يعرض 1 - 18 نتائج من 18 نتيجة بحث عن '"Suarez Méndez, Camilo"', وقت الاستعلام: 0.53s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Toulouse Biotechnology Institute (TBI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Universidad Nacional de Colombia Sede Medellín

    المصدر: ISSN: 2283-9216 ; Chemical Engineering Transactions ; https://hal.science/hal-04184413 ; Chemical Engineering Transactions, 2022, 96, ⟨10.3303/CET2296054⟩.

    Relation: hal-04184413; https://hal.science/hal-04184413

  2. 2
    Academic Journal

    المساهمون: Universidad Nacional de Colombia Sede Medellín, Toulouse Biotechnology Institute (TBI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)

    المصدر: ISSN: 2283-9216 ; Chemical Engineering Transactions ; https://hal.inrae.fr/hal-03947393 ; Chemical Engineering Transactions, 2022, 96, ⟨10.1016/j.biortech.2021.125548⟩.

    Relation: hal-03947393; https://hal.inrae.fr/hal-03947393

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المصدر: Biotechnology & bioengineering 113(5), 1137-1147 (2016). doi:10.1002/bit.25859

    مصطلحات موضوعية: info:eu-repo/classification/ddc/570

    جغرافية الموضوع: DE

    Relation: info:eu-repo/semantics/altIdentifier/issn/0368-1467; info:eu-repo/semantics/altIdentifier/issn/1097-0290; info:eu-repo/semantics/altIdentifier/wos/WOS:000373476700022; info:eu-repo/semantics/altIdentifier/issn/0006-3592; https://juser.fz-juelich.de/record/256302; https://juser.fz-juelich.de/search?p=id:%22FZJ-2015-06266%22

  5. 5
    Academic Journal
  6. 6
  7. 7
    Book

    المساهمون: Editorial Universidad EAN, Universidad Ean

    وصف الملف: application/pdf; Recurso electrónico

    Relation: 1a edición; http://hdl.handle.net/10882/13799; https://doi.org/10.57793/9789587567168; instname:Universidad EAN; reponame:Repositorio Institucional MINERVA; repourl:https://repository.ean.edu.co/

  8. 8
    Dissertation/ Thesis

    المؤلفون: Cano Zapata, Edgar Alejandro

    المساهمون: Suárez Méndez, Camilo Alberto, Bioprocesos y Flujos Reactivos, Suárez Méndez, Camilo Alberto 0000-0002-5345-9662

