يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"Tóth-Bodrogi, E."', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Materiales de Construcción; Vol. 70 No. 340 (2020); e233 ; Materiales de Construcción; Vol. 70 Núm. 340 (2020); e233 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2020.v70.i340

    وصف الملف: text/html; application/pdf; application/xml

    Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2302/3078; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2302/3079; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2302/3080; United Nations Scientific Committee on the Effects of Atomic Radiation. (2000) Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly, with scientific annexes. Volume I: Sources. United Nations Publications. New York, (2000).; The Council of European Union. 2014. Council directive 2013/59/EURATOM. OJEU. L13 [1], 1-73.; Kovács, T.; Szeiler, G.; Fábián, F.; Kardos, R.; Gregorič, A.; Vaupotič, J. (2013) Systematic survey of natural radioactivity of soil in Slovenia. J. Environ. Radioact. 122, 70-78. https://doi.org/10.1016/j.jenvrad.2013.02.007 PMid:23558252; Kardos, R.; Sas, Z.; Hegedűs, M.; Shahrokhi, A.; Somlai, J.; Kovács, T. (2015) Radionuclide content of NORM by-products originating from the coal-fired power plant in Oroszlány (Hungary). Radiat. Prot. Dosim. 167 [1-3], 266-269. https://doi.org/10.1093/rpd/ncv259 PMid:25944954; Aliyu, A.S.; Ramli, A.T. (2015) The world's high background natural radiation areas (HBNRAs) revisited: A broad overview of the dosimetric, epidemiological and radiobiological issues. Radiat. Meas. 73, 51-59. https://doi.org/10.1016/j.radmeas.2015.01.007; International Commission on Radiological Protection. (2007) The 2007 recommendations of the International Commission on Radiological Protection. Annals of the ICRP. 103.; Shetty, P.K.; Narayana, Y. (2010) Variation of radiation level and radionuclide enrichment in high background area. J. Environ. Radioact. 101 [12], 1043-1047. https://doi.org/10.1016/j.jenvrad.2010.08.003 PMid:20833457; Mortazavi, S.M.J.; Mozdarani, H. (2012) Is it time to shed some light on the black box of health policies regarding the inhabitants of the high background radiation areas of Ramsar? Iran J. Radiat. Res. 10 [3-4], 111-116.; Sohrabi, M.M.; Beitollahi, M.M.; Lasemi, Y.; Amin, S.E. (1996) Origin of a new high level natural radiation area in hot spring region of Mahallat, Central Iran. In Proceedings of the 4 th International Conference on High Levels of Natural Radiation. Vienna, (1996).; The Council of European Union. (1999) Radiation Protection 112: Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials. Directorate-General, Environment, Nuclear Safety and Civil Protection. 5-16.; Nuccetelli, C.; Leonardi, F.; Trevisi, R. (2015) A new accurate and flexible index to assess the contribution of building materials to indoor gamma exposure. J. Environ. Radioact. 143, 70-75. https://doi.org/10.1016/j.jenvrad.2015.02.011 PMid:25743410; Karam, P.A. (2002) The high background radiation area in Ramsar Iran: Geology, Norm, Biology, LNT, and possible regulatory fun. University of Rochester. Rochester, NY, (2002).; Ghiassi-Nejad, M.; Mortazavi, S.M.J.; Cameron, J.R.; Niroomand-Rad, A.; Karam, P.A. (2002) Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health physics. 82 [1], 87-93. https://doi.org/10.1097/00004032-200201000-00011 PMid:11769138; Hendry, J.H.; Simon, S.L.; Wojcik, A.; Sohrabi, M.; Burkart, W.; Cardis, E.; Laurier, D.; Tirmarche, M.; Hayata, I. (2009) Human exposure to high natural background radiation: what can it teach us about radiation risks?. J. Radiol. Prot. 29 [2A], A29. https://doi.org/10.1088/0952-4746/29/2A/S03 PMid:19454802 PMCid:PMC4030667; Jayanthi, D.D.; Maniyan, C.G.; Perumal, S. (2011) Assessment of indoor radiation dose received by the residents of natural high background radiation areas of coastal villages of Kanyakumari district, Tamil Nadu, India. Radiat. Phys. Chem. 80 [7], 782-785. https://doi.org/10.1016/j.radphyschem.2011.03.011; Bavarnegin, E.; Fathabadi, N.; Moghaddam, M.V.; Farahani, M.V.; Moradi, M.; Babakhni, A. (2013) Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran. J. Environ. Radioact. 117, 36-40. https://doi.org/10.1016/j.jenvrad.2011.12.022 PMid:22280998; Sohrabi, M. (2013) World high background natural radiation areas: Need to protect public from radiation exposure. Radiat. Meas. 50, 166-171. https://doi.org/10.1016/j.radmeas.2012.03.011; Sahoo, S.K.; Žunić, Z.S.; Kritsananuwat, R.; Zagrodzki, P.; Bossew, P.; Veselinovic, N.; Mishra, S.; Yonehara, H.; Tokonami, S. (2015) Distribution of uranium, thorium and some stable trace and toxic elements in human hair and nails in Niška Banja Town, a high natural background radiation area of Serbia (Balkan Region, South-East Europe). J. Environ. Radioact. 