;29:167–87. https://doi.org/10.1016/j.foodcont.2012.05.054.; Guirlanda CP, da Silva GG, Takahashi JA. Cocoa honey: Agro-industrial waste or underutilized cocoa by-product? Future Foods 2021;4:100061. https://doi.org/10.1016/j.fufo.2021.100061.; Ruesgas‐Ramón M, Suárez‐Quiroz ML, González‐Ríos O, Baréa B, Cazals G, Figueroa‐Espinoza MC, et al. Biomolecules extraction from coffee and cocoa by‐ and co‐products using deep eutectic solvents. J Sci Food Agric 2020;100:81–91. https://doi.org/10.1002/jsfa.9996.; Voora V, Bermúdez S, Larrea C. Global Market Report: Cocoa. JSTOR; 2019.; Kron R V, Gulay TA, Dolgopolova AF, Zakharov V V. Analysis and forecasting of the availability of sufficient personnel complexities of the digital economy mechanisms in the agrarian sector of the Stavropol territory. In: Kovalev I.V. Voroshilova A.A. BEA, editor. IOP Conf Ser Earth Environ Sci, vol. 315, Institute of Physics Publishing; 2019. https://doi.org/10.1088/1755-1315/315/3/032010.; Food and Agriculture Organization - FAO. Digital Technologies In Agriculture and Rural Areas: Briefing Paper. Rome: 2019.; Toom K. Indicators. The European Research Management Handbook, Elsevier; 2018, p. 213–30. https://doi.org/10.1016/B978-0-12-805059-0.00010-9.; Tan TYC, Lim XY, Yeo JHH, Lee SWH, Lai NM. The Health Effects of Chocolate and Cocoa: A Systematic Review. Nutrients 2021;13:2909. https://doi.org/10.3390/nu13092909.; Lamuela-Raventós RM, Romero-Pérez AI, Andrés-Lacueva C, Tornero A. Review: Health Effects of Cocoa Flavonoids. Food Science and Technology International 2005;11:159–76. https://doi.org/10.1177/1082013205054498.; Maskarinec G. Cancer Protective Properties of Cocoa: A Review of the Epidemiologic Evidence. Nutr Cancer 2009;61:573–9. https://doi.org/10.1080/01635580902825662.; Rimbach G, Melchin M, Moehring J, Wagner A. Polyphenols from Cocoa and Vascular Health—A Critical Review. Int J Mol Sci 2009;10:4290–309. https://doi.org/10.3390/ijms10104290.; Bauer SR, Ding EL, Smit LA. Cocoa Consumption, Cocoa Flavonoids, and Effects on Cardiovascular Risk Factors: An Evidence-Based Review. Curr Cardiovasc Risk Rep 2011;5:120–7. https://doi.org/10.1007/s12170-011-0157-5.; Kord-Varkaneh H, Ghaedi E, Nazary-Vanani A, Mohammadi H, Shab-Bidar S. Does cocoa/dark chocolate supplementation have favorable effect on body weight, body mass index and waist circumference? A systematic review, meta-analysis and dose-response of randomized clinical trials. Crit Rev Food Sci Nutr 2019;59:2349–62. https://doi.org/10.1080/10408398.2018.1451820.; Somarriba E, Peguero F, Cerda R, Orozco-Aguilar L, López-Sampson A, Leandro-Muñoz ME, et al. Rehabilitation and renovation of cocoa (Theobroma cacao L.) agroforestry systems. A review. Agron Sustain Dev 2021;41:64. https://doi.org/10.1007/s13593-021-00717-9.; Vásquez ZS, de Carvalho Neto DP, Pereira GVM, Vandenberghe LPS, de Oliveira PZ, Tiburcio PB, et al. Biotechnological approaches for cocoa waste management: A review. Waste Management 2019;90:72–83. https://doi.org/10.1016/j.wasman.2019.04.030.; Carr MK v., Lockwood G. The water relations and irrigation requirements of Cocoa ( Theobroma Cacao L.): A Review. Exp Agric 2011;47:653–76. https://doi.org/10.1017/S0014479711000421.; Wessel M, Quist-Wessel PMF. Cocoa production in West Africa, a review and analysis of recent developments. NJAS - Wageningen Journal of Life Sciences 2015;74–75:1–7. https://doi.org/10.1016/j.njas.2015.09.001.; Dzelagha BF, Ngwa NM, Nde Bup D. A Review of Cocoa Drying Technologies and the Effect on Bean Quality Parameters. Int J Food Sci 2020;2020:1–11. https://doi.org/10.1155/2020/8830127.; Lacerda MS, Leitão F. O coco verde no contexto da economia circular: uma revisão sistemática da literatura. Revista Em Agronegócio e Meio Ambiente 2021;14:1–16. https://doi.org/10.17765/2176-9168.2021v14n3e8092.; Aria M, Cuccurullo C. bibliometrix : An R-tool for comprehensive science mapping analysis. J Informetr 2017;11:959–75. https://doi.org/10.1016/j.joi.2017.08.007.; Webster J, Watson RT. Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Quarterly 2002;26:xiii--xxiii.; Marx W, Bornmann L, Barth A, Leydesdorff L. Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS). J Assoc Inf Sci Technol 2014;65. https://doi.org/10.1002/asi.23089.; McBratney A, Whelan B, Ancev T, Bouma J. Future directions of precision agriculture. Precis Agric, vol. 6, 2005. https://doi.org/10.1007/s11119-005-0681-8.; Robert PC. Precision agriculture: A challenge for crop nutrition management. Plant Soil 2002;247. https://doi.org/10.1023/A:1021171514148.; Bausch WC, Duke HR. Remote sensing of plant nitrogen status in corn. Transactions of the American Society of Agricultural Engineers 1996;39. https://doi.org/10.13031/2013.27665.; Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, et al. The DSSAT cropping system model. European Journal of Agronomy, vol. 18, 2003. https://doi.org/10.1016/S1161-0301(02)00107-7.; Mucherino A, Papajorgji PJ, Pardalos PM. Introduction to Data Mining, 2009. https://doi.org/10.1007/978-0-387-88615-2_1.; Wang N, Zhang N, Wang M. Wireless sensors in agriculture and food industry - Recent development and future perspective. Comput Electron Agric 2006;50. https://doi.org/10.1016/j.compag.2005.09.003.; Regattieri A, Gamberi M, Manzini R. Traceability of food products: General framework and experimental evidence. J Food Eng 2007;81. https://doi.org/10.1016/j.jfoodeng.2006.10.032.; Shapiro JF. Challenges of strategic supply chain planning and modeling. Comput Chem Eng, vol. 28, 2004. https://doi.org/10.1016/j.compchemeng.2003.09.013.; Supply Chain Management: Strategy, Planning, and Operation. International Journal of Quality & Reliability Management 2003;20. https://doi.org/10.1108/02656710310461350.; Martens H, Martens M. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual Prefer 2000;11:5–16. https://doi.org/10.1016/s0950-3293(99)00039-7.; Fontana R, Pistone G, Rogantin MP. Classification of two-level factorial fractions. J Stat Plan Inference 2000;87:149–72. https://doi.org/10.1016/S0378-3758(99)00173-1.; Amelina M. Why Russian peasants remain in collective farms: A household perspective on agricultural restructuring. Post Sov Geogr Econ 2000;41:483–511. https://doi.org/10.1080/10889388.2000.10641154.; Chang H-H, Lambert DM, Mishra AK. Does participation in the conservation reserve program impact the economic well-being of farm households? Agricultural Economics 2008;38:201–12. https://doi.org/10.1111/j.1574-0862.2008.00294.x.; Chang H-H, Mishra AK, Livingston M. Agricultural policy and its impact on fuel usage: Empirical evidence from farm household analysis. Appl Energy 2011;88:348–53. https://doi.org/10.1016/j.apenergy.2010.07.015.; Mishra AK, Moss CB. Modeling the effect of off-farm income on farmland values: A quantile regression approach. Econ Model 2013;32:361–8. https://doi.org/10.1016/j.econmod.2013.02.022.; Mishra AK, El-Osta HS, Shaik S. Succession decisions in U.S. family farm businesses. Journal of Agricultural and Resource Economics 2010;35:133–52.; Chang H-H, Mishra AK. Chemical usage in production agriculture: Do crop insurance and off-farm work play a part? J Environ Manage 2012;105:76–82. https://doi.org/10.1016/j.jenvman.2012.03.038.; El-Osta HS, Mishra AK, Morehart MJ. Off-farm labor participation decisions of married farm couples and the role of government payments. Review of Agricultural Economics 2008;30:311–32. https://doi.org/10.1111/j.1467-9353.2008.00406.x.; Detre JD, Uematsu H, Mishra AK. The influence of GM crop adoption on the profitability of farms operated by young and beginning farmers. Agricultural Finance Review 2011;71:41–61. https://doi.org/10.1108/00021461111128156.; Chang H-H, Mishra AK, Lee T-H. A supply-side analysis of agritourism: Evidence from farm-level agriculture census data in Taiwan. Australian Journal of Agricultural and Resource Economics 2019;63:521–48. https://doi.org/10.1111/1467-8489.12304.; Sellare J, Meemken E-M, Kouamé C, Qaim M. Do Sustainability Standards Benefit Smallholder Farmers Also When Accounting For Cooperative Effects? Evidence from Côte d’Ivoire. Am J Agric Econ 2020;102:681–95. https://doi.org/10.1002/ajae.12015.; Krishna V, Euler M, Siregar H, Qaim M. Differential livelihood impacts of oil palm expansion in Indonesia. Agricultural Economics (United Kingdom) 2017;48:639–53. https://doi.org/10.1111/agec.12363.; Rao EJO, Qaim M. Supermarkets, Farm Household Income, and Poverty: Insights from Kenya. World Dev 2011;39:784–96. https://doi.org/10.1016/j.worlddev.2010.09.005.; Bou Dib J, Krishna V V, Alamsyah Z, Qaim M. Land-use change and livelihoods of non-farm households: The role of income from employment in oil palm and rubber in rural Indonesia. Land Use Policy 2018;76:828–38. https://doi.org/10.1016/j.landusepol.2018.03.020.; Kouser S, Abedullah, Qaim M. Bt cotton and employment effects for female agricultural laborers in Pakistan. N Biotechnol 2017;34:40–6. https://doi.org/10.1016/j.nbt.2016.05.004.; Sekabira H, Qaim M. Can mobile phones improve gender equality and nutrition? Panel data evidence from farm households in Uganda. Food Policy 2017;73:95–103. https://doi.org/10.1016/j.foodpol.2017.10.004.; Sibhatu KT, Krishna V V, Qaim M. Production diversity and dietary diversity in smallholder farm households. Proc Natl Acad Sci U S A 2015;112:10657–62. https://doi.org/10.1073/pnas.1510982112.; Sibhatu KT, Qaim M. Farm production diversity and dietary quality: linkages and measurement issues. Food Secur 2018;10:47–59. https://doi.org/10.1007/s12571-017-0762-3.; Meinhardt LW, Rincones J, Bailey BA, Aime MC, Griffith GW, Zhang D, et al. Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: What’s new from this old foe? Mol Plant Pathol 2008;9:577–88. https://doi.org/10.1111/j.1364-3703.2008.00496.x.; Chrisendo D, Krishna V V, Siregar H, Qaim M. Land-use change, nutrition, and gender roles in Indonesian farm households. For Policy Econ 2020;118. https://doi.org/10.1016/j.forpol.2020.102245.; Ogutu SO, Qaim M. Commercialization of the small farm sector and multidimensional poverty. World Dev 2019;114:281–93. https://doi.org/10.1016/j.worlddev.2018.10.012.; Frelat R, Lopez-Ridaura S, Giller KE, Herrero M, Douxchamps S, Djurfeldt AA, et al. Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proc Natl Acad Sci U S A 2016;113:458–63. https://doi.org/10.1073/pnas.1518384112.; Kassie M, Teklewold H, Marenya P, Jaleta M, Erenstein O. Production Risks and Food Security under Alternative Technology Choices in Malawi: Application of a Multinomial Endogenous Switching Regression. J Agric Econ 2015;66:640–59. https://doi.org/10.1111/1477-9552.12099.; Diiro GM, Seymour G, Kassie M, Muricho G, Muriithi BW. Women’s empowerment in agriculture and agricultural productivity: Evidence from rural maize farmer households in western Kenya. PLoS One 2018;13. https://doi.org/10.1371/journal.pone.0197995.; Koppmair S, Kassie M, Qaim M. Farm production, market access and dietary diversity in Malawi. Public Health Nutr 2017;20:325–35. https://doi.org/10.1017/S1368980016002135.; Jaleta M, Kassie M, Marenya P, Yirga C, Erenstein O. Impact of improved maize adoption on household food security of maize producing smallholder farmers in Ethiopia. Food Secur 2018;10:81–93. https://doi.org/10.1007/s12571-017-0759-y.; Shiferaw B, Kassie M, Jaleta M, Yirga C. Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy 2014;44:272–84. https://doi.org/10.1016/j.foodpol.2013.09.012.; Kassie M, Jaleta M, Shiferaw B, Mmbando F, Mekuria M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol Forecast Soc Change 2013;80:525–40. https://doi.org/10.1016/j.techfore.2012.08.007.; Turvey CG, Kong R. Business and financial risks of small farm households in China. China Agricultural Economic Review 2009;1:155–72. https://doi.org/10.1108/17561370910927417.; Turvey CG, He G, MA J, Kong R, Meagher P. Farm credit and credit demand elasticities in Shaanxi and Gansu. China Economic Review 2012;23:1020–35. https://doi.org/10.1016/j.chieco.2012.05.004.; Kong R, Turvey CG, Channa H, Peng Y-L. Factors affecting farmers’ participation in China’s group guarantee lending program. China Agricultural Economic Review 2015;7:45–64. https://doi.org/10.1108/CAER-09-2012-0100.; Turvey CG, Kong R, Huo X. Borrowing amongst friends: The economics of informal credit in rural China. China Agricultural Economic Review 2010;2:133–47. https://doi.org/10.1108/17561371011044261.; Kong R, Turvey CG, he G, ma J, Meagher P. Factors influencing Shaanxi and Gansu farmers’ willingness to purchase weather insurance. China Agricultural Economic Review 2011;3:423–40. https://doi.org/10.1108/17561371111192293.; Turvey CG, He G, Kong R, Ma J, Meagher P. The 7 Cs of rural credit in China. J Agribus Dev Emerg Econ 2011;1:100–33. https://doi.org/10.1108/20440831111167146.; Ma Y, Koondhar MA, Liu S, Wang H, Kong R. Perceived value influencing the household waste sorting behaviors in rural China. Int J Environ Res Public Health 2020;17:1–18. https://doi.org/10.3390/ijerph17176093.; Kong R, Peng Y, Meng N, Fu H, Zhou L, Zhang Y, et al. Heterogeneous choice in the demand for agriculture credit in China: results from an in-the-field choice experiment. China Agricultural Economic Review 2020. https://doi.org/10.1108/CAER-06-2020-0151.; Lefeber T, Gobert W, Vrancken G, Camu N, De Vuyst L. Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels. Food Microbiol 2011;28:457–64. https://doi.org/10.1016/j.fm.2010.10.010.; De Bruyne K, Camu N, De Vuyst L, Vandamme P. Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. Int J Syst Evol Microbiol 2010;60:1999–2005. https://doi.org/10.1099/ijs.0.019323-0.; De Bruyne K, Camu N, Lefebvre K, De Vuyst L, Vandamme P. Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation. Int J Syst Evol Microbiol 2008;58:2721–5. https://doi.org/10.1099/ijs.0.65853-0.; De Vuyst L, Camu N, De Winter T, Vandemeulebroecke K, de Perre V, Vancanneyt M, et al. Validation of the (GTG)5-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int J Food Microbiol 2008;125:79–90. https://doi.org/10.1016/j.ijfoodmicro.2007.02.030.; Papalexandratou Z, Camu N, Falony G, De Vuyst L. Comparison of the bacterial species diversity of spontaneous cocoa bean fermentations carried out at selected farms in Ivory Coast and Brazil. Food Microbiol 2011;28:964–73. https://doi.org/10.1016/j.fm.2011.01.010.; Teye E, Huang X-Y, Lei W, Dai H. Feasibility study on the use of Fourier transform near-infrared spectroscopy together with chemometrics to discriminate and quantify adulteration in cocoa beans. Food Research International 2014;55:288–93. https://doi.org/10.1016/j.foodres.2013.11.021.; Cleenwerck I, Gonzalez Á, Camu N, Engelbeen K, De Vos P, De Vuyst L. Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. Int J Syst Evol Microbiol 2008;58:2180–5. https://doi.org/10.1099/ijs.0.65778-0.; De Bruyne K, Camu N, De Vuyst L, Vandamme P. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations. Int J Syst Evol Microbiol 2009;59:7–12. https://doi.org/10.1099/ijs.0.001172-0.; Papalexandratou Z, Falony G, Romanens E, Jimenez JC, Amores F, Daniel H-M, et al. Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional ecuadorian spontaneous cocoa bean fermentations. Appl Environ Microbiol 2011;77:7698–714. https://doi.org/10.1128/AEM.05523-11.; Fernández Maura Y, Balzarini T, Clapé Borges P, Evrard P, De Vuyst L, Daniel H-M. The environmental and intrinsic yeast diversity of Cuban cocoa bean heap fermentations. Int J Food Microbiol 2016;233:34–43. https://doi.org/10.1016/j.ijfoodmicro.2016.06.012.; Motilal LA, Zhang D, Mischke S, Meinhardt LW, Boccara M, Fouet O, et al. Association mapping of seed and disease resistance traits in Theobroma cacao L. Planta 2016;244:1265–76. https://doi.org/10.1007/s00425-016-2582-7.; Ji K, Zhang D, Motilal LA, Boccara M, Lachenaud P, Meinhardt LW. Genetic diversity and parentage in farmer varieties of cacao (Theobroma cacao L.) from Honduras and Nicaragua as revealed by single nucleotide polymorphism (SNP) markers. Genet Resour Crop Evol 2013;60:441–53. https://doi.org/10.1007/s10722-012-9847-1.; Fang W, Meinhardt LW, Mischke S, Bellato CM, Motilal L, Zhang D. Accurate determination of genetic identity for a single cacao bean, using molecular markers with a nanofluidic system, ensures cocoa authentication. J Agric Food Chem 2014;62:481–7. https://doi.org/10.1021/jf404402v.; Costa GGL, Cabrera OG, Tiburcio RA, Medrano FJ, Carazzolle MF, Thomazella DPT, et al. The mitochondrial genome of Moniliophthora roreri, the frosty pod rot pathogen of cacao. Fungal Biol 2012;116:551–62. https://doi.org/10.1016/j.funbio.2012.01.008.; Formighieri EF, Tiburcio RA, Armas ED, Medrano FJ, Shimo H, Carels N, et al. The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid. Mycol Res 2008;112:1136–52. https://doi.org/10.1016/j.mycres.2008.04.014.; Meinhardt LW, Costa GGL, Thomazella DPT, Teixeira PJPL, Carazzolle MF, Schuster SC, et al. Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: Mechanisms of the biotrophic and necrotrophic phases. BMC Genomics 2014;15. https://doi.org/10.1186/1471-2164-15-164.; Ali SS, Asman A, Shao J, Firmansyah AP, Susilo AW, Rosmana A, et al. Draft genome sequence of fastidious pathogen Ceratobasidium theobromae, which causes vascular-streak dieback in Theobroma cacao. Fungal Biol Biotechnol 2019;6. https://doi.org/10.1186/s40694-019-0077-6.; Ali SS, Melnick RL, Crozier J, Phillips-Mora W, Strem MD, Shao J, et al. Successful pod infections by Moniliophthora roreri result in differential Theobroma cacao gene expression depending on the clone’s level of tolerance. Mol Plant Pathol 2014;15:698–710. https://doi.org/10.1111/mpp.12126.; Kane N, Sveinsson S, Dempewolf H, Yang JY, Zhang D, Engels JMM, et al. Ultra-barcoding in cacao (theobroma spp.;malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am J Bot 2012;99:320–9. https://doi.org/10.3732/ajb.1100570.; Hanada RE, de Jorge Souza T, Pomella AW V, Hebbar KP, Pereira JO, Ismaiel A, et al. Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res 2008;112:1335–43. https://doi.org/10.1016/j.mycres.2008.06.022.; Rojas EI, Rehner SA, Samuels GJ, Van Bael SA, Herre EA, Cannon P, et al. Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panamá: Multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia 2010;102:1318–38. https://doi.org/10.3852/09-244.; Samuels GJ, Suarez C, Solis K, Holmes KA, Thomas SE, Ismaiel A, et al. Trichoderma theobromicola and T. paucisporum: two new species isolated from cacao in South America. Mycol Res 2006;110:381–92. https://doi.org/10.1016/j.mycres.2006.01.009.; Samuels GJ, Ismaiel A. Trichoderma evansii and T. lieckfeldtiae: two new T. hamatum-like species. Mycologia 2009;101:142–6. https://doi.org/10.3852/08-161.; Rojas EI, Herre EA, Mej́ia LC, Arnold AE, Chaverri P, Samuels GJ. Endomelanconiopsis, a new anamorph genus in the Botryosphaeriaceae. Mycologia 2008;100:760–75. https://doi.org/10.3852/07-207.; Samuels GJ, Ismaiel A, Rosmana A, Junaid M, Guest D, Mcmahon P, et al. Vascular Streak Dieback of cacao in Southeast Asia and Melanesia: In planta detection of the pathogen and a new taxonomy. Fungal Biol 2012;116:11–23. https://doi.org/10.1016/j.funbio.2011.07.009.; Teye E, Huang X. Novel Prediction of Total Fat Content in Cocoa Beans by FT-NIR Spectroscopy Based on Effective Spectral Selection Multivariate Regression. Food Anal Methods 2015;8:945–53. https://doi.org/10.1007/s12161-014-9933-4.; Teye E, Huang X, Dai H, Chen Q. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification. Spectrochim Acta A Mol Biomol Spectrosc 2013;114:183–9. https://doi.org/10.1016/j.saa.2013.05.063.; Teye E, Huang X, Han F, Botchway F. Discrimination of Cocoa Beans According to Geographical Origin by Electronic Tongue and Multivariate Algorithms. Food Anal Methods 2014;7:360–5. https://doi.org/10.1007/s12161-013-9634-4.; Huang X, Teye E, Owusu-Sekyere JD, Takrama J, Sam-Amoah LK, Yao L, et al. Simultaneous Measurement of Titratable Acidity and Fermentation Index in Cocoa Beans by Electronic Tongue Together with Linear and Non-linear Multivariate Technique. Food Anal Methods 2014;7:2137–44. https://doi.org/10.1007/s12161-014-9862-2.; Teye E, Huang X, Takrama J, Haiyang G. Integrating NIR spectroscopy and electronic tongue together with chemometric analysis for accurate classification of cocoa bean varieties. J Food Process Eng 2014;37:560–6. https://doi.org/10.1111/jfpe.12109.; Huang X, Teye E, Sam-Amoah LK, Han F, Yao L, Tchabo W. Rapid measurement of total polyphenols content in cocoa beans by data fusion of NIR spectroscopy and electronic tongue. Analytical Methods 2014;6:5008–15. https://doi.org/10.1039/c4ay00223g.; Anyidoho EK, Teye E, Agbemafle R. Nondestructive authentication of the regional and geographical origin of cocoa beans by using a handheld NIR spectrometer and multivariate algorithm. Analytical Methods 2020;12:4150–8. https://doi.org/10.1039/d0ay00901f.; Teye E, Huang X, Sam-Amoah LK, Takrama J, Boison D, Botchway F, et al. Estimating cocoa bean parameters by FT-NIRS and chemometrics analysis. Food Chem 2015;176:403–10. https://doi.org/10.1016/j.foodchem.2014.12.042.; Teye E, Anyidoho E, Agbemafle R, Sam-Amoah LK, Elliott C. Cocoa bean and cocoa bean products quality evaluation by NIR spectroscopy and chemometrics: A review. Infrared Phys Technol 2020;104. https://doi.org/10.1016/j.infrared.2019.103127.; Rincones J, Meinhardt LW, Vidal BC, Pereira GAG. Electrophoretic karyotype analysis of Crinipellis perniciosa, the causal agent of witches’ broom disease of Theobroma cacao. Mycol Res 2003;107:452–8. https://doi.org/10.1017/S0953756203007597.; Souza CS, Oliveira BM, Costa GGL, Schriefer A, Selbach-Schnadelbach A, Uetanabaro APT, et al. Identification and characterization of a class III chitin synthase gene of moniliophthora perniciosa, the fungus that causes witches’ broom disease of cacao. Journal of Microbiology 2009;47:431–40. https://doi.org/10.1007/s12275-008-0166-3.; Cornejo OE, Yee M-C, Dominguez V, Andrews M, Sockell A, Strandberg E, et al. Population genomic analyses of the chocolate tree, Theobroma cacao L., provide insights into its domestication process. Commun Biol 2018;1. https://doi.org/10.1038/s42003-018-0168-6.; Motamayor JC, Lachenaud P, da Silva e Mota JW, Loor R, Kuhn DN, Brown JS, et al. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One 2008;3. https://doi.org/10.1371/journal.pone.0003311.; Cilas C, Machado R, Motamayor J-C. Relations between several traits linked to sexual plant reproduction in Theobroma cacao L.: Number of ovules per ovary, number of seeds per pod, and seed weight. Tree Genet Genomes 2010;6:219–26. https://doi.org/10.1007/s11295-009-0242-9.; McElroy MS, Navarro AJR, Mustiga G, Stack C, Gezan S, Peña G, et al. Prediction of cacao (Theobroma cacao) resistance to moniliophthora spp. diseases via genome-wide association analysis and genomic selection. Front Plant Sci 2018;9. https://doi.org/10.3389/fpls.2018.00343.; Alberto Romero Navarro J, Phillips-Mora W, Arciniegas-Leal A, Mata-Quirós A, Haiminen N, Mustiga G, et al. Application of genome wide association and genomic prediction for improvement of cacao productivity and resistance to black and frosty pod diseases. Front Plant Sci 2017;8. https://doi.org/10.3389/fpls.2017.01905.; Utro F, Cornejo OE, Livingstone D, Motamayor JC, Parida L. ARG-based genome-wide analysis of cacao cultivars. BMC Bioinformatics 2012;13. https://doi.org/10.1186/1471-2105-13-S19-S17.; Foubert I, Vanrolleghem PA, Dewettinck K. Insight in model parameters by studying temperature influence on isothermal cocoa butter crystallization. European Journal of Lipid Science and Technology 2005;107:660–72. https://doi.org/10.1002/ejlt.200501177.; Foubert I, Vanrolleghem PA, Thas O, Dewettinck K. Influence of chemical composition on the isothermal cocoa butter crystallization. J Food Sci 2004;69:E478–87. https://doi.org/10.1111/j.1365-2621.2004.tb09933.x.; Tran PD, de Walle D, De Clercq N, De Winne A, Kadow D, Lieberei R, et al. Assessing cocoa aroma quality by multiple analytical approaches. Food Research International 2015;77:657–69. https://doi.org/10.1016/j.foodres.2015.09.019.; Foubert I, Dewettinck K, Janssen G, Vanrolleghem PA. Modelling two-step isothermal fat crystallization. J Food Eng 2006;75:551–9. https://doi.org/10.1016/j.jfoodeng.2005.04.038.; Everaert H, De Wever J, Tang TKH, Vu TLA, Maebe K, Rottiers H, et al. Genetic classification of Vietnamese cacao cultivars assessed by SNP and SSR markers. Tree Genet Genomes 2020;16. https://doi.org/10.1007/s11295-020-01439-x.; Hinneh M, Abotsi EE, de Walle D, Tzompa-Sosa DA, De Winne A, Simonis J, et al. Pod storage with roasting: A tool to diversifying the flavor profiles of dark chocolates produced from ‘bulk’ cocoa beans? (Part II: Quality and sensory profiling of chocolates). Food Research International 2020;132. https://doi.org/10.1016/j.foodres.2020.109116.; De Clercq N, Depypere F, Delbaere C, Nopens I, Bernaert H, Dewettinck K. Influence of cocoa butter diacylglycerols on migration induced fat bloom in filled chocolates. European Journal of Lipid Science and Technology 2014;116:1388–99. https://doi.org/10.1002/ejlt.201300476.; Nopens I, Foubert I, De Graef V, Van Laere D, Dewettinck K, Vanrolleghem P. Automated image analysis tool for migration fat bloom evaluation of chocolate coated food products. LWT - Food Science and Technology 2008;41:1884–91. https://doi.org/10.1016/j.lwt.2008.01.008.; Shekarchizadeh H, Tikani R, Kadivar M. Optimization of cocoa butter analog synthesis variables using neural networks and genetic algorithm. J Food Sci Technol 2014;51:2099–105. https://doi.org/10.1007/s13197-012-0695-y.; Kutsanedzie FYH, Chen Q, Sun H, Cheng W. In situ cocoa beans quality grading by near-infrared-chemodyes systems. Analytical Methods 2017;9:5455–63. https://doi.org/10.1039/c7ay01751k.; Arenga DZH, Dela Cruz JC. Ripeness classification of cocoa through acoustic sensing and machine learning. HNICEM 2017 - 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, vol. 2018- Janua, Institute of Electrical and Electronics Engineers Inc.; 2017, p. 1–6. https://doi.org/10.1109/HNICEM.2017.8269438.; De Oliveira JRCP, Romero RAF. Transfer Learning Based Model for Classification of Cocoa Pods. Proceedings of the International Joint Conference on Neural Networks, vol. 2018- July, Institute of Electrical and Electronics Engineers Inc.; 2018. https://doi.org/10.1109/IJCNN.2018.8489126.; Gamboa AA, Caceres PA, Lamos H, Zarate DA, Puentes DE. Predictive model for cocoa yield in Santander using Supervised Machine Learning. 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), IEEE; 2019, p. 1–5. https://doi.org/10.1109/STSIVA.2019.8730258.; Tan J, Balasubramanian B, Sukha D, Ramkissoon S, Umaharan P. Sensing fermentation degree of cocoa (Theobroma cacao L.) beans by machine learning classification models based electronic nose system. J Food Process Eng 2019;42. https://doi.org/10.1111/jfpe.13175.; Fuentes S, Chacon G, Torrico DD, Zarate A, Viejo CG. Spatial variability of aroma profiles of cocoa trees obtained through computer vision and machine learning modelling: A cover photography and high spatial remote sensing application. Sensors (Switzerland) 2019;19. https://doi.org/10.3390/s19143054.; Morales L, Calderon J, Solorzano W, Alvarado I. Modeling of cocoa pod husk anaerobic digester using artificial neural networks. Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019, Institute of Electrical and Electronics Engineers Inc.; 2019. https://doi.org/10.1109/INTERCON.2019.8853552.; Hidayat SN, Rusman A, Julian T, Triyana K, Veloso ACA, Peres AM. Electronic nose coupled with linear and nonlinear supervised learning methods for rapid discriminating quality grades of superior java cocoa beans. International Journal of Intelligent Engineering and Systems 2019;12:167–76. https://doi.org/10.22266/ijies2019.1231.16.; Heredia-Gómez JF, Rueda-Gómez JP, Talero-Sarmiento LH, Ramírez-Acuña JS, Coronado-Silva RA. Cocoa pods ripeness estimation, using convolutional neural networks in an embedded system. Revista Colombiana de Computacion 2020;21:42–55. https://doi.org/10.29375/25392115.4030.; Srikanth V, Rajesh GK, Kothakota A, Pandiselvam R, Sagarika N, Manikantan MR, et al. Modeling and optimization of developed cocoa beans extractor parameters using box behnken design and artificial neural network. Comput Electron Agric 2020;177. https://doi.org/10.1016/j.compag.2020.105715.; Nassef AM, Md Atiqure Rahman S, Rezk H, Said Z. ANFIS-Based Modelling and Optimal Operating Parameter Determination to Enhance Cocoa Beans Drying-Rate. IEEE Access 2020;8:45964–73. https://doi.org/10.1109/ACCESS.2020.2977165.; Godde CM, Mason-D’Croz D, Mayberry DE, Thornton PK, Herrero M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob Food Sec 2021;28:100488. https://doi.org/10.1016/j.gfs.2020.100488.; Paciarotti C, Torregiani F. The logistics of the short food supply chain: A literature review. Sustain Prod Consum 2021;26:428–42. https://doi.org/10.1016/j.spc.2020.10.002.; Ahumada O, Villalobos JR. Application of planning models in the agri-food supply chain: A review. Eur J Oper Res 2009;196:1–20. https://doi.org/10.1016/j.ejor.2008.02.014.; Annosi MC, Brunetta F, Bimbo F, Kostoula M. Digitalization within food supply chains to prevent food waste. Drivers, barriers and collaboration practices. Industrial Marketing Management 2021;93:208–20. https://doi.org/10.1016/j.indmarman.2021.01.005.; Rejeb A, Rejeb K, Zailani S, Treiblmaier H, Hand KJ. Integrating the Internet of Things in the halal food supply chain: A systematic literature review and research agenda. Internet of Things 2021;13:100361. https://doi.org/10.1016/j.iot.2021.100361.; Roussaki I, Kosmides P, Routis G, Doolin K, Pevtschin V, Marguglio A. A Multi-Actor Approach to promote the employment of IoT in Agriculture. 2019 Global IoT Summit (GIoTS), IEEE; 2019, p. 1–6. https://doi.org/10.1109/GIOTS.2019.8766416.; Kruize JW, Wolfert J, Scholten H, Verdouw CN, Kassahun A, Beulens AJM. A reference architecture for Farm Software Ecosystems. Comput Electron Agric 2016;125:12–28. https://doi.org/10.1016/j.compag.2016.04.011.; Bruce TJA. The CROPROTECT project and wider opportunities to improve farm productivity through web-based knowledge exchange. Food Energy Secur 2016;5:89–96. https://doi.org/10.1002/fes3.80.; Braun A-T, Colangelo E, Steckel T. Farming in the Era of Industrie 4.0. Procedia CIRP 2018;72:979–84. https://doi.org/10.1016/j.procir.2018.03.176.; Jakku E, Taylor B, Fleming A, Mason C, Fielke S, Sounness C, et al. “If they don’t tell us what they do with it, why would we trust them?” Trust, transparency and benefit-sharing in Smart Farming. NJAS - Wageningen Journal of Life Sciences 2019;90–91:100285. https://doi.org/10.1016/j.njas.2018.11.002.; Sharma RK, Sharma SD. Network for irrigation project - A case study. Acta Cienc Indica, Math 1989;15:345–50.; Begovich O, Ruiz VM, Georges D, Besançon G. Real-time application of a fuzzy gain scheduling control scheme to a multi-pool open irrigation canal prototype. Journal of Intelligent and Fuzzy Systems 2005;16.; Zhan C, Tian M, Liu Y, Zhou J, Yi X. A novel greedy adaptive ant colony algorithm for shortest path of irrigation groups. Mathematical Biosciences and Engineering 2022;19. https://doi.org/10.3934/mbe.2022419.; Crespo O, Bergez JÉ, Garcia F. P2q hierarchical decomposition algorithm for quantile optimization: application to irrigation strategies design. Ann Oper Res 2011;190:375–87. https://doi.org/10.1007/s10479-008-0503-2.; Durdu ÖF. Fuzzy logic adaptive Kalman filtering in the control of irrigation canals. Int J Numer Methods Fluids 2010;64. https://doi.org/10.1002/fld.2151.; Sapountzis C. Water needs for irrigation based on soil water negative pressure - A renewal theory application on potatoes. Eur J Oper Res 1991;54. https://doi.org/10.1016/0377-2217(91)90327-R.; Lu HW, Huang GH, He L. An inexact programming method for agricultural irrigation systems under parameter uncertainty. Stochastic Environmental Research and Risk Assessment 2009;23. https://doi.org/10.1007/s00477-008-0256-0.; Watto M, Mugera A. Wheat farming system performance and irrigation efficiency in Pakistan: a bootstrapped metafrontier approach. International Transactions in Operational Research 2019;26:686–706. https://doi.org/10.1111/itor.12314.; Ruszczyński A, Świȩtanowski A. Accelerating the regularized decomposition method for two stage stochastic linear problems. Eur J Oper Res 1997;101. https://doi.org/10.1016/S0377-2217(96)00401-8.; Dentcheva D, Martinez G. Two-stage stochastic optimization problems with stochastic ordering constraints on the recourse. Eur J Oper Res 2012;219:1–8. https://doi.org/10.1016/j.ejor.2011.11.044.; Takriti S, Ahmed S. On robust optimization of two-stage systems. Math Program 2004;99. https://doi.org/10.1007/s10107-003-0373-y.; Kong N, Schaefer AJ, Hunsaker B. Two-stage integer programs with stochastic right-hand sides: A superadditive dual approach. Math Program 2006;108. https://doi.org/10.1007/s10107-006-0711-y.; Wollmer RD. Two stage linear programming under uncertainty with 0-1 integer first stage variables. Math Program 1980;19. https://doi.org/10.1007/BF01581648.; Oliveira W, Sagastizábal C, Scheimberg S. Inexact bundle methods for two-stage stochastic programming. SIAM Journal on Optimization 2011;21. https://doi.org/10.1137/100808289.; Xu G, Burer S. A copositive approach for two-stage adjustable robust optimization with uncertain right-hand sides. Comput Optim Appl 2018;70. https://doi.org/10.1007/s10589-017-9974-x.; Zhao G. A log-barrier method with Benders decomposition for solving two-stage stochastic linear programs. Mathematical Programming, Series B 2001;90. https://doi.org/10.1007/PL00011433.; Jiang R, Zhang M, Li G, Guan Y. Two-stage network constrained robust unit commitment problem. Eur J Oper Res 2014;234. https://doi.org/10.1016/j.ejor.2013.09.028.; Van Ackooij W, De Oliveira W, Song Y. Adaptive partition-based level decomposition methods for solving two-stage stochastic programs with fixed recourse. INFORMS J Comput 2018;30. https://doi.org/10.1287/ijoc.2017.0765.; Bertsimas D, Goyal V. On the power and limitations of affine policies in two-stage adaptive optimization. Math Program 2012;134. https://doi.org/10.1007/s10107-011-0444-4.; Aghezzaf EH, Sitompul C, Najid NM. Models for robust tactical planning in multi-stage production systems with uncertain demands. Comput Oper Res 2010;37. https://doi.org/10.1016/j.cor.2009.03.012.; Bertsimas D, Goyal V. On the power of robust solutions in two-stage stochastic and adaptive optimization problems. Mathematics of Operations Research 2010;35. https://doi.org/10.1287/moor.1090.0440.; Goerigk M, Schöbel A. Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling. Comput Oper Res 2014;52. https://doi.org/10.1016/j.cor.2014.06.025.; Bansal M, Huang KL, Mehrotra S. Decomposition algorithms for two-stage distributionally robust mixed binary programs. SIAM Journal on Optimization 2018;28. https://doi.org/10.1137/17M1115046.; Huang R, Qu S, Yang X, Liu Z. Multi-Stage Distributionally Robust Optimization With Risk Aversion. Journal of Industrial and Management Optimization 2021;17. https://doi.org/10.3934/jimo.2019109.; Ling A, Sun J, Xiu N, Yang X. Robust two-stage stochastic linear optimization with risk aversion. Eur J Oper Res 2017;256. https://doi.org/10.1016/j.ejor.2016.06.017.; Shen R, Zhang S. Robust portfolio selection based on a multi-stage scenario tree. Eur J Oper Res 2008;191. https://doi.org/10.1016/j.ejor.2007.01.059.; Jiang J, Chen X, Chen Z. Quantitative analysis for a class of two-stage stochastic linear variational inequality problems. Comput Optim Appl 2020;76. https://doi.org/10.1007/s10589-020-00185-z.; Jiang J, Chen Z. Quantitative Stability Analysis of Two-Stage Stochastic Linear Programs with Full Random Recourse. Numer Funct Anal Optim 2019;40. https://doi.org/10.1080/01630563.2019.1639729.; Liu JX, Li SJ, Jiang J. Quantitative stability of two-stage stochastic linear variational inequality problems with fixed recourse. Appl Anal 2022;101. https://doi.org/10.1080/00036811.2020.1836352.; Han Y, Chen Z. Continuity of parametric mixed-integer quadratic programs and its application to stability analysis of two-stage quadratic stochastic programs with mixed-integer recourse. Optimization 2015;64. https://doi.org/10.1080/02331934.2014.891033.; Chen Z, Jiang J. Quantitative stability of fully random two-stage stochastic programs with mixed-integer recourse. Optim Lett 2020;14. https://doi.org/10.1007/s11590-019-01426-9.; Duan Q, Xu M, Guo S, Zhang L. Quantitative Stability of Two-Stage Linear Second-Order Conic Stochastic Programs with Full Random Recourse. Asia-Pacific Journal of Operational Research 2018;35. https://doi.org/10.1142/S0217595918500318.; Bertsimas D, Mundru N. Optimization-Based Scenario Reduction for Data-Driven Two-Stage Stochastic Optimization. Oper Res 2023;71. https://doi.org/10.1287/opre.2022.2265.; Duque D, Mehrotra S, Morton DP. Distributionally robust two-stage stochastic programming. SIAM Journal on Optimization 2022;32. https://doi.org/10.1137/20M1370227.; Fei X, Gülpınar N, Branke J. Efficient solution selection for two-stage stochastic programs. Eur J Oper Res 2019;277. https://doi.org/10.1016/j.ejor.2019.02.015.; Jiang J, Li S. Regularized Sample Average Approximation Approach for Two-Stage Stochastic Variational Inequalities. J Optim Theory Appl 2021;190. https://doi.org/10.1007/s10957-021-01905-z.; Jiang J, Sun H, Zhou B. Convergence analysis of sample average approximation for a class of stochastic nonlinear complementarity problems: from two-stage to multistage. Numer Algorithms 2022;89. https://doi.org/10.1007/s11075-021-01110-z.; Chen L, Liu Y, Yang X, Zhang J. Stochastic approximation methods for the two-stage stochastic linear complementarity problem. SIAM Journal on Optimization 2022;32. https://doi.org/10.1137/20M1375796.; Zhang D, Xu H. Two-stage stochastic equilibrium problems with equilibrium constraints: modeling and numerical schemes. Optimization 2013;62. https://doi.org/10.1080/02331934.2011.632418.; Van Slyke RM, Wets R. L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming. SIAM J Appl Math 1969;17:638–63. https://doi.org/10.2307/2099310.; Benders JF. Partitioning procedures for solving mixed-variables programming problems. Numer Math (Heidelb) 1962;4:238–52. https://doi.org/10.1007/BF01386316.; Rahmaniani R, Crainic TG, Gendreau M, Rei W. The Benders decomposition algorithm: A literature review. Eur J Oper Res 2017;259:801–17. https://doi.org/10.1016/j.ejor.2016.12.005.; Vladimirou H, Zenios SA. Stochastic Programming and Robust Optimization, 1997. https://doi.org/10.1007/978-1-4615-6103-3_12.; Dong X, Sun Y, Malik SM, Pu T, Li Y, Wang X. Scenario Reduction Network Based on Wasserstein Distance With Regularization. IEEE Transactions on Power Systems 2024;39:4–13. https://doi.org/10.1109/TPWRS.2023.3234277.; Growe-Kuska N, Heitsch H, Romisch W. Scenario reduction and scenario tree construction for power management problems. 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 3, IEEE; 2003, p. 152–8. https://doi.org/10.1109/PTC.2003.1304379.; Heitsch H, Römisch W. Scenario Reduction Algorithms in Stochastic Programming. Comput Optim Appl 2003;24:187–206. https://doi.org/10.1023/A:1021805924152.; Römisch W. Scenario Reduction Techniques in Stochastic Programming. Stochastic Algorithms: Foundations and Applications, Springer Link; 2009, p. 1–14. https://doi.org/10.1007/978-3-642-04944-6_1.; Kammammettu S, Li Z. Scenario reduction and scenario tree generation for stochastic programming using Sinkhorn distance. Comput Chem Eng 2023;170:108122. https://doi.org/10.1016/j.compchemeng.2022.108122.; Dupačová J, Kozmík V. SDDP for multistage stochastic programs: preprocessing via scenario reduction. Computational Management Science 2017;14:67–80. https://doi.org/10.1007/s10287-016-0261-6.; González Márquez JD. A Stochastic Optimization Model for Efficient Water Management in Cocoa Crop. Maestría. Universidad Industrial de Santander, 2024.; Biswas AK. Integrated water resources management: A reassessment: A water forum contribution. Water Int 2004;29:248–56. https://doi.org/10.1080/02508060408691775.; Fan Y, Huang G, Huang K, Baetz BW. Planning Water Resources Allocation under Multiple Uncertainties Through a Generalized Fuzzy Two-Stage Stochastic Programming Method. IEEE Transactions on Fuzzy Systems 2015;23:1488–504. https://doi.org/10.1109/TFUZZ.2014.2362550.; Loucks DP, van Beek E. Water Resource Systems Modeling: Its Role in Planning and Management. 2017. https://doi.org/10.1007/978-3-319-44234-1_2.; FAO. Water for Sustainable Food and Agriculture A report produced for the G20 Presidency of Germany. 2017.; Bjornlund V, Bjornlund H. Understanding agricultural water management in a historical context using a socioeconomic and biophysical framework. Agric Water Manag 2019;213:454–67. https://doi.org/10.1016/j.agwat.2018.10.037.; Pawlak K, Kołodziejczak M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020;12. https://doi.org/10.3390/su12135488.; Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD. The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change. Annu Rev Plant Biol 2012;63:637–61. https://doi.org/10.1146/annurev-arplant-042110-103829.; Kang S, Su X, Tong L, Shi P, Yang X, Abe Y, et al. The impacts of human activities on the water–land environment of the Shiyang River basin, an arid region in northwest China / Les impacts des activités humaines sur l’environnement pédo-hydrologique du bassin de la Rivière Shiyang, une région aride du nor. Hydrological Sciences Journal 2004;49:null-427. https://doi.org/10.1623/hysj.49.3.413.54347.; Wang Y, Li Z, Guo S, Zhang F, Guo P. A risk-based fuzzy boundary interval two-stage stochastic water resources management programming approach under uncertainty. J Hydrol (Amst) 2020;582:124553. https://doi.org/10.1016/j.jhydrol.2020.124553.; Li YP, Huang GH. Interval-parameter Two-stage Stochastic Nonlinear Programming for Water Resources Management under Uncertainty. Water Resources Management 2008;22:681–98. https://doi.org/10.1007/s11269-007-9186-8.; Maqsood I, Huang GH, Scott Yeomans J. An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty. Eur J Oper Res 2005;167:208–25. https://doi.org/10.1016/j.ejor.2003.08.068.; Azaiez MN. A model for conjunctive use of ground and surface water with opportunity costs. Eur J Oper Res 2002;143:611–24. https://doi.org/10.1016/S0377-2217(01)00339-3.; Jiang Y, Xu X, Huang Q, Huo Z, Huang G. Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model. Agric Water Manag 2016;178:76–88. https://doi.org/10.1016/j.agwat.2016.08.035.; Li YP, Huang GH, Nie SL, Liu L. Inexact multistage stochastic integer programming for water resources management under uncertainty. J Environ Manage 2008;88:93–107. https://doi.org/10.1016/j.jenvman.2007.01.056.; Ren C, Li Z, Zhang H. Integrated multi-objective stochastic fuzzy programming and AHP method for agricultural water and land optimization allocation under multiple uncertainties. J Clean Prod 2019;210:12–24. https://doi.org/10.1016/j.jclepro.2018.10.348.; Du T, Kang S, Zhang J, Davies WJ. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J Exp Bot 2015;66:2253–69. https://doi.org/10.1093/jxb/erv034.; Li M, Guo P, Singh VP. An efficient irrigation water allocation model under uncertainty. Agric Syst 2016;144:46–57. https://doi.org/https://doi.org/10.1016/j.agsy.2016.02.003.; Li M, Fu Q, Guo P, Singh VP, Zhang C, Yang G. Stochastic multi-objective decision making for sustainable irrigation in a changing environment. J Clean Prod 2019;223:928–45. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.03.183.; Zhang H-Y, Liu M-R, Feng Z-H, Song L, Li X, Liu W-D, et al. Estimations of Water Use Efficiency in Winter Wheat Based on Multi-Angle Remote Sensing. Front Plant Sci 2021;12:503. https://doi.org/10.3389/fpls.2021.614417.; Li X, Huo Z, Xu B. Optimal allocation method of irrigation water from river and lake by considering the fieldwater cycle process. Water (Switzerland) 2017;9. https://doi.org/10.3390/w9120911.; Wardlaw R, Barnes J. Optimal allocation of irrigation water supplies in real time. Journal of Irrigation and Drainage Engineering 1999;125:345–54.; Archibald TW, Marshall SE. Review of Mathematical Programming Applications in Water Resource Management Under Uncertainty. Environmental Modeling and Assessment 2018;23:753–77. https://doi.org/10.1007/s10666-018-9628-0.; Singh A. Irrigation Planning and Management Through Optimization Modelling. Water Resources Management 2014;28:1–14. https://doi.org/10.1007/s11269-013-0469-y.; Liu D, Guo S, Chen X, Shao Q, Ran Q, Song X, et al. A macro-evolutionary multi-objective immune algorithm with application to optimal allocation of water resources in Dongjiang River basins, South China. Stochastic Environmental Research and Risk Assessment 2012;26:491–507. https://doi.org/10.1007/s00477-011-0505-5.; Lalehzari R, Boroomand Nasab S, Moazed H, Haghighi A. Multiobjective Management of Water Allocation to Sustainable Irrigation Planning and Optimal Cropping Pattern. Journal of Irrigation and Drainage Engineering 2016;142:05015008. https://doi.org/10.1061/(asce)ir.1943-4774.0000933.; Zhang F, Guo P, Engel BA, Guo S, Zhang C, Tang Y. Planning seasonal irrigation water allocation based on an interval multiobjective multi-stage stochastic programming approach. Agric Water Manag 2019;223:105692. https://doi.org/10.1016/j.agwat.2019.105692.; Habibi Davijani M, Banihabib ME, Nadjafzadeh Anvar A, Hashemi SR. Multi-Objective Optimization Model for the Allocation of Water Resources in Arid Regions Based on the Maximization of Socioeconomic Efficiency. Water Resources Management 2016;30:927–46. https://doi.org/10.1007/s11269-015-1200-y.; Regulwar DG, Gurav JB. Irrigation