    وصف الملف: xxiv, 104 páginas; application/pdf

    Relation: RedCol; LaReferencia; J. B. Mariano and E. R. la Rovere, “Environmental impacts of the oil industry,” Encyclopedia of Life Support Systems (EOLSS), 2010, [Online]. Available: https://www.eolss.net/Eolss-SampleAllChapter.aspx; Acciona, “What is sustainability?” https://www.activesustainability.com/sustainabledevelopment/what-is sustainability/ (accessed Jul. 28, 2019).; University of Alberta, “What is sustainability?,” p. 3; J. Korhonen, A. Honkasalo, and J. Seppälä, “Circular Economy: The Concept and its Limitations,” Ecological Economics, vol. 143, pp. 37–46, 2018, doi:10.1016/j.ecolecon.2017.06.041.; Acciona, “¿En qué consiste la economía circular? %7C Sostenibilidad para todos,” 16 January, 2017. https://www.sostenibilidad.com/desarrollo-sostenible/en-queconsiste-la-economia-circular/ (accessed Jul. 28, 2019).; Fundación para la Economía Circular, “Economía Circular.” https://economiacircular.org/wp/?page_id=62 (accessed Jul. 28, 2019).; I. Issa, S. Delbrück, and U. Hamm, “Bioeconomy from experts’ perspectives – Results of a global expert survey,” PLoS One, vol. 14, no. 5, pp. 1–22, 2019, doi:10.1371/journal.pone.0215917.; Bioökonomie BW, “What is a bioeconomy?,” 2012. https://www.biooekonomiebw.de/en/bw/definition/ (accessed Jul. 29, 2019).; BIOSTEP, “What is bioeconomy ?,” 2013. http://www.bio-step.eu/background/whatis-bioeconomy/ (accessed Jul. 28, 2019).; F. Cherubini, “The biorefinery concept: Using biomass instead of oil for producing energy and chemicals,” Energy Convers Manag, vol. 51, no. 7, pp. 1412–1421, 2010, doi:10.1016/j.enconman.2010.01.015.; G. A. Płaza and D. Wandzich, “Biorefineries – New Green Strategy For Development Of Smart And Innovative Industry,” Management Systems in Production Engineering, vol. 23, no. 3, pp. 150–155, Sep. 2016, doi:10.2478/mspe-02-03-2016.; G. J. Suppes, “Glycerol Technology Options for Biodiesel Industry,” in The Biodiesel Handbook: Second Edition, Second Edi., AOCS Press, 2010, pp. 439–455. doi:10.1016/B978-1-893997-62-2.50016-4.; S. K. Yeong, Z. Idris, and H. A. Hassan, Palm Oleochemicals in Non-food Applications. AOCS Press, 2012. doi:10.1016/B978-0-9818936-9-3.50023-X; D. Puerta, “Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica,” 2019.; S. Nomanbhay, R. Hussein, and M. Y. Ong, “Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: A review,” Green Chem Lett Rev, vol. 11, no. 2, pp. 135–157, 2018, doi:10.1080/17518253.2018.1444795; A. Dias da Silva Ruy, A. Luíza Freitas Ferreira, A. Ésio Bresciani, R. Maria de Brito Alves, and L. Antônio Magalhães Pontes, “Market Prospecting and Assessment of the Economic Potential of Glycerol from Biodiesel,” in Biomass [Working Title], no. tourism, IntechOpen, 2020, p. 13. doi:10.5772/intechopen.93965.; OCDE/FAO, OCDE-FAO Perspectivas Agrícolas 2017-2026. OECD, 2017. doi:10.1787/agr_outlook-2017-es.; Fedebiocombustibles, “Información Estadística Sector Biocombustibles.” http://www.fedebiocombustibles.com/v3/estadistica-produccion-tituloBiodiesel.html (accessed Aug. 11, 2019).; C. Len and R. Luque, “Continuous flow transformations of glycerol to valuable products: an overview,” Sustainable Chemical Processes, vol. 2, no. 1, pp. 1–10, 2014, doi:10.1186/2043-7129-2-1.; CORPODIB, “Programa estratégico para la biotransformación sostenible de glicerina cruda en 1,3-propanodiol y prospectiva para desarrollar una biorefinería en ECODIESEL COLOMBIA S.A,” vol. 3529. 2016; H. Yue, Y. Zhao, X. Ma, and J. Gong, “Ethylene glycol: Properties, synthesis, and applications,” Chem Soc Rev, vol. 41, no. 11, pp. 4218–4244, 2012, doi:10.1039/c2cs15359a; B. Pereira, H. Zhang, M. de Mey, C. G. Lim, Z. J. Li, and G. Stephanopoulos, “Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol,” Biotechnol Bioeng, vol. 113, no. 2, pp. 376–383, 2016, doi:10.1002/bit.25717.; T. U. Chae, S. Y. Choi, J. Y. Ryu, and S. Y. Lee, “Production of ethylene glycol from xylose by metabolically engineered Escherichia coli,” AIChE Journal, vol. 64, no. 12, pp. 4193–4200, 2018, doi:10.1002/aic.16339.; L. Salusjärvi, S. Havukainen, O. Koivistoinen, and M. Toivari, “Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives,” Appl Microbiol Biotechnol, vol. 103, no. 6, pp. 2525–2535, 2019, doi:10.1007/s00253- 019-09640-2.; H. Liu, K. R. M. Ramos, K. N. G. Valdehuesa, G. M. Nisola, W. K. Lee, and W. J. Chung, “Biosynthesis of ethylene glycol in Escherichia coli,” Appl Microbiol Biotechnol, vol. 97, no. 8, pp. 3409–3417, 2013, doi:10.1007/s00253-012-4618-7.; L. Salusjärvi et al., “Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae,” Appl Microbiol Biotechnol, vol. 101, no. 22, pp. 8151– 8163, 2017, doi:10.1007/s00253-017-8547-3.; S. Kandasamy, S. P. Samudrala, and S. Bhattacharya, “The route towards sustainable production of ethylene glycol from a renewable resource, biodiesel waste: A review,” Catal Sci Technol, vol. 9, no. 3, pp. 567–577, 2019, doi:10.1039/c8cy02035c.; B. Pereira et al., “Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate,” Metab Eng, vol. 34, pp. 80– 87, 2016, doi:10.1016/j.ymben.2015.12.004.; Chemical Engineering, “Ethylene Glycol Production - Chemical Engineering,” Ethylene Glycol Production, 2015. https://www.chemengonline.com/ethylene-glycolproductio /?printmode=1%0Ahttp://www.chemengonline.com/ethylene-glycolproduction/?printmode=1 (accessed Aug. 14, 2019).; J. Sun and H. Liu, “Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts,” Green Chemistry, vol. 13, no. 1, pp. 135–142, 2011, doi:10.1039/c0gc00571a.; J. Pang, M. Zheng, A. Wang, and T. Zhang, “Catalytic Hydrogenation of Corn Stalk to Ethylene Glycol and 1,2-Propylene Glycol,” Ind Eng Chem Res, vol. 50, pp. 6601– 6608, 2011.; N. Ji et al., “Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts,” Catal Today, vol. 147, no. 2, pp. 77–85, 2009, doi:10.1016/j.cattod.2009.03.012.; V. Siracusa and I. Blanco, “Bio-polyethylene (Bio-PE), Bio-polypropylene (Bio-PP) and Bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications,” Polymers (Basel), vol. 12, no. 8, 2020, doi:10.3390/APP10155029.; C. Wittmann and J. C. Liao, Industrial Biotechnology. Weinheim, Germany: Wiley;VCH Verlag GmbH & Co. KGaA, 2017. doi:10.1002/9783527807833.; D. Kuhn, L. M. Blank, A. Schmid, and B. Bühler, “Systems biotechnology - Rational whole-cell biocatalyst and bioprocess design,” Eng Life Sci, vol. 10, no. 5, pp. 384– 397, 2010, doi:10.1002/elsc.201000009.; B. Palsson, “The challenges of in silico biology,” Nat Biotechnol, vol. 18, no. 11, pp. 1147–1150, 2000, doi:10.1038/81125.; U. von Stockar, Biothermodynamics. CRC Press, 2013.; R. Mahadevan, A. P. Burgard, I. Famili, S. van Dien, and C. H. Schilling, “Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals,” Biotechnology and Bioprocess Engineering, vol. 10, no. 5, pp. 408–417, Oct. 2005, doi:10.1007/BF02989823; P. Tufvesson, J. Lima-Ramos, N. al Haque, K. v. Gernaey, and J. M. Woodley, “Advances in the process development of biocatalytic processes,” Org Process Res Dev, vol. 17, no. 10, pp. 1233–1238, 2013, doi:10.1021/op4001675.; J. J. Heijnen and R. Kleerebezem, “Bioenergetics of Microbial Growth,” Encyclopedia of Industrial Biotechnology, pp. 1–24, 2010, doi:10.1002/9780470054581.eib084.; L. Tijhuis, M. van Loosdrecht, and J. Heijnen, “A thermodynamically based correlation for maintenance Gibbs energy requirements in …,” Biotechnol Bioeng, vol. 42, no. 4, pp. 509–519, 1993, [Online]. Available: http://www3.interscience.wiley.com/journal/107623668/abstract%5Cnpapers2://pub lication/uuid/FA5791A7-1589-4B3D-97D2-6E9DCC92FD90; M. E. Poccia, A. J. Beccaria, and R. G. Dondo, “Modeling the microbial growth of two escherichia coli strains in a multi-substrate environment,” Brazilian Journal of Chemical Engineering, vol. 31, no. 2, pp. 347–354, 2014, doi:10.1590/0104- 6632.20140312s00002587.; A. Narang, “The steady states of microbial growth on mixtures of substitutable substrates in a chemostat,” J Theor Biol, vol. 190, no. 3, pp. 241–261, 1998, doi:10.1006/jtbi.1997.0552.; K. Kovarova, “Growth Kinetics of Escherichia coli: Effect of Temperature, Mixed Substrate Utilization and Adaptation to