-
1Academic Journal
المؤلفون: T. S. Filatova
المصدر: Российский паразитологический журнал, Vol 18, Iss 3, Pp 339-346 (2024)
مصطلحات موضوعية: dogs, cats, nematodes, cestodes, oxantel, pyrantel, praziquantel, efficacy, Biology (General), QH301-705.5
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: T. S. Filatova, D. V. Abramochkin, Т. С. Филатова, Д. В. Абрамочкин
المساهمون: The research was supported by Russian Science Foundation, project number 22-14-00075, Работа выполнена при финансовой поддержке Российского научного фонда (проект №22-14- 00075).
المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 78, № 3 (2023); 127-138 ; Вестник Московского университета. Серия 16. Биология; Том 78, № 3 (2023); 127-138 ; 0137-0952
مصطلحات موضوعية: токсикология, oil, polycyclic aromatic hydrocarbons, phenanthrene, heart, toxicology, нефть, полициклические ароматические углеводороды, фенантрен, сердце
وصف الملف: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1254/626; Eckle P., Burgherr P., Michaux E. Risk of large oil spills: A statistical analysis in the aftermath of deepwater horizon. Environ. Sci. Technol. 2012;46(23):13002–13008.; Council N.R. Oil in the sea III: Inputs, fates, and effects. Washington: The National Academies Press; 2002.; McGurk M.D., Brown E.D. Egg-larval mortality of Pacific herring in Prince William Sound, Alaska, after the Exxon Valdez oil spill. Can. J. Fish. Aquat. Sci. 1996;53(10):2343–2354.; Hose J.E., McGurk M.D., Marty G.D., Hinton D.E., Brown E.D., Baker T.T. Sublethal effects of the (Exxon Valdez) oil spill on herring embryos and larvae: morphological, cytogenetic, and histopathological assessments, 1989–1991. Can. J. Fish. Aquat. Sci. 1996;53(10):2355–2365.; Norcross B.L., Hose J.E., Frandsen M., Brown E.D. Distribution, abundance, morphological condition, and cytogenetic abnormalities of larval herring in Prince William Sound, Alaska, following the (Exxon Valdez) oil spill. Can. J. Fish. Aquat. Sci. 1996;53(10):2376–2387.; Carvan M.J., Gallagher E.P., Goksøyr A., Hahn M.E., Joakim Larsson D.G. Fish models in toxicology. Zebrafish. 2007;4(1):9–20.; Ernst V.V., Neff J.M., Anderson J.W. The effects of the water-soluble fractions of no. 2 fuel oil on the early development of the estuarine fish, Fundulus grandis baird and girard. Environ. Pollut. 1977;14(1):25–35.; Lindén O. Biological effects of oil on early development of the Baltic herring Clupea harengus membras. Mar. Biol. 1978;45(3):273–283.; Wang Z., Stout S.A., Fingas M. Forensic fingerprinting of biomarkers for oil spill characterization and source identification. Enviromental Forensics. 2007;7(2):105–146.; Adeyemo O.K., Kroll K.J., Denslow N.D. Developmental abnormalities and differential expression of genes induced in oil and dispersant exposed Menidia beryllina embryos. Aquat. Toxicol. 2015;168:60–71.; Incardona J.P., Carls M.G., Teraoka H., Sloan C.A., Collier T.K., Scholz N.L. Aryl Hydrocarbon Receptor–Independent Toxicity of Weathered Crude Oil during Fish Development. Environ. Health Perspect. 2005;113(12):1755–1762.; Jung J.H., Hicken C.E., Boyd D., Anulacion B.F., Carls M.G., Shim W.J., Incardona J.P. Geologically distinct crude oils cause a common cardiotoxicity syndrome in developing zebrafish. Chemosphere. 2013;91(8):1146–1155.; McIntosh S., King T., Wu D., Hodson P.V. Toxicity of dispersed weathered crude oil to early life stages of Atlantic herring (Clupea harengus). Environ. Toxicol. Chem. 2010;29(5):1160–1167.; Mu J., Jin F., Ma X., Lin Z., Wang J. Comparative effects of biological and chemical dispersants on the bioavailability and toxicity of crude oil to early life stages of marine medaka (Oryzias melastigma). Environ. Toxicol. Chem. 2014;33(11):2576–2583.; Pollino C.A., Holdway D.A. Toxicity testing of crude oil and related compounds using early life stages of the crimson-spotted rainbowfish (Melanotaenia fluviatilis). Ecotoxicol. Environ. Saf. 2002;52(3):180–189.; Lawal A.T. Polycyclic aromatic hydrocarbons. A review. Cogent Environ. Sci. 2017;3(1):1339841.; Spromberg J.A., Baldwin D.H., Damm S.E., Mcintyre J.K., Huff M., Sloan C.A., Anulacion B.F., Davis J.W., Scholz N.L. Coho salmon spawner mortality in western US urban watersheds: bioinfiltration prevents lethal storm water impacts. J. Appl. Ecol. 2016;53(2):398–407.; Menzie C.A., Potocki B.B., Santodonato J. Exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol. 1992;26(7):1278–1284.; Bunton T.E. Experimental chemical carcinogenesis in fish. Toxicol. Pathol. 1996;24(5):603–618.; Hose J.E., Hannaht J.B., Puffer H.W., Landolt M.L. Histologic and skeletal abnormalities in benzo(a)pyrene-treated rainbow trout alevins. Arch. Environ. Contam. Toxicol. 1984;13(6):675–684.; Hose J.E., Hannah J.B., DiJulio D., Landolt M.L., Miller B.S., Iwaoka W.T., Felton S.P. Effects of benzo(a) pyrene on early development of flatfish. Arch. Environ. Contam. Toxicol. 1982;11(2):167–171.; Hannah J.B., Hose J.E., Landolt M.L., Miller B.S., Felton S.P., Iwaoka W.T. Benzo(a)pyrene-induced morphologic and developmental abnormalities in rainbow trout. Arch. Environ. Contam. Toxicol. 1982;11(6):727–734.; Lonning S. The effects of crude Ekofisk oil and oil products on marine fish larvae. Astarte J Arct. Biol. 1977;10:37–48.; Malins D.C. Alterations in the cellular and subcellular structure of marine teleosts and invertebrates exposed to petroleum in the laboratory and field: a critical review. Can. J. Fish. Aquat. Sci. 1982;39(6):877–889.; Denison M.S., Seidel S.D., Rogers W.J., Ziccardi M., Winter G.M., Heath-Pagliuso S. Natural and synthetic ligands for the Ah receptor. In: Puga A., Wallace K.B., editors. Molecular Biology Approaches to Toxicology. Philadelphia: Taylor & Francis; 1998:393–410.; Hahn M.E., Karchner S.I., Evans B.R., Franks D.G., Merson R.R., Lapseritis J.M. Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. J. Exp. Zool. Part A Comp. Exp. Biol. 2006;305A(9):693–706.; Billiard S.M., Timme-Laragy A.R., Wassenberg D.M., Cockman C., Di Giulio R.T. The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicol. Sci. 2006;92(2):526–536.; Clark B.W., Matson C.W., Jung D., Di Giulio R.T. AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus). Aquat. Toxicol. 2010;99(2):232–240.; Prasch A.L., Teraoka H., Carney S.A., Dong W., Hiraga T., Stegeman J.J., Heideman W., Peterson R.E. Aryl hydrocarbon receptor 2 mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin developmental toxicity in zebrafish. Toxicol. Sci. 2003;76(1):138–150.; Denison M.S., Nagy S.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. 2003;43:309–334.; Gohlke J.M., Doke D., Tipre M., Leader M., Fitzgerald T. A review of seafood safety after the Deepwater Horizon blowout. Environ. Health Perspect. 2011;119(8):1062–1069.; Denison M.S., Fisher J.M., Whitlock J.P. Inducible, receptor-dependent protein-DNA interactions at a dioxin-responsive transcriptional enhancer. Proc. Natl. Acad. Sci. U.S.A. 1988;85(8):2528–2532.; Korashy H., El-Kadi A. The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metab. Rev. 2006;38(3):411–450.; Carney S.A., Peterson R.E., Heideman W. 2,3,7,8-tetrachlorodibenzo-p-dioxin activation of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a CYP1A-independent mechanism in zebrafish. Mol. Pharmacol. 2004;66(3):512–521.; Carney S.A., Chen J., Burns C.G., Xiong K.M., Peterson R.E., Heideman W. Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol. Pharmacol. 2006;70(2):549–561.; Barron M.G., Heintz R., Rice S.D. Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. Mar. Environ. Res. 2004;58(2–5):95–100.; Wang Z., Fingas M.F. Development of oil hydrocarbon fingerprinting and identification techniques. Mar. Pollut. Bull. 2003;47(9–12):423–452.; Carls M.G., Rice S.D., Hose J.E. Sensitivity of fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval pacific herring (Clupea pallasi). Environ. Toxicol. Chem. 1999;18(3):481–493.; Heintz R.A., Short J.W., Rice S.D. Sensitivity of fish embryos to weathered crude oil: Part II. Increased mortality of pink salmon (Oncorhynchus gorbuscha) embryos incubating downstream from weathered Exxon Valdez crude oil. Environ. Toxicol. Chem. 1999;18(3):494–503.; Marty G.D., Short J.W., Dambach D.M., Willits N.H., Heintz R.A., Rice S.D., Stegeman J.J., Hinton D.E. Ascites, premature emergence, increased gonadal cell apoptosis, and cytochrome P4501A induction in pink salmon larvae continuously exposed to oilcontaminated gravel during development. Can. J. Zool. 1997;75(6):989–1007.; Marty G.D., Hose J.E., McGurk M.D., Brown E.D., Hinton D.E. Histopathology and cytogenetic evaluation of Pacific herring larvae exposed to petroleum hydrocarbons in the laboratory or in Prince William Sound, Alaska, after the Exxon Valdez oil spill. Can. J. Fish. Aquat. Sci. 1997;54(8):1846–1857.; Incardona J.P., Collier T.K., Scholz N.L. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol. Appl. Pharmacol. 2004;196(2):191–205.; Xu K., Zhang Y., Zheng J., Wang C., Chen R. Comparative toxicity of 3–5 ringed polycyclic aromatic hydrocarbons to skeletal development in zebrafish embryos and the possible reason. Bull. Environ. Contam. Toxicol. 2023;110(1):8.; Petersen G.I., Kristensen P. Bioaccumulation of lipophilic substances in fish early life stages. Environ. Toxicol. Chem. 1998;17(7):1385–1395.; de Pinho J.V., Lopes A.P., de Almeida Rodrigues P., Ferrari R.G., Hauser-Davis R.A., Conte-Junior C.A. Food safety concerns on polycyclic aromatic hydrocarbon contamination in fish products from estuarine bays throughout the American continent. Sci. Total Environ. 2023;858(Part 2):159930.; Rusni S., Sassa M., Takehana Y., Kinoshita M., Inoue K. Correlation between cytochrome P450 1A (cyp1a) mRNA expression and ambient phenanthrene and pyrene concentration in Javanese Medaka Oryzias javanicus. Fish. Sci. 2020;86(4):605–613.; Xie S., Feng Y., Zhou A., Lu Z., Zou J. Comparative analysis of two new zebrafish models: The cyp1a low-expression line and cyp1a knockout line under PAHs exposure. Gene. 2023;869:147391.; Incardona J.P., Carls M.G., Day H.L., Sloan C.A., Bolton J.L., Collier T.K., Scholz N.L. Cardiac arrhythmia is the primary response of embryonic pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environ. Sci. Technol. 2009;43(1):201–207.; Brette F., Machado B., Cros C., Incardona J.P., Scholz N.L., Block B.A. Crude oil impairs cardiac excitation-contraction coupling in fish. Science. 2014;343(6172):772–776.; Brette F., Shiels H.A., Galli G.L.J., Cros C., Incardona J.P., Scholz N.L., Block B.A. A novel cardiotoxic mechanism for a pervasive global pollutant. Sci. Rep. 2017;7:41476.; Ainerua M.O., Tinwell J., Kompella S.N., Sørhus E., White K.N., van Dongen B.E., Shiels H.A. Understanding the cardiac toxicity of the anthropogenic pollutant phenanthrene on the freshwater indicator species, the brown trout (Salmo trutta): From whole heart to cardiomyocytes. Chemosphere. 2020;239:124608.; Abramochkin D.V., Kompella S.N., Shiels H.A. Phenanthrene alters the electrical activity of atrial and ventricular myocytes of a polar fish, the Navaga cod. Aquat. Toxicol. 2021;235:105823.; Filatova T.S., Mikhailova V.B., Guskova V.O., Abramochkin D.V. The effects of phenanthrene on the electrical activity in the heart of shorthorn sculpin (Myoxocephalus scorpio). J. Evol. Biochem. Physiol. 