Planning Under Uncertainty-A Multi Objective Fuzzy Linear Programming Approach. Water Resources Management 2011;25:1387–416. https://doi.org/10.1007/s11269-010-9750-5.; Chen C, Huang GH, Li YP, Zhou Y. A robust risk analysis method for water resources allocation under uncertainty. Stochastic Environmental Research and Risk Assessment 2013;27:713–23. https://doi.org/10.1007/s00477-012-0634-5.; Li M, Guo P, Singh VP, Zhao J. Irrigation Water Allocation Using an Inexact Two-Stage Quadratic Programming with Fuzzy Input under Climate Change. J Am Water Resour Assoc 2016;52:667–84. https://doi.org/10.1111/1752-1688.12415.; Li M, Guo P. A multi-objective optimal allocation model for irrigation water resources under multiple uncertainties. Appl Math Model 2014;38:4897–911. https://doi.org/https://doi.org/10.1016/j.apm.2014.03.043.; Kaur P, Dhir A, Tandon A, Alzeiby EA, Abohassan AA. A systematic literature review on cyberstalking. An analysis of past achievements and future promises. Technol Forecast Soc Change 2021;163:120426. https://doi.org/10.1016/j.techfore.2020.120426.; Ji L, Sun P, Ma Q, Jiang N, Huang G-H, Xie Y-L. Inexact Two-Stage Stochastic Programming for Water Resources Allocation under Considering Demand Uncertainties and Response—A Case Study of Tianjin, China. Water (Basel) 2017;9. https://doi.org/10.3390/w9060414.; Delgado JA, Short NM, Roberts DP, Vandenberg B. Big Data Analysis for Sustainable Agriculture on a Geospatial Cloud Framework. Front Sustain Food Syst 2019;3. https://doi.org/10.3389/fsufs.2019.00054.; Abioye EA, Hensel O, Esau TJ, Elijah O, Abidin MSZ, Ayobami AS, et al. Precision Irrigation Management Using Machine Learning and Digital Farming Solutions. AgriEngineering 2022;4:70–103. https://doi.org/10.3390/agriengineering4010006.; Amani S, Shafizadeh-Moghadam H. A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agric Water Manag 2023;284:108324. https://doi.org/10.1016/j.agwat.2023.108324.; Fathy C, Ali HM. A Secure IoT-Based Irrigation System for Precision Agriculture Using the Expeditious Cipher. Sensors 2023;23:1–16. https://doi.org/10.3390/s23042091.; Li QQ, Li YP, Huang GH, Wang CX. Risk aversion based interval stochastic programming approach for agricultural water management under uncertainty. Stochastic Environmental Research and Risk Assessment 2018;32:715–32. https://doi.org/10.1007/s00477-017-1490-0.; Li YP, Huang GH. Interval-parameter robust optimization for environmental management under uncertainty. Canadian Journal of Civil Engineering 2009;36:592–606. https://doi.org/10.1139/L08-131.; Maqsood I, Huang G, Huang Y, Chen B. ITOM: An interval-parameter two-stage optimization model for stochastic planning of water resources systems. Stochastic Environmental Research and Risk Assessment 2005;19:125–33. https://doi.org/10.1007/s00477-004-0220-6.; Niazi M. Do Systematic Literature Reviews Outperform Informal Literature Reviews in the Software Engineering Domain? An Initial Case Study. Arab J Sci Eng 2015;40:845–55. https://doi.org/10.1007/s13369-015-1586-0.; Youzhi W, Alexander F, Ping G. A model integrating the system dynamic model with the risk based two-stage stochastic robust programming model for agricultural-ecological water resources management. Stochastic Environmental Research and Risk Assessment 2021;8. https://doi.org/10.1007/s00477-021-01972-8.; Zhang WJ, Tan Q, Zhang TY. A risk-averse stochastic quadratic model with recourse for supporting irrigation water management in uncertain and nonlinear environments. Agric Water Manag 2021;244:106431. https://doi.org/10.1016/j.agwat.2020.106431.; Wang Y, Guo P. Irrigation water resources optimization with consideration of the regional agro-hydrological process of crop growth and multiple uncertainties. Agric Water Manag 2021;245:106630. https://doi.org/10.1016/j.agwat.2020.106630.; Li M, Fu Q, Singh VP, Liu D, Gong X. Risk-based agricultural water allocation under multiple uncertainties. Agric Water Manag 2020;233. https://doi.org/10.1016/j.agwat.2020.106105.; Ji L, Zhang B, Huang G, Lu Y. Multi-stage stochastic fuzzy random programming for food-water-energy nexus management under uncertainties. Resour Conserv Recycl 2020;155:104665. https://doi.org/10.1016/j.resconrec.2019.104665.; Suo M, Du F, Li Y, Kong T, Zhang J. An Inexact Inventory Theory-Based Water Resources Distribution Model for Yuecheng Reservoir, China. Math Probl Eng 2020;2020. https://doi.org/10.1155/2020/6273513.; Guo S, Zhang F, Zhang C, Wang Y, Guo P. An improved intuitionistic fuzzy interval two-stage stochastic programming for resources planning management integrating recourse penalty from resources scarcity and surplus. J Clean Prod 2019;234:185–99. https://doi.org/10.1016/j.jclepro.2019.06.183.; Zhang C, Yue Q, Guo P. A nonlinear inexact two-stage management model for agricultural water allocation under uncertainty based on the heihe river water diversion plan. Int J Environ Res Public Health 2019;16. https://doi.org/10.3390/ijerph16111884.; Chen S, Xu J, Li Q, Tan X, Nong X. A copula-based interval-bistochastic programming method for regional water allocation under uncertainty. Agric Water Manag 2019;217:154–64. https://doi.org/10.1016/j.agwat.2019.02.008.; Zhang C, Guo P. An inexact CVaR two-stage mixed-integer linear programming approach for agricultural water management under uncertainty considering ecological water requirement. Ecol Indic 2018;92:342–53. https://doi.org/10.1016/j.ecolind.2017.02.018.; Yan Z, Li M. A stochastic optimization model for agricultural irrigation water allocation based on the field water cycle. Water (Switzerland) 2018;10. https://doi.org/10.3390/w10081031.; Fu Q, Li T, Cui S, Liu D, Lu X. Agricultural Multi-Water Source Allocation Model Based on Interval Two-Stage Stochastic Robust Programming under Uncertainty. Water Resources Management 2018;32:1261–74. https://doi.org/10.1007/s11269-017-1868-2.; Zhang C, Li M, Guo P. An interval multistage joint-probabilistic chance-constrained programming model with left-hand-side randomness for crop area planning under uncertainty. J Clean Prod 2017;167:1276–89. https://doi.org/10.1016/j.jclepro.2017.05.191.; Chen S, Shao D, Gu W, Xu B, Li H, Fang L. An interval multistage water allocation model for crop different growth stages under inputs uncertainty. Agric Water Manag 2017;186:86–97. https://doi.org/10.1016/j.agwat.2017.03.001.; Liu J, Li YP, Huang GH, Zhuang XW, Fu HY. Assessment of uncertainty effects on crop planning and irrigation water supply using a Monte Carlo simulation based dual-interval stochastic programming method. J Clean Prod 2017;149:945–67. https://doi.org/10.1016/j.jclepro.2017.02.100.; Niu G, Li YP, Huang GH, Liu J, Fan YR. Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties. Agric Water Manag 2016;166:53–69. https://doi.org/10.1016/j.agwat.2015.12.011.; Li M, Guo P, Zhang L, Zhao J. Multi-dimensional critical regulation control modes and water optimal allocation for irrigation system in the middle reaches of Heihe River basin, China. Ecol Eng 2015;76:166–77. https://doi.org/10.1016/j.ecoleng.2014.03.036.; Cui L, Li Y, Huang G. Planning an agricultural water resources management system: A two-stage stochastic fractional programming model. Sustainability (Switzerland) 2015;7:9846–63. https://doi.org/10.3390/su7089846.; Li X, Lu H, He L, Shi B. An inexact stochastic optimization model for agricultural irrigation management with a case study in China. Stochastic Environmental Research and Risk Assessment 2014;28:281–95. https://doi.org/10.1007/s00477-013-0748-4.; Dai ZY, Li YP. A multistage irrigation water allocation model for agricultural land-use planning under uncertainty. Agric Water Manag 2013;129:69–79. https://doi.org/10.1016/j.agwat.2013.07.013.; Zhu Y, Li YP, Huang GH, Guo L. Risk assessment of agricultural irrigation water under interval functions. Stochastic Environmental Research and Risk Assessment 2013;27:693–704. https://doi.org/10.1007/s00477-012-0632-7.; Huang Y, Li YP, Chen X, Ma YG. Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China. Agric Water Manag 2012;107:74–85. https://doi.org/10.1016/j.agwat.2012.01.012.; Li YP, Huang GH. Planning agricultural water resources system associated with fuzzy and random features. J Am Water Resour Assoc 2011;47:841–60. https://doi.org/10.1111/j.1752-1688.2011.00558.x.; Li W, Li YP, Li CH, Huang GH. An inexact two-stage water management model for planning agricultural irrigation under uncertainty. Agric Water Manag 2010;97:1905–14. https://doi.org/10.1016/j.agwat.2010.07.005.; Zhang C, Li M, Guo P. Two-Stage Stochastic Chance-Constrained Fractional Programming Model for Optimal Agricultural Cultivation Scale in an Arid Area. Journal of Irrigation and Drainage Engineering 2017;143:05017006. https://doi.org/10.1061/(asce)ir.1943-4774.0001216.; Fu Q, Li J, Li T, Liu D, Cui S. Utilization threshold of surface water and groundwater based on the system optimization of crop planting structure. Front Agric Sci Eng 2016;3:231–40. https://doi.org/10.15302/J-FASE-2016101.; Lu HW, Huang GH, He L. An inexact programming method for agricultural irrigation systems under parameter uncertainty. Stochastic Environmental Research and Risk Assessment 2009;23:759–68. https://doi.org/10.1007/s00477-008-0256-0.; Muhammad YS, Pflug GC. Stochastic vs deterministic programming in water management: the value of flexibility. Ann Oper Res 2014;223:309–28. https://doi.org/10.1007/s10479-013-1455-8.; Amanat Behbahani L, Moghaddasi M, Ebrahimi H, Babazadeh H. Optimal water allocation and distribution management in irrigation networks under uncertainty by multi-stage stochastic case study: Irrigation and drainage networks of Maroon*. Irrigation and Drainage 2020;69:531–45. https://doi.org/10.1002/ird.2476.; Marques GF, Lund JR, Howitt RE. Modeling Conjunctive Use Operations and Farm Decisions with Two-Stage Stochastic Quadratic Programming. J Water Resour Plan Manag 2010;136:386–94. https://doi.org/10.1061/(asce)wr.1943-5452.0000045.; Xin X, Huang G, Sun W, Zhou Y, Fan Y. Factorial Two-Stage Irrigation System Optimization Model. Journal of Irrigation and Drainage Engineering 2016;142:04015056. https://doi.org/10.1061/(asce)ir.1943-4774.0000951.; Guo P, Huang GH, Li YP. Inexact fuzzy-stochastic programming for water resources management under multiple uncertainties. Environmental Modeling and Assessment 2010;15:111–24. https://doi.org/10.1007/s10666-009-9194-6.; Lu H, Huang G, He L. Inexact rough-interval two-stage stochastic programming for conjunctive water allocation problems. J Environ Manage 2009;91:261–9. https://doi.org/10.1016/j.jenvman.2009.08.011.; Hou J, Fan X, Liu R. Optimal spatial allocation of irrigation water under uncertainty using the bilayer nested optimisation algorithm and geospatial technology. International Journal of Geographical Information Science 2016;30:2462–85. https://doi.org/10.1080/13658816.2016.1181264.; Samian M, Mahdei KN, Saadi H, Movahedi R. Identifying factors affecting optimal management of agricultural water. Journal of the Saudi Society of Agricultural Sciences 2015;14:11–8. https://doi.org/10.1016/j.jssas.2014.01.001.; Kang S, Hao X, Du T, Tong L, Su X, Lu H, et al. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric Water Manag 2017;179:5–17. https://doi.org/10.1016/j.agwat.2016.05.007.; Zhao J, Li M, Guo P, Zhang C, Tan Q. Agricultural water productivity oriented water resources allocation based on the coordination of multiple factors. Water (Switzerland) 2017;9. https://doi.org/10.3390/w9070490.; Li X, Liu N, You L, Ke X, Liu H, Huang M, et al. Patterns of cereal yield growth across China from 1980 to 2010 and their implications for food production and food security. PLoS One 2016;11:1–18. https://doi.org/10.1371/journal.pone.0159061.; Du T, Kang S, Sun J, Zhang X, Zhang J. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agric Water Manag 2010;97:66–74. https://doi.org/10.1016/j.agwat.2009.08.011.; Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur 2013;5:291–317. https://doi.org/10.1007/s12571-013-0263-y.; Grote U, Fasse A, Nguyen TT, Erenstein O. Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Front Sustain Food Syst 2021;4:1–17. https://doi.org/10.3389/fsufs.2020.617009.; Li Q, Hu G. Multistage stochastic programming modeling for farmland irrigation management under uncertainty. PLoS One 2020;15:1–21. https://doi.org/10.1371/journal.pone.0233723.; Jamal A, Linker R, Housh M. Comparison of Various Stochastic Approaches for Irrigation Scheduling Using Seasonal Climate Forecasts. J Water Resour Plan Manag 2018;144:04018028. https://doi.org/10.1061/(asce)wr.1943-5452.0000951.; Linker R. Stochastic model-based optimization of irrigation scheduling. Agric Water Manag 2021;243:106480. https://doi.org/10.1016/j.agwat.2020.106480.; Fu Q, Li L, Li M, Li T, Liu D, Hou R, et al. An interval parameter conditional value-at-risk two-stage stochastic programming model for sustainable regional water allocation under different representative concentration pathways scenarios. J Hydrol (Amst) 2018;564:115–24. https://doi.org/10.1016/j.jhydrol.2018.07.008.; Li C, Grossmann IE. A Review of Stochastic Programming Methods for Optimization of Process Systems Under Uncertainty. Frontiers in Chemical Engineering 2021;2:1–20. https://doi.org/10.3389/fceng.2020.622241.; Sahinidis N V. Optimization under uncertainty: state-of-the-art and opportunities. Comput Chem Eng 2004;28:971–83. https://doi.org/https://doi.org/10.1016/j.compchemeng.2003.09.017.; Gabr ME, Fattouh EM. Assessment of irrigation management practices using FAO-CROPWAT 8, case studies: Tina Plain and East South El-Kantara, Sinai, Egypt. Ain Shams Engineering Journal 2021;12:1623–36. https://doi.org/https://doi.org/10.1016/j.asej.2020.09.017.; Dupačová J, Consigli G, Wallace SW. Scenarios for Multistage Stochastic Programs. Ann Oper Res 2000;100:25–53. https://doi.org/10.1023/A:1019206915174.; Mitra S, Lim S, Karathanasopoulos A. Regression based scenario generation: Applications for performance management. Operations Research Perspectives 2019;6:100095. https://doi.org/https://doi.org/10.1016/j.orp.2018.100095.; Høyland K, Kaut M, Wallace SW. A Heuristic for Moment-Matching Scenario Generation. Comput Optim Appl 2003;24:169–85. https://doi.org/10.1023/A:1021853807313.; Høyland K, Wallace SW. Generating Scenario Trees for Multistage Decision Problems. Manage Sci 2001;47:295–307. https://doi.org/10.1287/mnsc.47.2.295.9834.; Prairie J, Nowak K, Rajagopalan B, Lall U, Fulp T. A stochastic nonparametric approach for streamflow generation combining observational and paleoreconstructed data. Water Resour Res 2008;44. https://doi.org/https://doi.org/10.1029/2007WR006684.; Raseman WJ, Rajagopalan B, Kasprzyk JR, Kleiber W. Nearest neighbor time series bootstrap for generating influent water quality scenarios. Stochastic Environmental Research and Risk Assessment 2020;34:23–31. https://doi.org/10.1007/s00477-019-01762-3.; Pal D, Mahapatra GS. Parametric Functional Representation of Interval Number with Arithmetic Operations. Int J Appl Comput Math 2017;3:459–69. https://doi.org/10.1007/s40819-015-0113-z.; Knierim A, Kernecker M, Erdle K, Kraus T, Borges F, Wurbs A. Smart farming technology innovations – Insights and reflections from the German Smart-AKIS hub. NJAS - Wageningen Journal of Life Sciences 2019;90–91:100314. https://doi.org/10.1016/j.njas.2019.100314.; Fragomeli R, Annunziata A, Punzo G. Promoting the Transition towards Agriculture 4.0: A Systematic Literature Review on Drivers and Barriers. Sustainability 2024;16:2425. https://doi.org/10.3390/su16062425.; Giua C, Materia VC, Camanzi L. Management information system adoption at the farm level: evidence from the literature. British Food Journal 2021;123:884–909. https://doi.org/10.1108/BFJ-05-2020-0420.; Qazi S, Khawaja BA, Farooq QU. IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review, Current Challenges and Future Trends. IEEE Access 2022;10:21219–35. https://doi.org/10.1109/ACCESS.2022.3152544.; Jerhamre E, Carlberg CJC, van Zoest V. Exploring the susceptibility of smart farming: Identified opportunities and challenges. Smart Agricultural Technology 2022;2:100026. https://doi.org/10.1016/j.atech.2021.100026.; Xin J, Zazueta F. Technology trends in ICT - towards data-driven, farmer-centered and knowledge-based hybrid cloud architectures for smart farming. Agricultural Engineering International: CIGR Journal 2016;18:275–9.; Ayre M, Mc Collum V, Waters W, Samson P, Curro A, Nettle R, et al. Supporting and practising digital innovation with advisers in smart farming. NJAS - Wageningen Journal of Life Sciences 2019;90–91:100302. https://doi.org/10.1016/j.njas.2019.05.001.; Caffaro F, Micheletti Cremasco M, Roccato M, Cavallo E. Drivers of farmers’ intention to adopt technological innovations in Italy: The role of information sources, perceived usefulness, and perceived ease of use. J Rural Stud 2020;76:264–71. https://doi.org/10.1016/j.jrurstud.2020.04.028.; Michels M, Fecke W, Feil J, Musshoff O, Lülfs‐Baden F, Krone S. “Anytime, anyplace, anywhere”—A sample selection model of mobile internet adoption in german agriculture. Agribusiness 2020;36:192–207. https://doi.org/10.1002/agr.21635.; Kernecker M, Knierim A, Wurbs A, Kraus T, Borges F. Experience versus expectation: farmers’ perceptions of smart farming technologies for cropping systems across Europe. Precis Agric 2020;21:34–50. https://doi.org/10.1007/s11119-019-09651-z.; Choi W-H, Jie M-S. Auto Plants Growing Embedded System Design Using Wireless Sensor Networks. International Journal of Multimedia and Ubiquitous Engineering 2016;11:147–56. https://doi.org/10.14257/ijmue.2016.11.4.15.; Suakanto S, Engel VJL, Hutagalung M, Angela D. Sensor networks data acquisition and task management for decision support of smart farming. 2016 International Conference on Information Technology Systems and Innovation (ICITSI), IEEE; 2016, p. 1–5. https://doi.org/10.1109/ICITSI.2016.7858233.; Musat G-A, Colezea M, Pop F, Negru C, Mocanu M, Esposito C, et al. Advanced services for efficient management of smart farms. J Parallel Distrib Comput 2018;116:3–17. https://doi.org/10.1016/j.jpdc.2017.10.017.; Doshi Z, Nadkarni S, Agrawal R, Shah N. AgroConsultant: Intelligent Crop Recommendation System Using Machine Learning Algorithms. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), IEEE; 2018, p. 1–6. https://doi.org/10.1109/ICCUBEA.2018.8697349.; Alves RG, Souza G, Maia RF, Tran ALH, Kamienski C, Soininen J-P, et al. A digital twin for smart farming. 2019 IEEE Global Humanitarian Technology Conference (GHTC), IEEE; 2019, p. 1–4. https://doi.org/10.1109/GHTC46095.2019.9033075.; Verdouw C, Sundmaeker H, Tekinerdogan B, Conzon D, Montanaro T. Architecture framework of IoT-based food and farm systems: A multiple case study. Comput Electron Agric 2019;165:104939. https://doi.org/10.1016/j.compag.2019.104939.; Marimuthu R, Alamelu M, Suresh A, Kanagaraj S. Design and development of a persuasive technology method to encourage smart farming. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), IEEE; 2017, p. 165–9. https://doi.org/10.1109/R10-HTC.2017.8288930.; Balafoutis AT, Evert FK Van, Fountas S. Smart Farming Technology Trends: Economic and Environmental Effects, Labor Impact, and Adoption Readiness. Agronomy 2020;10:743. https://doi.org/10.3390/agronomy10050743.; Wiseman L, Sanderson J, Zhang A, Jakku E. Farmers and their data: An examination of farmers’ reluctance to share their data through the lens of the laws impacting smart farming. NJAS - Wageningen Journal of Life Sciences 2019;90–91:100301. https://doi.org/10.1016/j.njas.2019.04.007.; Zhai Z, Martínez JF, Beltran V, Martínez NL. Decision support systems for agriculture 4.0: Survey and challenges. Comput Electron Agric 2020;170:105256. https://doi.org/10.1016/j.compag.2020.105256.; Kampker A, Stich V, Jussen P, Moser B, Kuntz J. Business Models for Industrial Smart Services – The Example of a Digital Twin for a Product-Service-System for Potato Harvesting. Procedia CIRP 2019;83:534–40. https://doi.org/10.1016/j.procir.2019.04.114.; Makinde A, Islam MM, Scott SD. Opportunities for ACI in PLF. Proceedings of the Sixth International Conference on Animal-Computer Interaction, New York, NY, USA: ACM; 2019, p. 1–6. https://doi.org/10.1145/3371049.3371055.; Sarri D, Lombardo S, Pagliai A, Perna C, Lisci R, De Pascale V, et al. Smart Farming Introduction in Wine Farms: A Systematic Review and a New Proposal. Sustainability 2020;12:7191. https://doi.org/10.3390/su12177191.; Ingram J, Maye D. What Are the Implications of Digitalisation for Agricultural Knowledge? Front Sustain Food Syst 2020;4. https://doi.org/10.3389/fsufs.2020.00066.; Talero Sarmiento LH, Parra-Sánchez DT. Smart Farming Adoption. Definitions, Qeios; 2023. https://doi.org/10.32388/6UNXQB.2.; Congreso de Colombia. Ley 1955 de 2019 2019.; Congreso de Colombia. Ley 1978 de 2019 2019:19.; Ministerio de Tecnologías de la Información y las Comunicaciones. Decreto 1078 de 2015 2015.; Ministerio de Tecnologias de la Informacion y las Comunicaciones. Decreto 415 de 2016 2016:4.; Consejo Nacional de Política Económica y Social. Documento CONPES 4069. Política Nacional de Ciencia, Tecnología e Innovación 2022-2031 2021:1–108.; Consejo Nacional de Política Económica y Social. Documento CONPES 4001. Declaración de Importancia Estratégica del Proyecto Nacional Acceso Universal a las Tecnologías de la Información y las Comunicaciones en Zonas Rurales o Apartadas 2020:1–42.; Consejo Nacional de Política Económica y Social. Documento CONPES 4085. Política de Internacionalización para el Desarrollo Productivo Regional 2022:1–108.; Consejo Nacional de Política Económica y Social. Documento CONPES 4129. Política Nacional de Reindustrialización 2023:1–108.; Ballesteros J, Isaza C. Adaptation Measures to Climate Change as Perceived by Smallholder Farmers in the Andes. J Ethnobiol 2021;41. https://doi.org/10.2993/0278-0771-41.3.428.; Jiménez D, Delerce S, Dorado H, Cock J, Muñoz LA, Agamez A, et al. A scalable scheme to implement data-driven agriculture for small-scale farmers. Glob Food Sec 2019;23. https://doi.org/10.1016/j.gfs.2019.08.004.; De la Peña N, Granados OM. Artificial intelligence solutions to reduce information asymmetry for Colombian cocoa small-scale farmers. Information Processing in Agriculture 2023. https://doi.org/10.1016/j.inpa.2023.03.001.; Acosta-Alba I, Boissy J, Chia E, Andrieu N. Integrating diversity of smallholder coffee cropping systems in environmental analysis. International Journal of Life Cycle Assessment 2020;25. https://doi.org/10.1007/s11367-019-01689-5.; Nova NA, González RA. A financial inclusion app and USSD service for farmers in rural Colombia. Information Development 2022. https://doi.org/10.1177/02666669221120050.; Camacho A, Conover E. The impact of receiving SMS price and weather information on small scale farmers in Colombia. World Dev 2019;123. https://doi.org/10.1016/j.worlddev.2019.06.020.; Khatri-Chhetri A, Costa Junior C, Wollenberg E. Greenhouse gas mitigation co-benefits across the global agricultural development programs. Global Environmental Change 2022;76. https://doi.org/10.1016/j.gloenvcha.2022.102586.; Guo MH, Xu TX, Liu JJ, Liu ZN, Jiang PT, Mu TJ, et al. Attention mechanisms in computer vision: A survey. Comput Vis Media (Beijing) 2022;8. https://doi.org/10.1007/s41095-022-0271-y.; Ghazal S, Munir A, Qureshi WS. Computer vision in smart agriculture and precision farming: Techniques and applications. Artificial Intelligence in Agriculture 2024;13:64–83. https://doi.org/10.1016/j.aiia.2024.06.004.; Ona Ona AJ, Grijalva F, Proano K, Acuna B, Garcia M. Classification of fresh cocoa beans with pulp based on computer vision. 