Carbon-Limited Growth.,” Swiss Federal Institute of technology, Zürich., 1996.; T. Egli, C. Bosshard, and G. Hamer, “Simultaneous utilization of methanol–glucose mixtures by Hansenula polymorpha in chemostat: Influence of dilution rate and mixture composition on utilization pattern,” Biotechnol Bioeng, vol. 28, no. 11, pp. 1735–1741, 1986, doi:10.1002/bit.260281118.; T. Egli, U. Lendenmann, and M. Snozzi, “Kinetics of microbial growth with mixtures of carbon sources,” Antonie Van Leeuwenhoek, vol. 63, no. 3–4, pp. 289–298, 1993, doi:10.1007/BF00871224; W. Harder and L. Dijkhuizen, “Strategies of mixed substrate utilization in microorganisms.,” Philos Trans R Soc Lond B Biol Sci, vol. 297, no. 1088, pp. 459– 480, 1982, doi:10.1098/rstb.1982.0055.; A. Narang, A. Konopka, and D. Ramkrishna, “The dynamics of microbial growth on mixtures of substrates in batch reactors,” J Theor Biol, vol. 184, no. 3, pp. 301–317, 1997, doi:10.1006/jtbi.1996.0275.; W. Babel and R. H. Muller, “Mixed substrate utilization in micro-organisms: Biochemical aspects and energetics,” J Gen Microbiol, vol. 131, no. 1, pp. 39–45, 1985, doi:10.1099/00221287-131-1-39.; P. J. F. Gommers, B. J. van Schie, J. P. van Dijken, and J. G. Kuenen, “Biochemical limits to microbial growth yields: An analysis of mixed substrate utilization,” Biotechnol Bioeng, vol. 33, no. 6, pp. 799–799, 1989, doi:10.1002/bit.260330620.; L. Dijkhuizen and W. Harder, “Regulation of Autotrophic and Heterotrophic Metabolism in Pseudumunas uxalaticus 0x1. Growth on Fructose and on Mixtures of Fructose and Formate in Batch and Continuous Cultures,” Arch Microbiol, vol. 123, no. 1, p. [1] L. Dijkhuizen and W. Harder, “Regulation of au, 1979.; L. Dijkhuizen and W. Harder, “Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of oxalate and formate in continuous culture,” Arch Microbiol, vol. 123, no. 1, pp. 55–63, Oct. 1979, doi:10.1007/BF00403502; L. Dijkhuizen and W. Harder, “Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of acetate and formate in continuous culture,” Arch Microbiol, vol. 123, no. 1, pp. 47–53, 1979, doi:10.1007/BF00403501.; X. Wang, K. Xia, X. Yang, and C. Tang, “Growth strategy of microbes on mixed carbon sources,” Nat Commun, vol. 10, no. 1, pp. 1–7, 2019, doi:10.1038/s41467- 019-09261-3.; A. Litsios, Á. D. Ortega, E. C. Wit, and M. Heinemann, “Metabolic-flux dependent regulation of microbial physiology,” Curr Opin Microbiol, vol. 42, pp. 71–78, 2018, doi:10.1016/j.mib.2017.10.029.; K. Zhuang, G. N. Vemuri, and R. Mahadevan, “Economics of membrane occupancy and respiro‐fermentation,” Mol Syst Biol, vol. 7, no. 1, p. 500, Jan. 2011, doi:10.1038/msb.2011.34.; M. Szenk, K. A. Dill, and A. M. R. de Graff, “Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis,” Cell Syst, vol. 5, no. 2, pp. 95–104, Aug. 2017, doi:10.1016/j.cels.2017.06.005.; X. Yang et al., “Physical bioenergetics: Energy fluxes, budgets, and constraints in cells,” Proceedings of the National Academy of Sciences, vol. 118, no. 26, Jun. 2021, doi:10.1073/pnas.2026786118.; B. Niebel, S. Leupold, and M. Heinemann, “An upper limit on Gibbs energy dissipation governs cellular metabolism,” Nat Metab, vol. 1, no. 1, pp. 125–132, 2019, doi:10.1038/s42255-018-0006-7.; C. Wittmann and S. Y. Lee, Systems Metabolic Engineering. Dordrecht: Springer Netherlands, 2012. doi:10.1007/978-94-007-4534-6; R. Kulkarni, “Metabolic engineering: Biological art of producing useful chemicals,”Resonance, vol. 21, no. 3, pp. 233–237, 2016, doi:10.1007/s12045-016-0318-4.; Y. T. Yang, G. N. Bennett, and K. Y. San, “Genetic and metabolic engineering,” Electronic Journal of Biotechnology, vol. 1, no. 3, pp. 49–60, 1998.; W. Niu, J. Guo, and S. van Dien, Metabolic Engineering for Bioprocess Commercialization. Cham: Springer International Publishing, 2016. doi:10.1007/978-3-319-41966-4.; M. Kanehisa, “KEGG: Kyoto Encyclopedia of Genes and Genomes,” Nucleic Acids Research, 2000. https://www.kegg.jp/; Technische Universitat Braunschweig, “Enzyme Database - BRENDA,” Bglucosidase information, 2018. https://www.brenda-enzymes.org/; R. Caspi et al., “The MetaCyc database of metabolic pathways and enzymes - a 2019 update,” Nucleic Acids Res, vol. 48, no. D1, pp. D445–D453, Jan. 2020, doi:10.1093/nar/gkz862.; E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehraach, Systems Biology in Practice. 2005.; E. Noor, A. Bar-Even, A. Flamholz, E. Reznik, W. Liebermeister, and R. Milo, “Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism,” PLoS Comput Biol, vol. 10, no. 2, 2014, doi:10.1371/journal.pcbi.1003483.; Z. Chen, J. Huang, Y. Wu, and D. Liu, “Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose,” Metab Eng, vol. 33, pp. 12–18, 2016, doi:10.1016/j.ymben.2015.10.013.; B. Uranukul, B. M. Woolston, G. R. Fink, and G. Stephanopoulos, “Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes,” Metab Eng, vol. 51, pp. 20–31, 2019, doi:10.1016/j.ymben.2018.09.012.; J. M. Monk et al., “iML1515, a knowledgebase that computes Escherichia coli traits,” Nat Biotechnol, vol. 35, no. 10, pp. 8–12, 2017.; N. C. Duarte, M. J. Herrgård, and B. Ø. Palsson, “Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model,” Genome Res, vol. 14, no. 7, pp. 1298–1309, Jul. 2004, doi:10.1101/gr.2250904.; M. Tomàs-Gamisans, P. Ferrer, and J. Albiol, “Fine-tuning the P. pastoris iMT1026 genome-scale metabolic model for improved prediction of growth on methanol or glycerol as sole carbon sources,” Microb Biotechnol, vol. 11, no. 1, pp. 224–237, 2018, doi:10.1111/1751-7915.12871.; P. D. Karp et al., “The BioCyc collection of microbial genomes and metabolic pathways,” Brief Bioinform, vol. 20, no. 4, pp. 1085–1093, Jul. 2019, doi:10.1093/bib/bbx085; I. M. Keseler et al., “The EcoCyc Database in 2021,” Front Microbiol, vol. 12, Jul. 2021, doi:10.3389/fmicb.2021.711077.; Z. A. King et al., “BiGG Models: A platform for integrating, standardizing and sharing genome-scale models,” Nucleic Acids Res, vol. 44, no. D1, pp. D515–D522, Jan. 2016, doi:10.1093/nar/gkv1049.; UniProt consortium, “UniProt.” https://www.uniprot.org/; M. E. Beber et al., “eQuilibrator 3.0: a database solution for thermodynamic constant estimation,” Nucleic Acids Res, vol. 50, no. D1, pp. D603–D609, Jan. 2022, doi:10.1093/nar/gkab1106.; L. Heirendt et al., “Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0,” Nat Protoc, vol. 14, no. 3, pp. 639–702, Mar. 2019, doi:10.1038/s41596-018-0098-2.; E. Noor, H. S. Haraldsdóttir, R. Milo, and R. M. T. Fleming, “Consistent Estimation of Gibbs Energy Using Component Contributions,” PLoS Comput Biol, vol. 9, no. 7, p. e1003098, Jul. 2013, doi:10.1371/journal.pcbi.1003098; F. Meyer, P. Keller, J. Hartl, O. G. Gröninger, P. Kiefer, and J. A. Vorholt, “Methanolessential growth of Escherichia coli,” Nat Commun, vol. 9, no. 1, p. 1508, Dec. 2018, doi:10.1038/s41467-018-03937-y; C. T. Chen et al., “Synthetic methanol auxotrophy of Escherichia coli for methanoldependent growth and production,” Metab Eng, vol. 49, no. June, pp. 257–266, 2018, doi:10.1016/j.ymben.2018.08.010; B. M. Woolston, J. R. King, M. Reiter, B. van Hove, and G. Stephanopoulos, “Improving formaldehyde consumption drives methanol assimilation in engineered E. coli,” Nat Commun, vol. 9, no. 1, 2018, doi:10.1038/s41467-018-04795-4.; Z. Dai et al., “Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae,” Bioresour Technol, 2017, doi:10.1016/j.biortech.2017.05.100.; H. O. Kammen and R. Koo, “Phosphopentomutases,” Journal of Biological Chemistry, vol. 244, no. 18, pp. 4888–4893, 1969, doi:10.1016/s0021- 9258(18)94286-9.; K. Hammer-Jespersen and A. Munch-Petersem, “Phosphodeoxyribomutase from Escharichia coli.,” Eur J Biochem, vol. 17, pp. 9–25, 2019.; R. K. Murray, D. A. Bender, K. M. Botham, P. J. Kennelly, V. W. Rodwell, and P. A. Weil, Harper. Bioquímica ilustrada. Mc Graw Hill Education, 2010.; A. Kümmel, S. Panke, and M. Heinemann, “Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data,” Mol Syst Biol, vol. 2, pp. 1–10, 2006, doi:10.1038/msb4100074.; https://repositorio.unal.edu.co/handle/unal/84239; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  9. 9
    Dissertation/ Thesis