2022;58(1):S44–S51.; Vehniäinen E.R., Haverinen J., Vornanen M. Polycyclic aromatic hydrocarbons phenanthrene and retene modify the action potential via multiple ion currents in rainbow trout Oncorhynchus mykiss cardiac myocytes. Environ. Toxicol. Chem. 2019;38(10):2145–2153.; Al-Moubarak E., Shiels H.A., Zhang Y., Du C., Hanington O., Harmer S.C., Dempsey C.E., Hancox J.C. Inhibition of the hERG potassium channel by phenanthrene: a polycyclic aromatic hydrocarbon pollutant. Cell. Mol. Life Sci. 2021;78(23):7899–7914.; Sanguinetti M.C., Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440(7083):463–469.; Nelson D., Heuer R.M., Cox G.K., Stieglitz J.D., Hoenig R., Mager E.M., Benetti D.D., Grosell M., Crossley D.A. Effects of crude oil on in situ cardiac function in young adult mahi–mahi (Coryphaena hippurus). Aquat. Toxicol. 2016;180:274–281.; Hondeghem L.M., Carlsson L., Duker G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation. 2001;103(15):2004–2013.; Kompella S.N., Brette F., Hancox J.C., Shiels H.A. Phenanthrene impacts zebrafish cardiomyocyte excitability by inhibiting IKr and shortening action potential duration. J. Gen. Physiol. 2021;153(2):e202012733.; Abrajano T.A., Yan B., O’Malley V. High molecular weight petrogenic and pyrogenic hydrocarbons in aquatic environments. Enviromental geochemistry, vol. 9. Ed. B.S. Lollar. Elsevier; 2004:475–509.; Andersen Ø., Frantzen M., Rosland M., Timmerhaus G., Skugor A., Krasnov A. Effects of crude oil exposure and elevated temperature on the liver transcriptome of polar cod (Boreogadus saida). Aquat. Toxicol. 2015;165:9–18.; Bender M.L., Giebichenstein J., Teisrud R.N., Laurent J., Frantzen M., Meador J.P., Sørensen L., Hansen B.H., Reinardy H.C., Laurel B., Nahrgang J. Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish. Sci. Rep. 2021;11(1):8410.; Sørhus E., Incardona J.P., Furmanek T., Goetz G.W., Scholz N.L., Meier S., Edvardsen R.B., Jentoft S. Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. eLife. 2017;6:e20707.; Edmunds R.C., Gill J.A., Baldwin D.H., Linbo T.L., French B.L., Brown T.L., Esbaugh A.J., Mager E.M., Stieglitz J., Hoenig R., Benetti D., Grosell M., Scholz N.L., Incardona J.P. Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi. Sci. Rep. 2015;5(1):17326.; Sørhus E., Incardona J.P., Karlsen Ø., Linbo T., Sørensen L., Nordtug T., Van Der Meeren T., Thorsen A., Thorbjørnsen M., Jentoft S., Edvardsen R.B., Meier S. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development. Sci. Rep. 2016;6(1):31058.; Ebert A.M., Hume G.L., Warren K.S., Cook N.P., Burns C.G., Mohideen M.A., Siegal G., Yelon D., Fishman M.C., Garrity D.M. Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. Proc. Natl. Acad. Sci. U.S.A. 2005;102(49):17705–17710.; Rottbauer W., Baker K., Wo Z.G., Mohideen M.A.P.K., Cantiello H.F., Fishman M.C. Growth and function of the embryonic heart depend upon the cardiac-specific L-Type calcium channel α1 subunit. Dev. Cell. 2001;1(2):265–275.; Sørhus E., Nakken C.L., Donald C.E., Ripley D.M., Shiels H.A., Meier S. Cardiac toxicity of phenanthrene depends on developmental stage in Atlantic cod (Gadus morhua). Sci. Total Environ. 2023;881:163484.; Huang L., Xi Z., Wang C., Zhang Y., Yang Z., Zhang S., Chen Y., Zuo Z. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation. Sci. Rep. 2016;6(1):20105.; Hicken C.E., Linbo T.L., Baldwin D.H., Willis M.L., Myers M.S., Holland L., Larsen M., Stekoll M.S., Rice S.D., Collier T.K., Scholz N.L., Incardona J.P. Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proc. Natl. Acad. Sci. U.S.A. 2011;108(17):7086–7090.; Incardona J.P., Carls M.G., Holland L., Linbo T.L., Baldwin D.H., Myers M.S., Peck K.A., Tagal M., Rice S.D., Scholz N.L. Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci. Rep. 2015;5(1):13499.; Anttila K., Jørgensen S.M., Casselman M.T., Timmerhaus G., Farrell A.P., Takle H. Association between swimming performance, cardiorespiratory morphometry, and thermal tolerance in Atlantic salmon (Salmo salar L.). Front. Mar. Sci. 2014;1:76.; Heintz R.A., Rice S.D., Wertheimer A.C., Bradshaw R.F., Thrower F.P., Joyce J.E., Short J.W. Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Mar. Ecol. Prog. Ser. 2000;208:205–216.; Incardona J.P., Scholz N.L. The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. Aquat. Toxicol. 2016;177:515–525.; Gonçalves R., Scholze M., Ferreira A.M., Martins M., Correia A.D. The joint effect of polycyclic aromatic hydrocarbons on fish behavior. Environ. Res. 2008;108(2):205–213.; Carvalho P.S.M., Kalil D. da C.B., Novelli G.A.A., Bainy A.C.D., Fraga A.P.M. Effects of naphthalene and phenanthrene on visual and prey capture endpoints during early stages of the dourado Salminus brasiliensis. Mar. Environ. Res. 2008;66(1):205–207.; Johansen J.L., Allan B.J.M., Rummer J.L., Esbaugh A.J. Oil exposure disrupts early life-history stages of coral reef fishes via behavioural impairments. Nat. Ecol. Evol. 2017;1(8):1146–1152.; Geier M.C., Minick J.D., Truong L., Tilton S., Pande P., Anderson K.A., Teeguardan J., Tanguay R.L. Systematic developmental neurotoxicity assessment of a representative PAH superfund mixture using zebrafish. Toxicol. Appl. Pharmacol. 2018;354:115–125.; Xu E.G., Mager E.M., Grosell M., Pasparakis C., Schlenker L.S., Stieglitz J.D., Benetti D., Hazard E.S., Courtney S.M., Diamante G., Freitas J., Hardiman G., Schlenk D. Timeand oil-dependent transcriptomic and physiological responses to Deepwater Horizon oil in mahimahi (Coryphaena hippurus) embryos and larvae. Environ. Sci. Technol. 2016;50(14):7842–7851.; Xu E.G., Khursigara A.J., Magnuson J., Hazard E.S., Hardiman G., Esbaugh A.J., Roberts A.P. and Schlenk D. Larval red drum (Sciaenops ocellatus) sublethal exposure to weathered Deepwater Horizon crude oil: developmental and transcriptomic consequences. Environ. Sci. Technol. 2017;51(17):10162–10172.; Khursigara A.J., Ackerly K.L., Esbaugh A.J. Pyrene drives reduced brain size during early life exposure in an estuarine fish, the red drum (Sciaenops ocellatus). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022;259:109397.; Magnuson J.T., Bautista N.M., Lucero J.A., Lund A.K., Xu E.G., Schlenk D., Burggren W.W., Roberts A.P. Exposure to crude oil induces retinal apoptosis and impairs visual function in fish. Environ. Sci. Technol. 2020;54(5):2843–2850.; Magnuson J.T., Khursigara A.J., Allmon E.B., Esbaugh A.J., Roberts A.P. Effects of Deepwater Horizon crude oil on ocular development in two estuarine fish species, red drum (Sciaenops ocellatus) and sheepshead minnow (Cyprinodon variegatus). Ecotoxicol. Environ. Saf. 2018;166:186–191.; Cave E.J., Kajiura S.M. Effect of Deepwater Horizon crude oil water accommodated fraction on olfactory function in the atlantic stingray, Hypanus sabinus. Sci. Rep. 2018;8(1):15786.; Schlenker L.S., Welch M.J., Meredith T.L., Mager E.M., Lari E., Babcock E.A., Pyle G.G., Munday P.L., Grosell M. Damsels in distress: oil exposure modifies behavior and olfaction in bicolor damselfish (Stegastes partitus). Environ. Sci. Technol. 2019;53(18):10993–11001.; Lari E., Steinkey D., Razmara P., Mohaddes E., Pyle G.G. Oil sands process-affected water impairs the olfactory system of rainbow trout (Oncorhynchus mykiss). Ecotoxicol. Environ. Saf. 2019;170:62–67.; Redmond L., Kashani A.H., Ghosh A. Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron. 2002;34(6):999–1010.; Zhang Y., Dong S., Wang H., Tao S., Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ. Pollut. 2016;213:809–824.; Hayakawa K., Onoda Y., Tachikawa C., Hosoi S., Yoshita M., Sang W.C., Kizu R., Toriba A., Kameda T., Tang N. Estrogenic/antiestrogenic activities of polycyclic aromatic hydrocarbons and their monohydroxylated derivatives by yeast two-hybrid assay. J. Heal. Sci. 2007;53(5):562–570.; Colli-Dula R.C., Fang X., Moraga-Amador D., Albornoz-Abud N., Zamora-Bustillos R., Conesa A., Zapata-Perez O., Moreno D., Hernandez-Nuñez E. Transcriptome analysis reveals novel insights into the response of low-dose benzo(a)pyrene exposure in male tilapia. Aquat. Toxicol. 2018;201:162–173.; Wu L., Zhong L., Ru H., Yao F., Ni Z., Li Y. Thyroid disruption and growth inhibition of zebrafish embryos/larvae by phenanthrene treatment at environmentally relevant concentrations. Aquat. Toxicol. 2022;243:106053.; Mousavi A., Salamat N., Safahieh A. Phenanthrene disrupting effects on the thyroid system of Arabian seabream, Acanthopagrus arabicus: In situ and in vivo study. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022;252:109226.; Zhong L., Wu L., Ru H., Wei N., Yao F., Zhang H., Ni Z., Duan X., Li Y. Sex-specific thyroid disruption caused by phenanthrene in adult zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023;263:109484.; Sun L., Zuo Z., Chen M., Chen Y., Wang C. Reproductive and transgenerational toxicities of phenanthrene on female marine medaka (Oryzias melastigma). Aquat. Toxicol. 2015;162:109–116.; Peng X., Sun X., Yu M., Fu W., Chen H., Chen J. Chronic exposure to environmental concentrations of phenanthrene impairs zebrafish reproduction. Ecotoxicol. Environ. Saf. 2019;182:109376.; Kennedy C.J., Farrell A.P. Ion homeostasis and interrenal stress responses in juvenile Pacific herring, Clupea pallasi, exposed to the water-soluble fraction of crude oil. J. Exp. Mar. Bio. Ecol. 2005;323(1):43–56.; Zbanyszek R., Smith L.S. The effect of watersoluble aromatic hydrocarbons on some haematological parameters of rainbow trout, Salmo gairdneri Richardson, during acute exposure. J. Fish Biol. 1984;24(5):545–552.; Katsumiti A., Domingos F.X.V., Azevedo M., da Silva M.D., Damian R.C., Almeida M.I.M., de Assis H.C.S., Cestari M.M., Randi M.A.F., Ribeiro C.A.O., Freire C.A. An assessment of acute biomarker responses in the demersal catfish Cathorops spixii after the Vicuña oil spill in a harbour estuarine area in Southern Brazil. Environ. Monit. Assess. 2009;152(1–4):209–222.; Dangé A.D. Branchial Na+/K+-ATPase inhibition in a freshwater euryhaline teleost, tilapia (Oreochromis mossambicus), during short-term exposure to toluene or naphthalene: Influence of salinity. Environ. Pollut. Ser. A, Ecol. Biol. 1986;42(3):273–286.; Souza-Bastos L.R., Freire C.A. Osmoregulation of the resident estuarine fish Atherinella brasiliensis was still affected by an oil spill (Vicuña tanker, Paranaguá Bay, Brazil), 7 months after the accident. Sci. Total Environ. 2011;409(7):1229–1234.; Sarasquete C., Segner H. Cytochrome P4501A (CYP1A) in teleostean fishes. A review of immunohistochemical studies. Sci. Total Environ. 2000;247(2–3):313–332.; Meier S., Karlsen Ø., Le Goff J., et al. DNA damage and health effects in juvenile haddock (Melanogrammus aeglefinus) exposed to PAHs associated with oil-polluted sediment or produced water. PLoS One. 2020;15(10):e0240307.; Kelly B.C., Gobas F.A.P.C., McLachlan M.S. Intestinal absorption and biomagnification of organic contaminants in fish, wildlife, and humans. Environ. Toxicol. Chem. 2004;23(10):2324–2336.; de Gelder S., Sæle Ø., de Veen B.T.H., Vos J., Flik G., Berntssen M.H.G., Klaren P.H.M. The polycyclic aromatic hydrocarbons benzo[a]pyrene and phenanthrene inhibit intestinal lipase activity in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2017;198:1–8.; Incardona J.P., Scholz N.L. Case study: The 2010 Deepwater Horizon oil spill and its environmental developmental impacts. Development and Environment. Eds. W. Burggren and B. Dubansky. Cham: Springer; 2018:235–283.; https://vestnik-bio-msu.elpub.ru/jour/article/view/1254
-
3Academic Journal
المؤلفون: T. S. Filatova, D. V. Abramochkin, Т. С. Филатова, Д. В. Абрамочкин
المساهمون: The research was supported by government funding (project number 122012100156-5) and by the Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic biology”., Работа выполнена в рамках государственного задания (проект № 122012100156-5) и научно-образовательной школы МГУ «Молекулярные технологии живых систем и синтетическая биология».
المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 77, № 3 (2022); 173-179 ; Вестник Московского университета. Серия 16. Биология; Том 77, № 3 (2022); 173-179 ; 0137-0952
مصطلحات موضوعية: ранолазин, myocardium, isolated cardiomyocytes, fast sodium current, patch clamp, ranolazine, миокард, изолированные кардиомиоциты, быстрый натриевый ток, пэтч-кламп
وصف الملف: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1161/595; Amin A.S., Asghari-Roodsari A., Tan H.L. Cardiac sodium channelopathies // Pflugers Arch. Eur. J. Physiol. 2010. Vol. 460. N 2. P. 223–237.; Asfaw T.N., Bondarenko V.E. A mathematical model of the human cardiac Na + channel // J. Membr. Biol. 2019. Vol. 252. N 1. P. 77–103.; Isom L.L., Jongh K.S. De, Patton D.E., Reber B.F.X., Offord J., Charbonneau H., Walsh K., Goldin A.L., Catterall W.A. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel // Science. 1992. Vol. 256. N 5058. P. 839–842.; Haufe V., Cordeiro J.M., Zimmer T., Wu Y.S., Schiccitano S., Benndorf K., Dumaine R. Contribution of neuronal sodium channels to the cardiac fast sodium current I Na is greater in dog heart Purkinje fibers than in ventricles // Cardiovasc. Res. 2005. Vol. 65. N 1. P. 117–127.; Chadda K.R., Jeevaratnam K., Lei M., Huang C.L.H. Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes // Pflugers Arch. Eur. J. Physiol. 2017. Vol. 469. N 5–6. P. 629–641.; Filatova T.S., Abramochkin D. V., Pavlova N.S., Pustovit K.B., Konovalova O.P., Kuzmin V.S., Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: Novel translational model for cardiac electrophysiology // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2021. Vol. 255: 110919.; Fujii S., Ayer R.K., DeHaan R.L. Development of the fast sodium current in early embryonic chick heart cells // J. Membr. Biol. 1988. Vol. 101. N 1. P. 209–223.; Vornanen M., Hassinen M., Haverinen J. Tetrodotoxin sensitivity of the vertebrate cardiac Na+ current // Mar. Drugs. 2011. Vol. 9. N 11. P. 2409–2422.; Jensen B., Wang T., Christoffels V.M., Moorman A.F.M. Evolution and development of the building plan of the vertebrate heart // Biochim. Biophys. Acta. Mol. Cell Res. 2013. Vol. 1833. N 4. P. 783–794.; Abramochkin D. V., Filatova T.S., Pustovit K.B., Voronina Y.A., Kuzmin V.S., Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2022. Vol. 268: 111204.; Hassinen M., Abramochkin D. V., Vornanen M. Seasonal acclimatization of the cardiac action potential in the Arctic navaga cod (Eleginus navaga, Gadidae) // J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2014. Vol. 184. N 3. P. 319–327.; Islam M.A., Nojima H., Kimura I. Muscarinic M1 receptor activation reduces maximum upstroke velocity of action potential in mouse right atria. // Eur. J. Pharmacol. 1998. Vol. 346. N 2–3. P. 227–236.; Clark R.B., Giles W. Sodium current in single cells from bullfrog atrium: voltage dependence and ion transfer properties // J. Physiol. 1987. Vol. 391. N 1. P. 235–265.; Sakakibara Y., Wasserstrom J.A., Furukawa T., Jia H., Arentzen C.E., Hartz R.S., Singer D.H. Characterization of the sodium current in single human atrial myocytes // Circ. Res. 1992. Vol. 71. N 3. P. 535–546.; Sakakibara Y., Furukawa T., Singer D.H., Jia H., Backer C.L., Arentzen C.E., Wasserstrom J.A. Sodium current in isolated human ventricular myocytes // Am. J. Physiol. Hear. Circ. Physiol. 1993. Vol. 265. N 4. P. H1301–H1309.; Haverinen J., Hassinen M., Korajoki H., Vornanen M. Cardiac voltage-gated sodium channel expression and electrophysiological characterization of the sodium current in the zebrafish (Danio rerio) ventricle // Prog. Biophys. Mol. Biol. 2018. Vol. 138. P. 59–68.; Zaza A., Rocchetti M. The late Na+ current – origin and pathophysiological relevance // Cardiovasc. Drugs Ther. 2013. Vol. 27. N 1. P. 61–68.; Schneider M., Proebstle T., Hombach V., Hannekum A., Rüdel R. Characterization of the sodium currents in isolated human cardiocytes // Pflügers Arch. 1994. Vol. 428. N 1. P. 84–90.; Shander G.S., Fan Z., Makielski J.C. Slowly recovering cardiac sodium current in rat ventricular myocytes: effects of conditioning duration and recovery potential // J. Cardiovasc. Electrophysiol. 1995. Vol. 6. N 10. P. 786–795.; Burashnikov A. Late INa inhibition as an antiarrhythmic strategy // J. Cardiovasc. Pharmacol. 2017. Vol. 70. N 3. P. 159–167.; Rajamani S., El-Bizri N., Shryock J.C., Makielski J.C., Belardinelli L. Use-dependent block of cardiac late Na+ current by ranolazine // Hear. Rhythm. 2009. Vol. 6. N 11. P. 1625–1631.; Zygmunt A.C., Nesterenko V. V., Rajamani S., Hu D., Barajas-Martinez H., Belardinelli L., Antzelevitch C. Mechanisms of atrial-selective block of Na+ channels by ranolazine: I. Experimental analysis of the use-dependent block // Am. J. Physiol. – Hear. Circ. Physiol. 2011. Vol. 301. N 4. P. 1606–1614.; Antzelevitch C., Belardinelli L., Zygmunt A.C., Burashnikov A., Di Diego J.M., Fish J.M., Cordeiro J.M., Thomas G. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties // Circulation. 2004. Vol. 110. N 8. P. 904–910.; Carmeliet E. Action potential duration, rate of stimulation, and intracellular sodium // J. Cardiovasc. Electrophysiol. 2006. Vol. 17. Suppl. 1. P. S2–S7.; https://vestnik-bio-msu.elpub.ru/jour/article/view/1161