2020 IEEE ANDESCON, ANDESCON 2020, Institute of Electrical and Electronics Engineers Inc.; 2020. https://doi.org/10.1109/ANDESCON50619.2020.9272188.; Parra P, Negrete T, Llaguno J, Vega N. Computer Vision Methods in the Process of Fermentation of the Cocoa Bean. 2018 IEEE 3rd Ecuador Technical Chapters Meeting, ETCM 2018, Institute of Electrical and Electronics Engineers Inc.; 2018. https://doi.org/10.1109/ETCM.2018.8580345.; Parra P, Negrete T, Llaguno J, Vega N. Computer Vision Techniques Applied in the Estimation of the Cocoa Beans Fermentation Grade. In: J.D.C. C, editor. 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings, Institute of Electrical and Electronics Engineers Inc.; 2018. https://doi.org/10.1109/ANDESCON.2018.8564569.; Jimenez JC, Amores FM, Solórzano EG, Rodríguez GA, La Mantia A, Blasi P, et al. Differentiation of Ecuadorian National and CCN-51 cocoa beans and their mixtures by computer vision. J Sci Food Agric 2018;98:2824–9. https://doi.org/10.1002/jsfa.8790.; Mite-Baidal K, Solís-Avilés E, Martínez-Carriel T, Marcillo-Plaza A, Cruz-Ibarra E, Baque-Bustamante W. Analysis of Computer Vision Algorithms to Determine the Quality of Fermented Cocoa (Theobroma Cacao): Systematic Literature Review. Advances in Intelligent Systems and Computing 2019;901:79–87. https://doi.org/10.1007/978-3-030-10728-4_9.; Tian H, Wang T, Liu Y, Qiao X, Li Y. Computer vision technology in agricultural automation —A review. Information Processing in Agriculture 2020;7. https://doi.org/10.1016/j.inpa.2019.09.006.; Daniela CPK, Andrea HFL, David PMC. Desarrollo de un prototipo funcional de software para estimar la producción de cacao, haciendo uso de herramientas de aprendizaje profundo y visión por computador 2021.; Sebastián SAJ, Andrés TVC. Prototipo de aplicación móvil para la identificación de mazorcas de cacao enfermas haciendo uso de visión por computadora y aprendizaje de máquina 2020.; Felipe HGJ, Pablo RGJ, Sebastián RAJ. Aplicación para estimar el nivel de madurez en las mazorcas de cacao haciendo uso de visión por computador y aprendizaje de máquina “DELECO” 2020.; Asitoakor BK, Asare R, Ræbild A, Ravn HP, Eziah VY, Owusu K, et al. Influences of climate variability on cocoa health and productivity in agroforestry systems in Ghana. Agric For Meteorol 2022;327. https://doi.org/10.1016/j.agrformet.2022.109199.; de Almeida SLH, de A. Silva S, de S. Lima JS, Rosas JTF, Capelini VA. Fuzzy modeling of the risk of cacao moniliasis occurrence in bahia state, brazil [Modelagem fuzzy do risco de ocorrência da monilíase do cacaueiro no estado da bahia]. Revista Brasileira de Engenharia Agricola e Ambiental 2020;24:225–30. https://doi.org/10.1590/1807-1929/agriambi.v24n4p225-230.; Flament M-H, Kebe I, Clément D, Pieretti I, Risterucci A-M, N’Goran J-A-K, et al. Genetic mapping of resistance factors to Phytophthora palmivora in cocoa. Genome 2001;44:79–85. https://doi.org/10.1139/gen-44-1-79.; Pinto LRM, Silva SDVM, Yamada MM. Evaluation of phenotypic stability of resistance to Phytophthora spp. in cacao clones. Fitopatol Bras 2007;32:453–7. https://doi.org/10.1590/S0100-41582007000600001.; Ndoumbè-Nkeng M, Efombagn MIB, Nyassé S, Nyemb E, Sache I, Cilas C. Relationships between cocoa Phytophthora pod rot disease and climatic variables in Cameroon. Canadian Journal of Plant Pathology 2009;31:309–20. https://doi.org/10.1080/07060660909507605.; Boone L, Van linden V, De Meester S, Vandecasteele B, Muylle H, Roldán-Ruiz I, et al. Environmental life cycle assessment of grain maize production: An analysis of factors causing variability. Science of the Total Environment 2016;553. https://doi.org/10.1016/j.scitotenv.2016.02.089.; Rojas FM, Silva JAC, Betancourt FR. Intelligent model for the detection of the phytophthora in the cocoa cropping, “Black Cob.” ARPN Journal of Engineering and Applied Sciences 2020;15:1366–70.; Djocgoue PF, Simo C, Mbouobda HD, Boudjeko T, Nankeu DJ, Omokolo ND. Assessment and Heritability of productivity and tolerance level to Phytophthora megakarya in two hybrid populations of Theobroma cacao. Journal of Plant Pathology 2010;92:607–17.; Soberanis W, Ríos R, Arévalo E, Zúñiga L, Cabezas O, Krauss U. Increased frequency of phytosanitary pod removal in cacao (Theobroma cacao) increases yield economically in eastern Peru. Crop Protection 1999;18. https://doi.org/10.1016/S0261-2194(99)00073-3.; Krauss U, Soberanis W. Effect of fertilization and biocontrol application frequency on cocoa pod diseases. Biological Control 2002;24. https://doi.org/10.1016/S1049-9644(02)00007-5.; Rojas KE, García MC, Cerón IX, Ortiz RE, Tarazona MP. Identification of potential maturity indicators for harvesting cacao. Heliyon 2020;6. https://doi.org/10.1016/j.heliyon.2020.e03416.; Mavridou E, Vrochidou E, Papakostas GA, Pachidis T, Kaburlasos VG. Machine vision systems in precision agriculture for crop farming. J Imaging 2019;5. https://doi.org/10.3390/jimaging5120089.; González-Esquiva JM, Oates MJ, García-Mateos G, Moros-Valle B, Molina-Martínez JM, Ruiz-Canales A. Development of a visual monitoring system for water balance estimation of horticultural crops using low cost cameras. Comput Electron Agric 2017;141. https://doi.org/10.1016/j.compag.2017.07.001.; Asante PA, Rozendaal DMA, Rahn E, Zuidema PA, Quaye AK, Asare R, et al. Unravelling drivers of high variability of on-farm cocoa yields across environmental gradients in Ghana. Agric Syst 2021;193. https://doi.org/10.1016/j.agsy.2021.103214.; Carr TW, Mkuhlani S, Segnon AC, Ali Z, Zougmoré R, Dangour AD, et al. Climate change impacts and adaptation strategies for crops in West Africa: A systematic review. Environmental Research Letters 2022;17. https://doi.org/10.1088/1748-9326/ac61c8.; Rêgo APB, Mora-Ocampo IY, Corrêa RX. Interactions of Different Species of Phytophthora with Cacao Induce Genetic, Biochemical, and Morphological Plant Alterations. Microorganisms 2023;11. https://doi.org/10.3390/microorganisms11051172.; Lake L, Guilioni L, French B, Sadras VO. Chapter 9 - Field pea. In: Sadras VO, Calderini DF, editors. Crop Physiology Case Histories for Major Crops, Academic Press; 2021, p. 320–41. https://doi.org/https://doi.org/10.1016/B978-0-12-819194-1.00009-8.; Van Ittersum MK, Howden SM, Asseng S. Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agric Ecosyst Environ 2003;97. https://doi.org/10.1016/S0167-8809(03)00114-2.; Woli P, Jones JW, Ingram KT, Fraisse CW. Agricultural reference index for drought (ARID). Agron J 2012;104. https://doi.org/10.2134/agronj2011.0286.; Allen RG, Pereira LS, Raes D, Smith M, W a B. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. Irrigation and Drainage 1998. https://doi.org/10.1016/j.eja.2010.12.001.; Feng Y, Cui N, Gong D, Zhang Q, Zhao L. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agric Water Manag 2017;193:163–73. https://doi.org/10.1016/j.agwat.2017.08.003.; Brouwer C, Goffeau A, Heibloem M. Irrigation Water Management: Training Manual No. 1-Introduction to Irrigation. Irrigation Water Management 1985.; H. L. Penman. Natural Evaporation from Open Water, Bare Soil and Grass. Proc R Soc Lond A Math Phys Sci 1948;193.; Osakabe Y, Osakabe K, Shinozaki K, Tran LSP. Response of plants to water stress. Front Plant Sci 2014;5. https://doi.org/10.3389/fpls.2014.00086.; Sadras VO, Villalobos FJ, Orgaz F, Fereres E. Effects of Water Stress on Crop Production. Principles of Agronomy for Sustainable Agriculture, Cham: Springer International Publishing; 2016, p. 189–204. https://doi.org/10.1007/978-3-319-46116-8_14.; NASA. The Power Project. NASA Prediction Of Worldwide Energy Resources 2022:1–1. https://power.larc.nasa.gov/ (accessed August 22, 2022).; ten Hoopen GM, Deberdt P, Mbenoun M, Cilas C. Modelling cacao pod growth: implications for disease control. Annals of Applied Biology 2012;160:260–72. https://doi.org/10.1111/j.1744-7348.2012.00539.x.; León-Moreno C, Rojas-Molina J, Castilla-Campos C. Physicochemical characteristics of cacao (Theobroma cacao L.) soils in colombia: Are they adequate to improve productivity? [Características fisicoquímicas de los suelos con cacao (Theobroma cacao L.) en colombia: ¿están adecuados para mejorar la producti. Agron Colomb 2019;37:52–62. https://doi.org/10.15446/agron.colomb.v37n1.70545.; Conklin HE. Soil Survey Manual. Journal of Farm Economics 1952;34:145. https://doi.org/10.2307/1233734.; Saxton KE, Rawls WJ. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal 2006;70:1569–78. https://doi.org/10.2136/sssaj2005.0117.; Hillel D. Water Entry into Soil. Introduction to Environmental Soil Physics, Elsevier; 2003, p. 259–82. https://doi.org/10.1016/B978-012348655-4/50015-0.; Minnesota Stormwater Steering Committee. Minnesota Stormwater Manual 2008.; Wood GAR, Lass RA. Cocoa. Oxford, UK: Blackwell Science Ltd; 2001. https://doi.org/10.1002/9780470698983.; Gateau-Rey L, Tanner EVJ, Rapidel B, Marelli JP, Royaert S. Climate change could threaten cocoa production: Effects of 2015-16 El Niño-related drought on cocoa agroforests in Bahia, Brazil. PLoS One 2018;13. https://doi.org/10.1371/journal.pone.0200454.; Jahanshiri E, Azam-Ali S, Gregory PJ, Wimalasiri EM. A Shortlisting Framework for Crop Diversification in the United Kingdom. Agriculture 2023;13:787. https://doi.org/10.3390/agriculture13040787.; Lahive F, Hadley P, Daymond AJ. The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agron Sustain Dev 2019;39. https://doi.org/10.1007/s13593-018-0552-0.; Nóia Júnior R de S, Asseng S, García-Vila M, Liu K, Stocca V, dos Santos Vianna M, et al. A call to action for global research on the implications of waterlogging for wheat growth and yield. Agric Water Manag 2023;284:108334. https://doi.org/10.1016/j.agwat.2023.108334.; Zhang F, Guo S, Liu X, Wang Y, Engel BA, Guo P. Towards sustainable water management in an arid agricultural region: A multi-level multi-objective stochastic approach. Agric Syst 2020;182:102848. https://doi.org/10.1016/j.agsy.2020.102848.; Wildemeersch M, Tang S, Ermolieva T, Ermoliev Y, Rovenskaya E, Obersteiner M. Containing the Risk of Phosphorus Pollution in Agricultural Watersheds. Sustainability (Switzerland) 2022;14. https://doi.org/10.3390/su14031717.; Zhang F, Tang P, Zhou T, Liu J, Li F, Shan B. Cloud-Based Framework for Precision Agriculture: Optimizing Scarce Water Resources in Arid Environments amid Uncertainties. Agronomy 2024;14. https://doi.org/10.3390/agronomy14010045.; Mendoza JE, Rousseau LM, Villegas JG. A hybrid metaheuristic for the vehicle routing problem with stochastic demand and duration constraints. Journal of Heuristics 2016;22. https://doi.org/10.1007/s10732-015-9281-6.; Marín-Cano CC, Sierra-Aguilar JE, López-Lezama JM, Jaramillo-Duque Á, Villegas JG. A novel