    المؤلفون: Vásquez Restrepo, Andrés

    المساهمون: SUAREZ-MENDEZ, CAMILO, Bioprocesos y Flujos Reactivos, Vasquez-Restrepo, Andres 0000-0001-9627-1005, Suárez Méndez, Camilo 0000-0002-5345-9662, https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000122302

    وصف الملف: 210 páginas; application/pdf

    Relation: RedCol; LaReferencia; L. Pedraza, “Análisis metabólico y termodinámico in silico para la biosíntesis de ácido 3-indolacético (AIA) a partir de glicerol en Azospirillum brasilense,” Universidad Nacional de Colombia, 2019.; D. Puerta, “Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica,” Universidad Nacional de Colombia, 2019; L. Avendaño, “Diseño in silico de una plataforma biosintética que permita la valoración del gas de síntesis mediante su conversión en etileno, implementando herramientas de ingeniería metabólica,” Universidad Nacional de Colombia, 2019.; R. Moscoviz, J. Toledo-Alarcón, E. Trably, and N. Bernet, “Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems,” Trends Biotechnol., vol. 34, no. 11, pp. 856–865, 2016, doi:10.1016/j.tibtech.2016.04.009.; U. von Stockar, The Role of Thermodynamics in Biochemical Engineering. 2013.; U. Von Stockar and L. A. M. Van Der Wielen, “Thermodynamics in biochemical engineering,” J. Biotechnol., vol. 59, no. 1–2, pp. 25–37, Dec. 1997, doi:10.1016/S0168-1656(97)00167-3.; M. C. Flickinger, J. J. Heijnen, and R. Kleerebezem, “Bioenergetics of Microbial Growth,” in Encyclopedia of Industrial Biotechnology, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010.; U. Von Stockar, “Biothermodynamics of live cells: A tool for biotechnology and biochemical engineering,” J. Non-Equilibrium Thermodyn., vol. 35, no. 4, pp. 415–475, Dec. 2010, doi:10.1515/JNETDY.2010.024/MACHINEREADABLECITATION/RIS.; H. F. Cueto-Rojas, A. J. A. van Maris, S. A. Wahl, and J. J. Heijnen, “Thermodynamics-based design of microbial cell factories for anaerobic product formation,” Trends in Biotechnology, vol. 33, no. 9. Elsevier Ltd, pp. 534–546, Sep. 01, 2015, doi:10.1016/j.tibtech.2015.06.010.; B. Kim, W. J. Kim, D. I. Kim, and S. Y. Lee, “Applications of genome-scale metabolic network model in metabolic engineering,” J. Ind. Microbiol. Biotechnol., vol. 42, no. 3, pp. 339–348, Jan. 2015, doi:10.1007/s10295-014-1554-9.; M. R. Long, W. K. Ong, and J. L. Reed, “Computational methods in metabolic engineering for strain design,” Current Opinion in Biotechnology, vol. 34. Elsevier Ltd, pp. 135–141, Aug. 01, 2015, doi:10.1016/j.copbio.2014.12.019.; Z. A. King, C. J. Lloyd, A. M. Feist, and B. O. Palsson, “Next-generation genome-scale models for metabolic engineering,” Current Opinion in Biotechnology, vol. 35. Elsevier Ltd, pp. 23–29, Dec. 01, 2015, doi:10.1016/j.copbio.2014.12.016.; C. A. Suarez-Mendez, M. Hanemaaijer, A. ten Pierick, J. C. Wolters, J. J. Heijnen, and S. A. Wahl, “Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary 13C metabolic flux analysis,” Metab. Eng. Commun., vol. 3, pp. 52–63, Dec. 2016, doi:10.1016/j.meteno.2016.01.001.; J. Jordà et al., “Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 13C flux analysis,” BMC Syst. Biol., vol. 7, Feb. 2013, doi:10.1186/1752-0509-7-17.; W. J. Kim, H. U. Kim, and S. Y. Lee, “Current state and applications of microbial genome-scale metabolic models,” Curr. Opin. Syst. Biol., vol. 2, pp. 10–18, 2017, doi:10.1016/j.coisb.2017.03.001.; H. U. Kim, T. Y. Kim, and S. Y. Lee, “Metabolic flux analysis and metabolic engineering of microorganisms,” Mol. Biosyst., vol. 4, no. 2, pp. 113–120, 2008, doi:10.1039/b712395g.; K. Rabaey et al., “Microbial ecology meets electrochemistry: electricity-driven and driving communities,” ISME J., vol. 1, pp. 9–18, 2007, doi:10.1038/ismej.2007.4.; K. Rabaey, “Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application,” Water Intell. Online, vol. 8, p. undefined-undefined, Dec. 2009, doi:10.2166/9781780401621.; B. Korth and F. Harnisch, “Spotlight on the energy harvest of electroactive microorganisms: The impact of the applied anode potential,” Front. Microbiol., vol. 10, no. JUN, Jun. 2019, doi:10.3389/fmicb.2019.01352; A. Sydow, T. Krieg, F. Mayer, J. Schrader, and D. Holtmann, “Electroactive bacteria—molecular mechanisms and genetic tools,” Appl. Microbiol. Biotechnol, vol. 98, no. 20, pp. 8481–8495, 2014, doi:10.1007/s00253-014-6005-z.; M. Firer-Sherwood, G. S. Pulcu, and S. J. Elliott, “Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a poten- tial window,” J Biol Inorg Chem, vol. 13, pp. 849–854, 2008.; A. Sydow, T. Krieg, F. Mayer, J. Schrader, and D. Holtmann, “Electroactive bacteria—molecular mechanisms and genetic tools,” Appl. Microbiol. Biotechnol., vol. 98, no. 20, pp. 8481–8495, 2014, doi:10.1007/s00253-014-6005-z.; C. Bücking, M. Schicklberger, and J. Gescher, “The Biochemistry of Dissimilatory Ferric Iron and Manganese Reduction in Shewanella oneidensis,” in Microbial Metal Respiration, A. Kappler and J. Gescher, Eds. Verlag Berlin Heidelberg: Springer.; K. Rabaey, L. Angenent, U. Schröder, and J. Keller, Bioelectrochemical systems: from extracellular electrons transfer to biotechnological application. London: IWA Publishing, 2010.; F. Harnisch, L. F. M. Rosa, F. Kracke, B. Virdis, and J. O. Krömer, “Electrifying white biotechnology: Engineering and economic potential of electricity-driven bio-production,” ChemSusChem, vol. 8, no. 5, pp. 758–766, 2015, doi:10.1002/cssc.201402736.; M. Aghababaie, M. Farhadian, A. Jeihanipour, and D. Biria, “Effective factors on the performance of microbial fuel cells in wastewater treatment–a review,” Environ. Technol. Rev., vol. 4, no. 1, pp. 71–89, 2015, doi:10.1080/09593330.2015.1077896.; C. I. Torres, A. K. Marcus, H.-S. Lee, P. Parameswaran, R. Krajmalnik-Brown, and B. E. Rittmann, “A kinetic perspective on extracellular electron transfer by anode-respiring bacteria,” FEMS Microbiol. Rev., vol. 34, no. 1, pp. 3–17, Jan. 2010, doi:10.1111/j.1574-6976.2009.00191.x.; P. Arbter, W. Sabra, T. Utesch, Y. Hong, and A. Zeng, “Metabolomic and kinetic investigations on the electricity‐aided production of butanol by Clostridium pasteurianum strains,” Eng. Life Sci., p. elsc.202000035, Dec. 2020, doi:10.1002/elsc.202000035.; Schroder, “Microbial Fuel Cells and Microbial Electrochemistry: Into the Next Century!,” ChemSusChem, vol. 5, pp. 959–961, 2012, doi:10.1002/cssc.201200319.; D. R. Lovley, “Microbial fuel cells: novel microbial physiologies and engineering approaches,” Curr. Opin. Biotechnol, vol. 17, pp. 327–332, 2006.; Y. Zhang and I. Angelidaki, “Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges,” Water Res, vol. 56, pp. 11–25, 2014.; K. Rabaey and R. A. Rozendal, “Microbial electrosynthesis– revisiting the electrical route for microbial production,” Nat. Rev. Microbiol, vol. 8, pp. 706–716, 2010.; O. Choi, T. Kim, H. M. Woo, and Y. Um, “Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum,” Sci. Rep., vol. 4, no. 1, p. 6961, May 2015, doi:10.1038/srep06961.; O. Choi, Y. Um, and B. I. Sang, “Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor,” Biotechnol. Bioeng., vol. 109, no. 10, pp. 