-
4
المؤلفون: D. V. Abramochkin, O. B. Pustovit, N. Yu. Mironov, T. S. Filatova, V. S. Kuzmin
المصدر: Bulletin of Experimental Biology and Medicine. 174:610-615
مصطلحات موضوعية: General Medicine, General Biochemistry, Genetics and Molecular Biology
-
5Academic Journal
المؤلفون: T. S. Filatova, D. V. Abramochkin, Т. С. Филатова, Д. В. Абрамочкин
المساهمون: The research was funded by Russian Foundation for Basic Research, project number 19-34-90142., Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-34-90142).
المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 76, № 2 (2021); 83-89 ; Вестник Московского университета. Серия 16. Биология; Том 76, № 2 (2021); 83-89 ; 0137-0952
مصطلحات موضوعية: ионные токи, working myocardium, bioelectrical activity, isolated cardiomyocytes, patch clamp, ionic currents, рабочий миокард, биоэлектрическая активность, изолированные кардиомиоциты, пэтч-кламп
وصف الملف: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/995/551; Shiels H.A., Galli G.L.J. The sarcoplasmic reticulum and the evolution of the vertebrate heart // Physiology. 2014. Vol. 29. N 6. P. 456–469.; Jensen B., Wang T., Christoffels V.M., Moorman A.F.M. Evolution and development of the building plan of the vertebrate heart // Biochim. Biophys. Acta. Mol. Cell Res. 2013. Vol. 1833. N 4. P. 783–794.; Filatova T.S., Abramochkin D. V., Pavlova N.S., Pustovit K.B., Konovalova O.P., Kuzmin V.S., Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: Novel translational model for cardiac electrophysiology // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2021. Vol. 255: 110919.; Filatova T.S., Abramochkin D. V., Shiels H.A. Warmer, faster, stronger: Ca 2+ cycling in avian myocardium // J. Exp. Biol. 2020. Vol. 223. N 19: jeb228205.; Vornanen M., Hassinen M., Haverinen J. Tetrodotoxin sensitivity of the vertebrate cardiac Na+ current // Mar. Drugs. 2011. Vol. 9. N 11. P. 2409–2422.; Abramochkin D. V., Matchkov V., Wang T. A characterization of the electrophysiological properties of the cardiomyocytes from ventricle, atrium and sinus venosus of the snake heart // J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2020. Vol. 190. N 1. P. 63–73.; Cavero I., Crumb W. Native and cloned ion channels from human heart: laboratory models for evaluating the cardiac safety of new drugs // Eur. Hear. J. Suppl. 2001. Vol. 3. Suppl. K. P. K53–K63.; Jost N., Virág L., Bitay M., Takács J., Lengyel C., Biliczki P., Nagy Z., Bogáts G., Lathrop D.A., Papp J.G., Varró A. Restricting excessive cardiac action potential and QT prolongation: A vital role for I Ks in human ventricular muscle // Circulation. 2005. Vol. 112. N 10. P. 1392–1399.; Ehrlich J.R. Inward rectifier potassium currents as a target for atrial fibrillation therapy // J. Cardiovasc. Pharmacol. 2008. Vol. 52. N 2. P. 129–135.; Klein M.G., Shou M., Stohlman J., Solhjoo S., Haigney M., Tidwell R.R., Goldstein R.E., Flagg T.P., Haigney M.C. Role of suppression of the inward rectifier current in terminal action potential repolarization in the failing heart // Heart Rhythm. 2017. Vol. 14. N 8. P. 1217–1223.; Isenberg G., Klockner U. Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium” // Pflügers Arch. Eur. J. Physiol. 1982. Vol. 395. N 1. P. 6–18.; Valance D., Després G., Richard S., Constantin P., Mignon-Grasteau S., Leman S., Boissy A., Faure J.M., Leterrier C. Changes in heart rate variability during a tonic immobility test in quail // Physiol. Behav. 2008. Vol. 93. N 3. P. 512–520.; Haverinen J., Vornanen M. Responses of action potential and K + currents to temperature acclimation in fish hearts: phylogeny or thermal preferences? // Physiol. Biochem. Zool. 2009. Vol. 82. N 5. P. 468–482.; Varro A., Nanasi P.P., Lathrop D.A. Potassium currents in isolated human atrial and ventricular cardiocytes // Acta Physiol. Scand. 1993. Vol. 149. N 2. P. 133–142.; Panama B.K., McLerie M., Lopatin A.N. Heterogeneity of I K1 in the mouse heart // Am. J. Physiol. Hear. Circ. Physiol. 2007. Vol. 293. N 6. P. H3558–H3567.; Ward C.A., Ma Z., Lee S.S., Giles W.R. Potassium currents in atrial and ventricular myocytes from a rat model of cirrhosis // Am. J. Physiol. Gastrointest. Liver Physiol. 1997. Vol. 273. N 2. P. G537–G544.; Hassinen M., Haverinen J., Hardy M.E., Shiels H.A., Vornanen M. Inward rectifier potassium current (IK1 ) and Kir2 composition of the zebrafish (Danio rerio) heart // Pflugers Arch. Eur. J. Physiol. 2015. Vol. 467. N 12. P. 2437–2446.; Skarsfeldt M.A., Bomholtz S.H., Lundegaard P.R., Lopez-Izquierdo A., Tristani-Firouzi M., Bentzen B.H. Atriumspecific ion channels in the zebrafish-A role of I KACh in atrial repolarization // Acta Physiol. 