strategy to reduce computational burden of the stochastic security constrained unit commitment problem. Energies (Basel) 2020;13. https://doi.org/10.3390/en13153777.; Li Q, Hu G. Multistage stochastic programming modeling for farmland irrigation management under uncertainty. PLoS One 2020;15. https://doi.org/10.1371/journal.pone.0233723.; Alizadeh H, Mousavi SJ. Coupled stochastic soil moisture simulation-optimization model of deficit irrigation. Water Resour Res 2013;49. https://doi.org/10.1002/wrcr.20282.; Chrispell JC, Jenkins EW, Kavanagh KR, Parno MD. Characterizing Prediction Uncertainty in Agricultural Modeling via a Coupled Statistical–Physical Framework. Modelling 2021;2. https://doi.org/10.3390/modelling2040040.; Young M, Young J, Kingwell RS, Vercoe PE. Representing weather-year variation in whole-farm optimisation models: Four-stage single-sequence vs eight-stage multi-sequence. Australian Journal of Agricultural and Resource Economics 2024;68. https://doi.org/10.1111/1467-8489.12539.; Conejo AJ, Carrión M, Morales JM. Decision Making Under Uncertainty in Electricity Markets. vol. 153. Boston, MA: Springer US; 2010. https://doi.org/10.1007/978-1-4419-7421-1.; Neusser K. Time Series Econometrics. Cham: Springer International Publishing; 2016. https://doi.org/10.1007/978-3-319-32862-1.; Xu D, Chen Z, Yang L. Scenario tree generation approaches using K-means and LP moment matching methods. J Comput Appl Math 2012;236:4561–79. https://doi.org/10.1016/j.cam.2012.05.020.; Dupačová J, Gröwe-Kuska N, Römisch W. Scenario reduction in stochastic programming. Math Program 2003;95:493–511. https://doi.org/10.1007/s10107-002-0331-0.; Edwards DA. On the Kantorovich-Rubinstein theorem. Expo Math 2011;29. https://doi.org/10.1016/j.exmath.2011.06.005.; Horejšová M, Vitali S, Kopa M, Moriggia V. Evaluation of scenario reduction algorithms with nested distance. Computational Management Science 2020;17. https://doi.org/10.1007/s10287-020-00375-4.; Pflug GC, Pichler A. From empirical observations to tree models for stochastic optimization: Convergence properties. SIAM Journal on Optimization 2016;26. https://doi.org/10.1137/15M1043376.; Almeida A-AF de, Valle RR. Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology 2007;19:425–48. https://doi.org/10.1590/S1677-04202007000400011.; Zhang Y, Liu G, Dong H, Li C. Waterlogging stress in cotton: Damage, adaptability, alleviation strategies, and mechanisms. Crop Journal 2021;9. https://doi.org/10.1016/j.cj.2020.08.005.; Jaramillo-Robledo A. Lluvias Máximas En 24 Horas Para La Región Andina De Colombia. Cenicafé 2005;56.; Muruganantham P, Wibowo S, Grandhi S, Samrat NH, Islam N. A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sens (Basel) 2022;14. https://doi.org/10.3390/rs14091990.; Dissanayake DMPW, Rathnayake RMKT, Chathuranga LLG. Crop Yield Forecasting using Machine Learning Techniques - A Systematic Literature Review. KDU Journal of Multidisciplinary Studies 2023;5. https://doi.org/10.4038/kjms.v5i1.62.; van Klompenburg T, Kassahun A, Catal C. Crop yield prediction using machine learning: A systematic literature review. Comput Electron Agric 2020;177. https://doi.org/10.1016/j.compag.2020.105709.; Manghwar H, Hussain A, Alam I, Khoso MA, Ali Q, Liu F. Waterlogging stress in plants: Unraveling the mechanisms and impacts on growth, development, and productivity. Environ Exp Bot 2024;224:105824. https://doi.org/10.1016/j.envexpbot.2024.105824.; The web framework for perfectionists with deadlines %7C Django n.d. https://www.djangoproject.com/ (accessed August 11, 2022).; Israel GD, Taylor CL. Can response order bias evaluations? Eval Program Plann 1990;13:365–71. https://doi.org/10.1016/0149-7189(90)90021-N.; Dhillon BS. Usability engineering life-cycle stages and important associated areas. Systems reliability and usability for engineers, 2019. https://doi.org/10.1201/9780429488528-9.; Alexander IF, Maiden N. Scenarios, stories, use cases: through the systems development life-cycle. John Wiley \& Sons; 2005.; Luna Ostos LM, Roche L, Coroama V, Finkbeiner M. Social life cycle assessment in the chocolate industry: A Colombian case study with Luker Chocolate. Int J Life Cycle Assess 2024. https://doi.org/10.1007/s11367-023-02261-y.; Global Forest Watch. Colombian Forest Statistics. Colombian Forest Statistics 2024:1–1. https://www.globalforestwatch.org/dashboards/country/COL/?map=eyJjYW5Cb3VuZCI6dHJ1ZX0%3D (accessed February 17, 2024).; Ballesteros Possú W, Navia JF, Solarte JG. Socio-economic characterization of the traditional cacao agroforestry system (Theobroma cacao L.). Revista de Ciencias Agrícolas 2021;38. https://doi.org/10.22267/rcia.213802.156.; Zúñiga-Upegui P, Arnaiz-Schmitz C, Herrero-Jáuregui C, Smart SM, López-Santiago CA, Schmitz MF. Exploring social-ecological systems in the transition from war to peace: A scenario-based approach to forecasting the post-conflict landscape in a Colombian region. Science of the Total Environment 2019;695. https://doi.org/10.1016/j.scitotenv.2019.133874.; Rios F, Rehpani C, Ruiz A, Lecaro J. Estrategias país para la oferta de cacaos especiales -Políticas e iniciativas privadas exitosas en el Perú, Ecuador, Colombia y República Dominicana. Bogota: 2017.; Varona ME, Díaz SM, Briceño L, Sánchez-Infante CI, Torres CH, Palma RM, et al. Determining social factors related to pesticide poisoning among rice farmers in Colombia. Revista de Salud Publica 2016;18. https://doi.org/10.15446/rsap.v18n4.52617.; Díaz-Criollo S, Palma M, Monroy-García AA, Idrovo AJ, Combariza D, Varona-Uribe ME. Chronic pesticide mixture exposure including paraquat and respiratory outcomes among colombian farmers. Ind Health 2020;58. https://doi.org/10.2486/indhealth.2018-0111.; Etaware PM. Some Identifiable Factors Responsible for the Variation in Cocoa Production in Nigeria and Other Cocoa Producing Nations, Adjudicated by Their Contributions to the Global Market. Frontiers in Agronomy 2022;4. https://doi.org/10.3389/fagro.2022.731019.; Bravo D, Santander M, Rodríguez J, Escobar S, Ramtahal G, Atkinson R. ‘From soil to chocolate bar’: identifying critical steps in the journey of cadmium in a Colombian cacao plantation. Food Additives and Contaminants - Part A 2022;39. https://doi.org/10.1080/19440049.2022.2040747.; Rodríguez Albarrcín HS, Darghan Contreras AE, Henao MC. Spatial regression modeling of soils with high cadmium content in a cocoa producing area of Central Colombia. Geoderma Regional 2019;16. https://doi.org/10.1016/j.geodrs.2019.e00214.; Gil A, Brennan M, Chaudhary AK, Maximova SN. Evaluation of cacao projects in Colombia: The case of the rural Productive Partnerships Project (PAAP). Eval Program Plann 2023;97. https://doi.org/10.1016/j.evalprogplan.2023.102230.; Puentes-Páramo YJ, Menjivar-Flores JC, Aranzazu-Hernández F. Concentración de nutrientes en hojas, una herramienta para el diagnóstico nutricional en cacao. Agronomía Mesoamericana 2016;27. https://doi.org/10.15517/am.v27i2.19728.; González-Orozco CE, Pesca A. Regionalization of Cacao (Theobroma cacao L.) in Colombia. Front Sustain Food Syst 2022;6. https://doi.org/10.3389/fsufs.2022.925800.; FEDECACAO. Caracterización de productores de cacao 2017-2021. Bogota: 2022.; Cascant‐Sempere MJ, Dávila C, Vesga S. In search of a substitution model for coca in Colombia: Buffalo, cocoa, and coffee in Peasant Reserve Zones. Lat Am Policy 2023;14:388–407. https://doi.org/10.1111/lamp.12312.; Ocampo J. How cocoa is driving peace in Colombia. How Cocoa Is Driving Peace in Colombia 2023:1–1. https://www.confectionerynews.com/Article/2023/06/23/how-cocoa-is-driving-peace-in-colombia (accessed September 23, 2023).; United States Department of Agriculture - USDA. The Colombian Cacao Industry. Bogota: 2022.; Partners of the Americas. Cacao for Development. Landing Page 2024:1–1. https://www.partners.net/program/cacao-for-development/#:~:text=C4D%20is%20a%20US%2425,complementary%20supply%20chains%20in%20Colombia. (accessed February 26, 2024).; Prosantander. Informe de Desarrollo de Santander 2022. Bucaramanga: 2022.; Gobernación de Santander. Plan de desarrollo departamental: Santander nos une. Bucaramanga: 2016.; Torres-Tovar M, Helo-Molina DS, Rodríguez-Herrera YP, Sotelo-Suárez NR. Child labor and agricultural production in Colombia. Revista Facultad de Medicina 2019;67. https://doi.org/10.15446/revfacmed.v67n4.72833.; Jaimes Suárez YY, Agudelo Castañeda GA, Báez Daza EY, Rengifo Estrada GA, Rojas Molina J. Modelo productivo para el cultivo de cacao (Theobroma cacao L.) en el departamento de Santander. 2021. https://doi.org/10.21930/agrosavia.model.7404647.; Göçmen Ö, Coşkun H. The effects of the six thinking hats and speed on creativity in brainstorming. Think Skills Creat 2019;31. https://doi.org/10.1016/j.tsc.2019.02.006.; Langer AM. System Development Life Cycle (SDLC). Analysis and Design of Information Systems, London: Springer London; 2008, p. 10–20. https://doi.org/10.1007/978-1-84628-655-1_2.; Bugayenko Y, Bakare A, Cheverda A, Farina M, Kruglov A, Plaksin Y, et al. Prioritizing tasks in software development: A systematic literature review. PLoS One 2023;18:e0283838. https://doi.org/10.1371/journal.pone.0283838.; Sluser B, Plavan O, Teodosiu C. Environmental impact and risk assessment. Assessing Progress Towards Sustainability, Elsevier; 2022, p. 189–217. https://doi.org/10.1016/B978-0-323-85851-9.00004-3.; Saaty RW. The analytic hierarchy process-what it is and how it is used. Mathematical Modelling 1987;9. https://doi.org/10.1016/0270-0255(87)90473-8.; Fishburn PC. Nontransitive preferences in decision theory. J Risk Uncertain 1991;4:113–34. https://doi.org/10.1007/BF00056121.; Mitta DA. A Methodology for Quantifying Expert System Usability. Human Factors: The Journal of the Human Factors and Ergonomics Society 1991;33:233–45. https://doi.org/10.1177/001872089103300207.; Shyr WJ, Wei BL, Liang YC. Evaluating Students’ Acceptance Intention of Augmented Reality in Automation Systems Using the Technology Acceptance Model. Sustainability (Switzerland) 2024;16. https://doi.org/10.3390/su16052015.; Generosi A, Villafan JY, Giraldi L, Ceccacci S, Mengoni M. A Test Management System to Support Remote Usability Assessment of Web Applications. Information 2022;13:505. https://doi.org/10.3390/info13100505.; Maqbool B, Herold S. Potential effectiveness and efficiency issues in usability evaluation within digital health: A systematic literature review. Journal of Systems and Software 2024;208:111881. https://doi.org/10.1016/j.jss.2023.111881.; Albert W, Tullis T, Albert W. Measuring the User Experience. 2008. https://doi.org/10.1016/B978-0-12-373558-4.X0001-5.; Benaida M. Developing and extending usability heuristics evaluation for user interface design via AHP. Soft Comput 2023;27. https://doi.org/10.1007/s00500-022-07803-4.; Kiliç Delice E, Güngör Z. The usability analysis with heuristic evaluation and analytic hierarchy process. Int J Ind Ergon 2009;39. https://doi.org/10.1016/j.ergon.2009.08.005.; Gulzar K, Tariq O, Mustafa S, Mohsin SM, Kazmi SN, Akber SMA, et al. A Fuzzy Analytic Hierarchy Process for Usability Requirements of Online Education Systems. IEEE Access 2023;11. https://doi.org/10.1109/ACCESS.2023.3341355.; https://apolo.unab.edu.co/en/persons/leonardo-talero; http://hdl.handle.net/20.500.12749/27895; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  14. 14
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
  18. 18
  19. 19
    Book
  20. 20
    Academic Journal