2494–2502, Oct. 2012, doi:10.1002/bit.24520.; J. M. Flynn, D. E. Ross, K. A. Hunt, D. R. Bond, and J. A. Gralnick, “Enabling unbalanced fermentations by using engineered electrode- interfaced bacteria,” MBio, vol. 1, no. 5, Nov. 2010, doi:10.1128/mBio.00190-10.; “Basic overview of the working principle of a potentiostat/galvanostat (PGSTAT)-Electrochemical cell setup.”; R. Emde and B. Schink, “Enhanced Propionate Formation by Propionibacterium freudenreichii subsp. freudenreichii in a Three-Electrode Amperometric Culture System Downloaded from,” 1990. Accessed: Jan. 31, 2021. [Online]. Available: http://aem.asm.org/.; C. G. Liu, C. Xue, Y. H. Lin, and F. W. Bai, “Redox potential control and applications in microaerobic and anaerobic fermentations,” Biotechnology Advances, vol. 31, no. 2. Elsevier, pp. 257–265, Mar. 01, 2013, doi:10.1016/j.biotechadv.2012.11.005.; R. Emde and B. Schink, “Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system,” Appl. Environ. Microbiol, vol. 56, pp. 2771–2776, 1990.; R. Moscoviz, J. Toledo-Alarcón, E. Trably, and N. Bernet, “Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems,” Trends Biotechnol, vol. 34, no. 11, pp. 856–865, doi:10.1016/j.tibtech.2016.04.009.; B. Korth and F. Harnisch, “Modeling microbial electrosynthesis,” in Advances in Biochemical Engineering/Biotechnology, vol. 167, Springer Science and Business Media Deutschland GmbH, 2019, pp. 273–325.; H. Rismani-Yazdi, A. D. Christy, S. M. Carver, Z. Yu, B. A. Dehority, and O. H. Tuovinen, “Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells,” Bioresour. Technol., vol. 102, no. 1, pp. 278–283, 2011, doi:10.1016/j.biortech.2010.05.012.; F. Kracke and J. O. Krömer, “Identifying target processes for microbial electrosynthesis by elementary mode analysis,” 2014, doi:10.1186/s12859-014-0410-2.; F. Kracke, B. Lai, S. Yu, and J. O. Krömer, “Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation – A chance for metabolic engineering,” Metabolic Engineering, vol. 45. Academic Press Inc., pp. 109–120, Jan. 01, 2018, doi:10.1016/j.ymben.2017.12.003.; T. D. Harrington et al., “The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction,” 2015, doi:10.1016/j.biortech.2015.06.037.; Y. Anraku, “BACTERIAL ELECTRON TRANSPORT CHAINS,” https://doi.org/10.1146/annurev.bi.57.070188.000533, vol. 57, pp. 101–132, Nov. 2003, doi:10.1146/ANNUREV.BI.57.070188.000533.; L. Heirendt et al., “Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0,” Nat. Protoc. 2019 143, vol. 14, no. 3, pp. 639–702, Feb. 2019, doi:10.1038/s41596-018-0098-2.; Z. A. King, A. Dräger, A. Ebrahim, N. Sonnenschein, N. E. Lewis, and B. O. Palsson, “Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways,” PLOS Comput. Biol., vol. 11, no. 8, p. e1004321, Aug. 2015, doi:10.1371/JOURNAL.PCBI.1004321.; P. Raybaut, “Spyder-documentation.” 2009, [Online]. Available: pythonhosted. org.; O. Choi, T. Kim, H. M. Woo, and Y. Um, “Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum,” Sci. Rep., vol. 4, no. 1, pp. 1–10, Nov. 2014, doi:10.1038/srep06961.; I. Vassilev, G. Gießelmann, S. K. Schwechheimer, C. Wittmann, B. Virdis, and J. O. Krömer, “Anodic electro-fermentation: Anaerobic production of L-Lysine by recombinant Corynebacterium glutamicum,” Biotechnol. Bioeng., vol. 115, no. 6, pp. 1499–1508, 2018, doi:10.1002/bit.26562.; C. G. Liu, C. Xue, Y. H. Lin, and F. W. Bai, “Redox potential control and applications in microaerobic and anaerobic fermentations,” Biotechnol. Adv., vol. 31, no. 2, pp. 257–265, 2013, doi:10.1016/j.biotechadv.2012.11.005.; B. Schuppert, B. Schink, and W. Trösch, “Batch and continuous production of propionic acid from whey permeate by Propionibacterium acidi-propionici in a three-electrode amperometric culture system,” Appl. Microbiol. Biotechnol., vol. 37, no. 5, pp. 549–553, Aug. 1992, doi:10.1007/BF00240723.; A. M. Feist et al., “A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information,” Mol. Syst. Biol., vol. 3, no. 1, p. 121, Jan. 2007, doi:10.1038/MSB4100155.; M. Zhou, J. Chen, S. Freguia, K. Rabaey, and J. Keller, “Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol,” Environ. Sci. Technol., vol. 47, no. 19, pp. 11199–11205, Oct. 2013, doi:10.1021/ES402132R/SUPPL_FILE/ES402132R_SI_001.PDF.; C. Kim et al., “Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae L17 in a bioelectrochemical system,” Biotechnol. Biofuels, vol. 10, no. 1, p. 199, Aug. 2017, doi:10.1186/s13068-017-0886-x.; A. M. Feist et al., “A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information,” Mol. Syst. Biol., vol. 3, 2007, doi:10.1038/MSB4100155.; A. Özcan, Y. Şahin, A. Savaş Koparal, and M. A. Oturan, “Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium,” J. Electroanal. Chem., vol. 616, no. 1–2, pp. 71–78, May 2008, doi:10.1016/J.JELECHEM.2008.01.002.; S. Wang, Y. Zhu, Y. Yang, J. Li, and M. R. Hoffmann, “Electrochemical cell lysis of gram-positive and gram-negative bacteria: DNA extraction from environmental water samples,” Electrochim. Acta, vol. 338, Apr. 2020, doi:10.1016/J.ELECTACTA.2020.135864.; T. Zhang, R. O. Louro, J. O. Krömer, F. Kracke, and I. Vassilev, “Microbial electron transport and energy conservation-the foundation for optimizing bioelectrochemical systems Microbial electron transport in bioelectrochemical systems,” Front. Microbiol. %7C www.frontiersin.org, vol. 1, 2015, doi:10.3389/fmicb.2015.00575.; K. Sturm-Richter et al., “Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells,” Bioresour. Technol., vol. 186, pp. 89–96, Jun. 2015, doi:10.1016/j.biortech.2015.02.116.; J. P. O’Brien and N. S. Malvankar, “A Simple and Low-Cost Procedure for Growing Geobacter sulfurreducens Cell Cultures and Biofilms in Bioelectrochemical Systems,” Curr. Protoc. Microbiol., vol. 43, no. 1, p. A.4K.1-A.4K.27, Nov. 2016, doi:10.1002/CPMC.20.; C. Koch, B. Korth, and F. Harnisch, “Microbial ecology-based engineering of Microbial Electrochemical Technologies,” Microb. Biotechnol., vol. 11, no. 1, pp. 22–38, Jan. 2018, doi:10.1111/1751-7915.12802.; M. Kanehisa, Y. Sato, and M. Kawashima, “KEGG mapping tools for uncovering hidden features in biological data,” Protein Sci., vol. 31, no. 1, pp. 47–53, Jan. 2022, doi:10.1002/PRO.4172.; J. M. Monk et al., “Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 50, pp. 20338–20343, Dec. 2013, doi:10.1073/PNAS.1307797110/-/DCSUPPLEMENTAL.; J. Pramanik and J. D. Keasling, “Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements,” Biotechnol. Bioeng., vol. 56, no. 4, pp. 398–421, 1997, doi:10.1002/(SICI)1097-0290(19971120)56:43.0.CO;2-J.; J. A. Roels, “Application of Macroscopic Principles To Microbial Metabolism,” Ann. N. Y. Acad. Sci., vol. 369, no. 1, pp. 113–134, 1981, doi:10.1111/j.1749-6632.1981.tb14182.x.; F. Kracke, B. Virdis, P. V. Bernhardt, K. Rabaey, and J. O. Krömer, “Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply,” Biotechnol. Biofuels, vol. 9, no. 1, pp. 1–12, 2016, doi:10.1186/s13068-016-0663-2.; https://repositorio.unal.edu.co/handle/unal/83418; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  10. 10
    Dissertation/ Thesis