2018. Vol. 223. N 3: e13049.; Dobrzynski H., Marples D.D.R., Musa H., Yamanushi T.T., Henderson Z., Takagishi Y., Honjo H., Kodama I., Boyett M.R. Distribution of the muscarinic K+ channel proteins Kir3.1 and Kir3.4 in the ventricle, atrium, and sinoatrial node of heart // J. Histochem. Cytochem. 2001. Vol. 49. N 10. P. 1221–1234.; Liang B., Nissen J.D., Laursen M., Wang X., Skibsbye L., Hearing M.C., Andersen M.N., Rasmussen H.B., Wickman K., Grunnet M., Olesen S.-P., Jespersen T. G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization // Cardiovasc. Res. 2014. Vol. 101. N 1. P. 175–184.; Beckmann C., Rinne A., Littwitz C., Mintert E., Bosche L.I., Kienitz M.-C., Pott L., Bender K. G ProteinActivated (GIRK) Current in Rat Ventricular Myocytes is Masked by Constitutive Inward Rectifier Current (IK1 ) // Cell. Physiol. Biochem. 2008. Vol. 21. N 4. P. 259–268.; Dobrev D., Graf E., Wettwer E., Himmel H.M., Hála O., Doerfel C., Christ T., Schüler S., Ravens U. Molecular basis of downregulation of G-protein-coupled inward rectifying K + current (IK,ACh ) in chronic human atrial fibrillation decrease in GIRK4 mrna correlates with reduced I K,ACh and muscarinic receptor-mediated shortening of action potentials // Circulation. 2001. Vol. 104. N 21. P. 2551–2557.; Abramochkin D. V., Vornanen M. Seasonal changes of cholinergic response in the atrium of Arctic navaga cod (Eleginus navaga) // J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2017. Vol. 187. N 2. P. 329–338.; Lomax A.E., Rose R.A., Giles W.R. Electrophysiological evidence for a gradient of G proteingated K + current in adult mouse atria // Br. J. Pharmacol. 2003. Vol. 140. N 3. P. 576–584.; https://vestnik-bio-msu.elpub.ru/jour/article/view/995
-
6
المؤلفون: T. S. Filatova, V. B. Mikhailova, V. O. Guskova, D. V. Abramochkin
المصدر: Journal of Evolutionary Biochemistry and Physiology. 58:S44-S51
مصطلحات موضوعية: Physiology, Biochemistry, Ecology, Evolution, Behavior and Systematics
-
7Academic Journal
المؤلفون: N A Agadzhanyan, M S Artem’ieva, I A Kovaleva, B M Kogan, T S Filatova, A Z Drozdov
المصدر: RUDN Journal of Medicine, Vol 0, Iss 2, Pp 30-34 (2014)
مصطلحات موضوعية: нарушения пищевого поведения, психогенные рвоты, катехоламины, Medicine
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: D. V. Abramochkin, K. B. Pustovit, T. S. Filatova, Д. В. Абрамочкин, К. Б. Пустовит, Т. С. Филатова
المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 4 (2015); 3-7 ; Вестник Московского университета. Серия 16. Биология; № 4 (2015); 3-7 ; 0137-0952
مصطلحات موضوعية: НАД+, ionic currents, ATP, diadenosine polyphosphates, NAD+, ионные токи, АТФ, диаденозиновые полифосфаты
وصف الملف: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/275/273; Baxi M.D., Vishwanatha J.K. Diadenosine polyphosphates: their biological and pharmacological significance // J. Pharmacol. Toxicol. Methods. 1995. Vol. 33. N 3. P. 121–128.; Burnstock G. Purine and pyrimidine receptors // Physiol. Rev. 2007. Vol. 87. N 2. P. 659–797.; Smyth L.M., Yamboliev I.A., Mutafova-Yambolieva V.N. N-type and P/Q-type calcium channels regulate differentially the release of noradrenaline, ATP and beta-NAD in blood vessels // Neuropharmacology. 2009. Vol. 56. N 2. P. 368–378.; Yamboliev I.A., Smyth L.M., Durnin L., Dai Y., Mutafova-Yambolieva V.N. Storage and secretion of beta-NAD, ATP and dopamine in NGF-differentiated rat pheochromocytoma PC12 cells // Eur. J. Neurosci. 2009. Vol. 30. N 5. P. 756–768.; Flores N.A., Stavrou B.M., Sheridan D.J. The effects of diadenosine polyphosphates on the cardiovascular system // Cardiovasc. Res. 1999. Vol. 42. N 1. P. 15–26.; Пустовит К.Б., Кузьмин В.С., Сухова Г.С. Влияние внеклеточного никотинамидадениндинуклеотида (NAD+) на сократительную и биоэлектрическую активность сердца крысы // Рос. физиол. журн. им. И.М. Сеченова. 2014. Т. 100. № 4. С. 445–457.; Пустовит К.Б., Кузьмин В.С., Сухова Г.С. Влияние внеклеточного никотинамидадениндинуклеотида (NAD+) на биоэлектрическую активность пейсмекера и проводящей системы сердца // Бюл. эксп. биол. мед. 2015. Т. 159. № 2. С. 4–6.; Hibino H., Inanobe A., Furutani K., Murakami S., Findlay I., Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles // Physiol. Rev. 2010. Vol. 90. N 1. P. 291–366.; Boyett M.R., Kodama I., Honjo H., Arai A., Suzuki R., Toyama J. Ionic basis of the chronotropic effect of acetylcholine on the rabbit sinoatrial node // Cardiovasc. Res. 1995. Vol. 29. N 6. P. 867–878.; Isenberg G., Klockner U. Calcium tolerant ventricular myocytes prepared by preincubation in a “KB-medium” // Pflugers Arch. 1982. Vol. 395. N 1. P. 6–18.; Brouillette J., Clark R.B., Giles W.R., Fiset C. Functional properties of K+ currents in adult mouse ventricular myocytes // J. Physiol. 2004. Vol. 559. Pt. 3. P. 777–798.; https://vestnik-bio-msu.elpub.ru/jour/article/view/275