145, 66-77. https://doi.org/10.1016/j.jenvrad.2015.03.020 PMid:25875006; Mubarak, F.; Fayez-Hassan, M.; Mansour, N.A.; Ahmed, T.S.; Ali, A. (2017) Radiological Investigation of High Background Radiation Areas. Sci. Rep. 7, 15223. https://doi.org/10.1038/s41598-017-15201-2 PMid:29123148 PMCid:PMC5680266; Pérez, M.; Chávez, E.; Echeverría, M.; Córdova, R.; Recalde, C. (2018) Assessment of natural background radiation in one of the highest regions of Ecuador. Radiat. Phys. Chem. 146, 73-76. https://doi.org/10.1016/j.radphyschem.2018.01.002; Okeyode, I.C.; Oladotun, I.C.; Alatise, O.O.; Bada, B.S.; Makinde, V.; Akinboro, F.G.; Mustapha, A.O.; Al-Azmi, D. (2019) Indoor gamma dose rates in the high background radiation area of Abeokuta, South Western Nigeria. J. Radiat. Res. Appl. Sci. 12 [1], 72-77. https://doi.org/10.1080/16878507.2019.1594097; Bé, M.-M.; Chechev, V.P.; Dersch, R.; Helene, O.A.M.; Helmer, R.G.; et al. (2007) Update of x ray and gamma ray decay data standards for detector calibration and other applications, volume 2: data selection assesment and evaluation procdures. International Atomic Energy Agency. Vienna, (2007).; Shahrokhi, A. (2018) Applicaton of the European basic safety standards directive in underground mines: a comprehensive radioecology study in a Hungarian manganese mine. PhD thesis, Pannon Egyetem. Veszprém, (2019).; Adelikhah, M.; Shahrokhi, A.; Chalupnik, S.; Tóth-Bodrogi, E.; Kovács, T. (2020) High level of natural ionizing radiation at a thermal bath in Dehloran, Iran. Heliyon. 6 [7], e04297. https://doi.org/10.1016/j.heliyon.2020.e04297 PMid:32642584 PMCid:PMC7334375; Shahrokhi, A.; Szeiler, G.; Rahimi, H.; Kovács, T. (2014) Investigation of natural and anthropogenic radionuclides distribution in arable land soil of south eastern European countries. Int. J. Sci. Engineer. Res. 5 [11], 445-449.; El-Mageed, A.I.A.; Farid, M.E.A.; Saleh, E.E.; Mansour, M.; Mohammed, A.K. (2014) Natural radioactivity and radiological hazards of some building materials of Aden, Yemen. J. Geochem. Explor. 140, 41-45. https://doi.org/10.1016/j.gexplo.2014.01.015; Shoeib, M.Y.; Thabayneh, K.M. (2014) Assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials. J. Radiat. Res. Appl. Sci. 7 [2], 174-181. https://doi.org/10.1016/j.jrras.2014.01.004; Wang, Q.; Song, J.; Li, X.; Yuan, H.; Li, N.; Cao, L. (2015) Environmental radionuclides in a coastal wetland of the Southern Laizhou Bay, China. Mar. Pollut. Bull. 97 [1-2], 506-511. https://doi.org/10.1016/j.marpolbul.2015.05.035 PMid:26028169; Trevisi, R.; Risica, S.; D'Alessandro, M.; Paradiso, D.; Nuccetelli, C. (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J. Environ. Radioact. 105, 11-20. https://doi.org/10.1016/j.jenvrad.2011.10.001 PMid:22230017; Malanca, A.; Pessina, V.; Dallara, G. (1993) Radionuclide content of building materials and gamma ray dose rates in dwellings of Rio Grande Do Norte, Brazil. Radiat. Prot. Dosim. 48 [2], 199-203.; Dabayneh, K.M. (2007). Radioactivity measurement in different types of fabricated building materials used in Palestine. Arab J. Nuclear Sci. Applic. 40 [3], 208-219.; Lu, X.; Chao, S.; Yang, F. (2014) Determination of natural radioactivity and associated radiation hazard in building materials used in Weinan, China. Radiat. Phys. Chem. 99, 62-67. https://doi.org/10.1016/j.radphyschem.2014.02.021; Rafique, M.; Rahman, S.U.; Basharat, M.; Aziz, W.; Ahmad, I.; Lone, K.A.; Ahmad, K.; Matiullah, K. A. (2014) Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley. J. Radiat. Res. Appl. Sci. 7 [1], 29-35. https://doi.org/10.1016/j.jrras.2013.11.005; Taskin, H.; Karavus, M.; Ay, P.; Topuzoglu, A.; Hidiroglu, S.; Karahan, G. (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 100 [1], 49-53. https://doi.org/10.1016/j.jenvrad.2008.10.012 PMid:19038480; Sohrabi, M.; Roositalab, J.; Mohammadi, J. (2015) Public effective doses from environmental natural gamma exposures indoors and outdoors in Iran. Radiat. Prot. Dosim. 167 [4], 633-641. https://doi.org/10.1093/rpd/ncu372 PMid:25602079; Shahrokhi, A.; Shokraee, F.; Reza, A.; Rahimi, H. (2015) Health risk assessment of household exposure to indoor radon in association with the dwelling's age. J. Radiat. Protect. Res. 40 [3], 155-161. https://doi.org/10.14407/jrp.2015.40.3.155; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2302

  3. 3
    Academic Journal
  4. 4
  5. 5
    Academic Journal
  6. 6