    المساهمون: Suárez Méndez, Camilo Alberto, Bioprocesos y Flujos Reactivos

    وصف الملف: 193 páginas; application/pdf

    Relation: LaReferencia; P. Clunies, S. Collie, y T. Farrelly, “Plastic in the environment”, Wellington, 2013; Plastic soup foundation, “Plastic production decomposition”. Consultado: el 10 de noviembre de 2021. [En línea]. Disponible en: https://www.plasticsoupfoundation.org/en/plastic-problem/plastic-environment/plastic-production-decomposition/#:~:text=World production of plastic increased,in the last thirteen years; I. Tiseo, “Global plastic production 1950-2020”. Consultado: el 16 de enero de 2022. [En línea]. Disponible en: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/; S. Laville y M. Tayor, “A million bottles a minute: world’s plastic binge as dangerous”, The Guardian, London, 2017; Statista Research Department, “Production of polyethylene terephthalate bottles worldwide from 2004 to 2021”. Consultado: el 11 de diciembre de 2023. [En línea]. Disponible en: https://www.statista.com/statistics/723191/production-of-polyethylene-terephthalate-bottles-worldwide/; Transparency Market Research, “Plastic Bottle Recycling Market”. Consultado: el 11 de diciembre de 2023. [En línea]. Disponible en: https://www.transparencymarketresearch.com/plastic-bottle-recycling-market.html#:~:text=Increase%20in%20global%20concern%20about,was%20about%2027.2%25%20in%202021; Enka, “Informe de sostenibilidad ENKA 2017”, Medellin, 2017; W. Zimmermann y S. Billig, “Enzymes for the Biofunctionalization of Poly (Ethylene Terephthalate)”, Biotechnology, 2010, doi:10.1007/10_2010_87; Statista Research Department, “Market volume of polyethylene terephthalate worldwide from 2015 to 2022, with a forecast for 2023 to 2030”. Consultado: el 11 de diciembre de 2023. [En línea]. Disponible en: https://www.statista.com/statistics/1245264/polyethylene-terephthalate-market-volume-worldwide/; Responsabilidad integral de Colombia, “Reciclaje químico y economía circular: retos y oportunidades”, en Economía circular, Bogotá, 2020.; C. Blair y B. Quinn, Microplastic Pollutants, 1a ed. Elsevier inc, 2017; H. Rueda, “Evaluación del potencial de cutinasas para hidrolizar poli(etilen tereftalato) (PET), aisladas a partir de hongos filamentosos presentes en residuos agroindustriales.”, Maestría de diseño y gestión de procesos, Universidad de la Sabana, 2016; D. Bermúdez, “Evaluación de microorganismos (Trichoderma spp. y Pseudomina Aeruginosa) para la degradación del PET”, Fundación Universidad de América, Bogotá D.C, 2021; D. López, “Caracterización de láminas de materiales compuestos de polietilentereftalato con partículas cerámicas”, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona, 2014; D. López, “Caracterización de láminas de materiales compuestos de polietilentereftalato con partículas cerámicas”, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona, 2014.; Omnexus, “Polyethylene Terephthalate (PET): A Comprehensive Review”.; I. Gacen, Esbec, “Modificación de la estructura fina de las fibras PET en el termofijado y en la tintura posterior. Tintura competitiva de sustratos termofijados a temperaturas vecinas”, 2004; Textos científicos, “POLÍMEROS CRISTALINOS Y AMORFOS”.; J. Speight, “Polymer degradation”, en Handbook of industrial Hydrocarbon Processes , 2a ed., Gulf Professional Publishing , 202d. C., pp. 95–142.; H. Abedsoltan, “A focused review on recycling and hydrolysis techniques of polyethylene terephthalate”, Polym Eng Sci, vol. 63, núm. 9, pp. 2651–2674, sep. 2023, doi:10.1002/pen.26406.; K. G. Gopalakrishna y N. Reddy, “Regulations on Recycling PET Bottles”, en Recycling of Polyethylene Terephthalate Bottles, vol. 1, S. Thomas, Rane Ajay, y K. Kanny, Eds., Elsevier, 2018, pp. 23–35. doi:10.1016/B978-0-12-811361-5.00002-X.; H. Palma y F. Tenesaca, “Estudio de la degradabilidad del PET (Polietilentereftalato) dosificado con celulosa de la cáscara de cacao. ”, Licenciatura, Universidad Politécnica Salesiana, Cuenca, 202d; B. Bertolotti, J. Chávez, R. Laos, C. Rospigliosi, y J. Nakamatsu, “Poliésteres y Reciclaje Químico del Poli(tereftalato de etileno) ”, Revista de Química, vol. 19, núm. 1, pp. 13–20, jun. 2005; A. M. Al-Sabagh, F. Z. Yehia, Gh. Eshaq, A. M. Rabie, y A. E. ElMetwally, “Greener routes for recycling of polyethylene terephthalate”, Egyptian Journal of Petroleum, vol. 25, núm. 1, pp. 53–64, mar. 2016, doi:10.1016/j.ejpe.2015.03.001; C. Benavidez, M. Guzmán, S. Quijano, y L. Carvajal, “Microbial degradation of polyethylene terephthalate: a systematic review”, SN Appl Sci, vol. 4, núm. 263, sep. 2022; R. Geyer, J. R. Jambeck, y K. L. Law, “Production, use, and fate of all plastics ever made”, Sci Adv, vol. 3, núm. 7, jul. 2017, doi:10.1126/sciadv.1700782; I. Taniguchi, S. Yoshida, K. Hiraga, K. Miyamoto, Y. Kimura, y K. Oda, “Biodegradation of PET: Current Status and Application Aspects”, ACS Catal, vol. 9, núm. 5, pp. 4089–4105, may 2019, doi:10.1021/acscatal.8b05171; G. M. Guebitz y A. Cavaco-Paulo, “Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers”, Trends Biotechnol, vol. 26, núm. 1, pp. 32–38, ene. 2008, doi:10.1016/j.tibtech.2007.10.003; B. Nowak, J. Paja̧K, y S. Labuzek, “Biodegradation of poly(ethylene terephthalate) modified with polyester ‘Bionolle’ by Penicillium funiculosum”, Polimery, vol. 56, pp. 35–56, 2011, doi:10.14314/polimery.2011.035; D. Castro-Ochoa, C. Peña-Montes, y A. Farres, “Producción y caracaterísticas de cutinasas: Una alternativa interesante para biocatálisis a nivel industrial”, Revista Especializada en Ciencias Químico-Biológicas, vol. 1, pp. 16–25, 2010; Diccionario biología, “Qué es cutina”.; S. Chen, L. Su, y J. Wu, “Cutinase: Characteristics, preparation, and application”, ELSEVIER, vol. 31, núm. 8, pp. 1754–1767, 2013, doi: doi.org/10.1016/j.biotechadv.2013.09.005.; M. Egmond y J. Vlieg, “Fusarium solani pisi cutinase”, ELSEVIER, vol. 82, pp. 1015–1021, 2000; I. Donelli, V. Nierstrasz, y P. Taddei, “Surface structure and properties of poly-(ethylene terephthalate) hydrolyzed by alkali and cutinase”, Polym Degrad Stab, 