-
9
المؤلفون: Denis V. Abramochkin, T. S. Filatova
المصدر: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 13:147-154
مصطلحات موضوعية: 0301 basic medicine, Cardiac transient outward potassium current, Tetraethylammonium, Chemistry, Biophysics, Cell Biology, Chloride channel blocker, Biochemistry, 03 medical and health sciences, chemistry.chemical_compound, 030104 developmental biology, 0302 clinical medicine, DIDS, Chloride channel, Repolarization, Patch clamp, Ap4A, 030217 neurology & neurosurgery
-
10
المؤلفون: P.V. Nikitin, S. V. Solntseva, T. S. Filatova, S. A. Kozyrev, V. P. Nikitin, D. V. Bredov
المصدر: Bulletin of Experimental Biology and Medicine. 156:430-434
مصطلحات موضوعية: DNA-Cytosine Methylases, Methyltransferase, Amnesia, DNA Methyltransferase Inhibitor, Phthalimides, Cytidine, Receptors, N-Methyl-D-Aspartate, behavioral disciplines and activities, General Biochemistry, Genetics and Molecular Biology, Conditioning, Psychological, mental disorders, Animals, Learning, Medicine, business.industry, Helix, Snails, Tryptophan, General Medicine, Methylation, DNA Methylation, nervous system diseases, nervous system, DNA methylation, Taste aversion, NMDA receptor, Memory consolidation, Dizocilpine Maleate, medicine.symptom, business, Neuroscience, psychological phenomena and processes
-
11
المؤلفون: Vladimir P. Baklaushev, Vladimir P. Chekhonin, Belopasov Vv, I. P. Lazarenko, S. V. Lebedev, I. V. Man'kovskaya, B. M. Kogan, T. S. Filatova, E. A. Savchenko, Dmitrieva Tb
المصدر: Bulletin of Experimental Biology and Medicine. 130:1181-1185
مصطلحات موضوعية: medicine.medical_specialty, Dopaminergic, General Medicine, Striatum, Biology, Embryonic stem cell, General Biochemistry, Genetics and Molecular Biology, Excretion, Midbrain, Transplantation, Endocrinology, nervous system, Dopamine, Internal medicine, medicine, Tyrosine, medicine.drug
-
12
المؤلفون: Dmitrieva Tb, B. M. Kogan, E. A. Savchenko, Vladimir P. Baklaushev, S. V. Lebedev, T. S. Filatova, Vladimir P. Chekhonin, I. V. Man'kovskaya, I. U. Yusupova
المصدر: Bulletin of Experimental Biology and Medicine. 130:805-809
مصطلحات موضوعية: Male, medicine.medical_specialty, 3,4-Dihydroxyphenylacetic acid, Epinephrine, Dopamine, Urinary system, Pharmacology, General Biochemistry, Genetics and Molecular Biology, Methoxyhydroxyphenylglycol, Norepinephrine, chemistry.chemical_compound, Catecholamines, Parkinsonian Disorders, Internal medicine, medicine, Animals, Rats, Wistar, Oxidopamine, Dopaminergic, Homovanillic acid, Brain, Homovanillic Acid, General Medicine, Dihydroxyphenylalanine, Rats, Endocrinology, nervous system, chemistry, Catecholamine, 3,4-Dihydroxyphenylacetic Acid, medicine.drug
-
13
المؤلفون: V P, Chekhonin, V P, Baklaushev, T B, Dmitrieva, B M, Kogan, E A, Savchenko, S V, Lebedev, I P, Lazarenko, I V, Man'kovskaya, T S, Filatova, V V, Belopasov
المصدر: Bulletin of experimental biology and medicine. 130(12)
مصطلحات موضوعية: Male, Parkinsonian Disorders, Fetal Tissue Transplantation, Mesencephalon, Dopamine, 3,4-Dihydroxyphenylacetic Acid, Animals, Brain Tissue Transplantation, Rats, Wistar, Oxidopamine, Nerve Regeneration, Rats
-
14
المؤلفون: T B, Dmitrieva, A Z, Drozdov, I V, Man'kovskaia, T S, Filatova, B M, Kogan
المصدر: Voprosy meditsinskoi khimii. 41(5)
مصطلحات موضوعية: Adult, Male, Depressive Disorder, Catecholamines, Adolescent, Electrochemistry, Humans, Antisocial Personality Disorder, Middle Aged, Chromatography, High Pressure Liquid
-
15
المؤلفون: B M, Kogan, A Z, Drozdov, I V, Man'kovskaia, T S, Filatova
المصدر: Klinicheskaia laboratornaia diagnostika. (3)
مصطلحات موضوعية: Adult, Male, Norepinephrine, Epinephrine, Dopamine, Mental Disorders, 3,4-Dihydroxyphenylacetic Acid, Humans, Chromatography, High Pressure Liquid, Dihydroxyphenylalanine
-
16
المؤلفون: B M, Kogan, A A, Tkachenko, A Z, Drozdov, E P, Andrianova, T S, Filatova, I V, Man'kovskaia, I A, Kovaleva
المصدر: Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 95(6)
مصطلحات موضوعية: Paraphilic Disorders, Sex Offenses, Compulsive Behavior, Humans, Biogenic Monoamines, Chromatography, High Pressure Liquid
-
17
المؤلفون: I L, Brin, A Z, Drozdov, I A, Kovaleva, T S, Filatova, B M, Kogan
المصدر: Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 94(3)
مصطلحات موضوعية: Male, Movement Disorders, Adolescent, Carbidopa, Dopamine beta-Hydroxylase, Levodopa, Drug Combinations, Catecholamines, Spectrophotometry, Dopamine Agonists, Humans, Female, Child, Chromatography, High Pressure Liquid
-
18
المؤلفون: T T, Bondarenko, N L, Vekshina, A G, Veretinskaia, O F, L'vova, T S, Filatova, I P, Anokhina
المصدر: Eksperimental'naia i klinicheskaia farmakologiia. 55(3)
مصطلحات موضوعية: Brain Chemistry, Male, Ethanol, Brain, Hippocampus, Corpus Striatum, Rats, Receptors, Dopamine, Substance Withdrawal Syndrome, Alcoholism, Catecholamines, Mesencephalon, Recurrence, Cyclic AMP, Animals