2010; B. Knott, E. Erickson, E. Allen, J. Gado, y H. Austin, “Characterization and engineering of a two-enzyme system for plastics depolymerization”, Proc Natl Acad Sci U S A, vol. 41, pp. 25476–25485, 2020, doi:10.1073/pnas.2006753117; D. Li y P. Kolattukudy, “Cloning of cutinase transcription factor 1, a transactivating protein containing Cys6Zn2 binuclear cluster DNA-binding motif.”, The Journal of Biological Chemestry, 1997; M. V. Powers-Fletcher, B. A. Kendall, A. T. Griffin, y K. E. Hanson, “Filamentous Fungi”, Microbiol Spectr, vol. 4, núm. 3, may 2016, doi:10.1128/microbiolspec.DMIH2-0002-2015; T. Lin y P. Kolattukudy, “Induction of a Biopolyester Hydrolase (Cutinase) by Low Levels of Cutin Monomers in Fusarium solani f. sp. pisi”, J Bacteriol, vol. 133, núm. 942–951, 1978; C. Calado, Á. Taipa, y J. Cabral, “Optimisation of culture conditions and characterisation of cutinase produced by recombinant Saccharomyces cerevisiae”, ELSEVIER, 2002; M.-A. d’Halewyn y P. Chevalier, “Penicillium spp; R. Srinivasan, G. Prabhu, M. Prasad, M. Mishra, M. Chaudhary, y R. Srivastava, “Penicillium”, en Beneficial Microbes in Agro-Ecology, Elsevier, 2020, pp. 651–667. doi:10.1016/B978-0-12-823414-3.00032-0; B. Buendía y M. López-Brea, “¿Qué debemos saber sobre Aspergillus?”, Enferm Infecc Microbiol Clin, vol. 19, pp. 142–144, ene. 2001; “Aspergillus spp. - Agentes Biológicos - Hongo”. Consultado: el 5 de noviembre de 2023. [En línea]. Disponible en: https://www.insst.es/agentes-biologicos-basebio/hongos/aspergillus-spp; J. E. Galagan et al., “Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae”, Nature, vol. 438, núm. 7071, pp. 1105–1115, dic. 2005, doi:10.1038/nature04341; M. T. Hedayati, “Aspergillus species in indoor environments and their possible occupational and public health hazards”, Curr Med Mycol, vol. 2, núm. 1, pp. 36–42, 2016, doi:10.18869/acadpub.cmm.2.1.36; D. Castro-Ochoa et al., “ANCUT2, an Extracellular Cutinase from Aspergillus nidulans Induced by Olive Oil”, Appl Biochem Biotechnol, vol. 166, núm. 5, pp. 1275–1290, mar. 2012, doi:10.1007/s12010-011-9513-7; M. Komatsu, T. Uchiyama, S. Ōmura, D. E. Cane, y H. Ikeda, “Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism”, Proceedings of the National Academy of Sciences, vol. 107, núm. 6, pp. 2646–2651, feb. 2010, doi:10.1073/pnas.0914833107; A. Gunjal y D. S. Bhagat, “Diversity of actinomycetes in Western Ghats”, en Microbial Diversity in Hotspots, G. Aparna y S. Sonali, Eds., Elsevier, 2022, pp. 117–133. doi:10.1016/B978-0-323-90148-2.00007-9; D. Berd, “Streptomyces sp- Public Health Image Library(PHIL)”. Consultado: el 5 de noviembre de 2023. [En línea]. Disponible en: https://phil.cdc.gov/Details.aspx?pid=2983; W. F. Fett, H. C. Gérard, R. A. Moreau, S. F. Osman, y L. E. Jones, “Cutinase production byStreptomyces spp.”, Curr Microbiol, vol. 25, núm. 3, pp. 165–171, sep. 1992, doi:10.1007/BF01571025; M. Álvarez, “Procesos fermentativos”, 2018; R. Singhania, A. Patel, y L. Thomas, “Industrial Enzymes”, en Industrial Biorefineries and ehithe Biotechnology, Trivandrum: Elsevier inc, 2015, pp. 473–478; M. Mata y M. Barquero, “Evaluación de la fermentación sumergida del hongo entomopatógeno ‘Beauveria bassiana’ como parte de un proceso de escalamiento y producción de bioplaguicidas”, 2008; L. Veiter, V. Rajamanickam, y C. Herwing, “The filamentous fungal pellet—relationship between morphology and productivity”, Appl Microbiol Biotechnol, vol. 102, pp. 2997–3006, 2018, doi:10.1007/s00253-018-8818-7; J. Nielsen, C. Johansen, M. Jacobsen, P. Krabben, y J. Villadsen, “Pellet Formation and Fragmentation in Submerged Cultures of Penicillium chrysogenum and Its Relation to Penicillin Production”, Biotechnol Prog., vol. 11, pp. 93–98, 1995; Michel. DuBois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, y Fred. Smith, “Colorimetric Method for Determination of Sugars and Related Substances”, Anal Chem, vol. 28, núm. 3, pp. 350–356, mar. 1956, doi:10.1021/ac60111a017; G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar”, Anal Chem, vol. 31, núm. 3, pp. 426–428, mar. 1959, doi:10.1021/ac60147a030; P. R. Griffiths y J. Haseth, Fourier transform infrared spectrometry , 2a ed., vol. 1. Moscow: Wiley, 2004; Z. Chen, J. N. Hay, y M. J. Jenkins, “FTIR spectroscopic analysis of poly(ethylene terephthalate) on crystallization”, Eur Polym J, vol. 48, núm. 9, pp. 1586–1610, sep. 2012, doi:10.1016/j.eurpolymj.2012.06.006; T. Sang, C. J. Wallis, G. Hill, y G. J. P. Britovsek, “Polyethylene terephthalate degradation under natural and accelerated weathering conditions”, Eur Polym J, vol. 136, p. 109873, ago. 2020, doi:10.1016/j.eurpolymj.2020.109873; P. G. De Gennes, Scaling Concepts in Polymer Physics, 1a ed., vol. 1. London: Cornell University Press, 1979; J. Cowie y V. Arrighi, Polymers: Chemestry and physics of moderns materials, 3a ed. Florida: CRC Press, 2007; I. Arciniega, “Aislamiento de microorganismos degradadores de tereftalato de polietileno (PET) en medio ambiente combinado”, Instituto Politécnico Nacional, Ciudad de México, 2008; X. Hu, U. Thumarat, X. Zhang, M. Tang, y F. Kawai, “Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119”, Appl Microbiol Biotechnol, vol. 87, núm. 2, pp. 771–779, jun. 2010, doi:10.1007/s00253-010-2555-x; J. Müller, S. Hedwig, y K. Dresler, “Enzymatic Degradation of Poly(ethylene terephthalate): Rapid Hydrolyse using a Hydrolase from T. fusca”, Bioprocess Biosyst Eng, 2005, doi:10.1002/marc.200500410; M. Vertommen y V. Veer, “Enzymatic surface modification of poly(ethylene terephthalate)”, ELSEVIER, pp. 376–386, 2005; Y. Kim, J. Min, y J. Lee, “Biodegradation of dipropyl phthalate and toxicity of its degradation products: a comparison of Fusarium oxysporum f. sp. pisi cutinase and Candida cylindracea esterase. Kim YH1, Min J, Bae KD, Gu MB, Lee J.”, Arch Microbiol, pp. 25–31, 2005, doi:10.1007/s00203-005-0026-z; S. Liebminger y A. Eberl, “Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium Citrinum”, Biocatal Biotransformation, núm. 1024-2422 print/ISSN 1029-2446, p. 7, 2007, doi:10.1080/10242420701379734; U. Sepperumal, M. Markandan, y I. Palraja, “Micromorphological and chemical changes during biodegradation of Polyethylene terephthalate (PET) by Penicillium sp.”, J Microbiol Biotechnol Res, vol. 3, núm. 4, pp. 47–53, 2013; H. Rueda, “Evaluación del potencial de cutinasas para hidrolizar poli(etilen tereftalato) (PET), aisladas a partir de hongos filamentosos presentes en residuos agroindustriales.”, Universidad de la Sabana, 2016; Y. Shosuke, H. Kazumi, T. Toshihiko, T. Ikuo, Y. Hironao, y M. Yasuhito, “A bacterium that degrades and assimilates poly(ethylene terephthalate)”, Science (1979), vol. 351, núm. 6278, pp. 1196–1199, 2016, doi:10.1126/science.aad6359; A. Llano, “Aplicación de las cutinasas recombinantes ANCUT 3 y ANCUT 4 provenientes de Aspergillus nidulans en la degradación de poliésteres”, Maestría, Universidad Nacional Autónoma de México, Ciudad de México, 2018; E. Bermúdez-García et al., “Regulation of the cutinases expressed by Aspergillus nidulans and evaluation of their role in cutin degradation”, Appl Microbiol Biotechnol, vol. 103, núm. 9, pp. 3863–3874, may 2019, doi:10.1007/s00253-019-09712-3; S. Morales, “Degradación de polietilen tereftalato (PET) con las cutinasas recombinantes ANCUT1 y ANCUT2 de Aspergillus nidulans”, Maestría, Universidad Nacional Autónoma de México, Ciudad de México, 2018; Farzi, A. Dehnad, y A. Fotouhi, “Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process”, Biocatal Agric Biotechnol, vol. 17, pp. 25–31, 2019, doi:10.1016/j.bcab.2018.11.002; V. Tournier et al., “An engineered PET depolymerase to break down and recycle plastic bottles”, Nature, vol. 580, pp. 219–219, 2020, doi:10.1038/s41586-020-2149-4; Carbios, “Reciclaje enzimático: Eliminar las limitaciones de los procesos actuales”. Consultado: el 11 de diciembre de 2023. [En línea]. Disponible en: https://www.carbios.com/en/enzymatic-recycling/; Carbios, “Carbios obtiene los permisos de construcción y funcionamiento, según el calendario anunciado, para la primera planta de bioreciclaje de PET del mundo en Longlaville”; M. Furukawa, N. Kawakami, A. Tomizawa, y K. Miyamoto, “Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches”, Nature, 2019; N. Puspitasari, S.-L. Tsai, y C.-K. Lee, “Fungal Hydrophobin RolA Enhanced PETase Hydrolysis of Polyethylene Terephthalate”, Appl Biochem Biotechnol, 2020, doi:10.1007/s12010-020-03358-y; K. Yamada-Onodera, H. Mukumoto, Y. Katsuyaya, A. Saiganji, y Y. Tani, “Degradation of polyethylene by a fungus, Penicillium simplicissimum YK”, Polym Degrad Stab, vol. 72, núm. 2, pp. 323–327, may 2001, doi:10.1016/S0141-3910(01)00027-1; T. Brueckner, A. Eberl, S. Heumann, M. Rabe, y G. M. Guebitz, “Enzymatic and chemical hydrolysis of poly(ethylene terephthalate) fabrics”, Polymer Science: Part A: Polymer Chemistr, vol. 6435–6443, 2008, doi:10.1002/pola; A. Farzi, A. Dehnad, y A. Fotouhi, “Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process”, Biocatal Agric Biotechnol, vol. 17, pp. 25–31, 2019, doi:10.1016/j.bcab.2018.11.002; Y. Morales-García, J. Hernández-Canseco, y G. Ramos-Castillo, “Cuantificación de Penicillium sp. por el método de goteo en placa”, Revista Iberoamericana de Ciencias, vol. 3, núm. 2, pp. 12–19, jun. 2016; P. Rajeswari, P. A. Jose, R. Amiya, y S. R. D. Jebakumar, “Characterization of saltern based Streptomyces sp. and statistical media optimization for its improved antibacterial activity”, Front Microbiol, vol. 5, ene. 2015, doi:10.3389/fmicb.2014.00753; M. A. Trujillo-Roldán, E. Mancilla, C. Palacios-Morales, y M. Córdova-Aguilar, “A hydrodynamic description of the flow behavior in shaken flasks”, Biochem Eng J, vol. 99, pp. 61–66, 2015, doi:10.1016/j.bej.2015.03.003.; U. K. LAEMMLI, “Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4”, Nature, vol. 227, núm. 5259, pp. 680–685, ago. 1970, doi:10.1038/227680a0; Infinita Lab, “ASTM D3418, ASTM E1356, ISO 11357 Differential Scanning Calorimetry”. Consultado: el 7 de diciembre de 2023. [En línea]. Disponible en: https://infinitalab.com/astm/differential-scanning-calorimetry-astm-d3418-astm-e1356-iso-11357/; E. Olewnik-Kruszkowska, “Influence of the type of buffer solution on thermal and structural properties of polylactide-based composites”, Polym Degrad Stab, vol. 129, pp. 87–95, jul. 2016, doi:10.1016/j.polymdegradstab.2016.04.009; G. Ramer y B. Lendl, “Attenuated Total Reflection Fourier Transform Infrared Spectroscopy”, en Encyclopedia of Analytical Chemistry, Wiley, 2013. doi:10.1002/9780470027318.a9287; J. M. Brannon, “Influence of Glucose and Fructose on Growth of Fungi”, Chicago Journals, vol. 76, núm. 3, pp. 257–273, 2016; S. Shirato y C. Nagatsu, “Fermentation Studies with Streptomyces griseus”, Appl Microbiol, vol. 13, núm. 5, sep. 1965; K. Naguib, “GROWTH AND METABOLISM OF ASPERGILLUS NIDULANS EIDAM IN SURFACE CULTURE”, Canadian Journal of Botany, vol. 37, núm. 3, pp. 353–364, may 1959, doi:10.1139/b59-027; R. Krull et al., “Characterization and control of fungal morphology for improved production performance in biotechnology”, J Biotechnol, vol. 163, núm. 2, pp. 112–123, ene. 2013, doi:10.1016/j.jbiotec.2012.06.024; M. A. Trujillo-Roldán, E. Mancilla, C. Palacios-Morales, y M. Córdova-Aguilar, “A hydrodynamic description of the flow behavior in shaken flasks”, Biochem Eng J, vol. 99, pp. 61–66, 2015, doi:10.1016/j.bej.2015.03.003; I. Darah, G. Sumathi, K. Jain, y S. H. Lim, “Influence of Agitation Speed on Tannase Production and Morphology of Aspergillus niger FETL FT3 in Submerged Fermentation”, Appl Biochem Biotechnol, vol. 165, núm. 7–8, pp. 1682–1690, dic. 2011, doi:10.1007/s12010-011-9387-8; H. El-Enshasy, J. Kleine, y U. Rinas, “Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant Aspergillus niger”, Process Biochemistry, vol. 41, núm. 10, pp. 2103–2112, oct. 2006, doi:10.1016/j.procbio.2006.05.024; R. N. Edmondson, “Agricultural Response Surface Experiments Based on Four-Level Factorial Designs”, Biometrics, vol. 47, núm. 4, p. 1435, dic. 1991, doi:10.2307/2532397; T. Santos, J. R. Villanueva, y C. Nombela, “Production and catabolite repression of Penicillium italicum beta-glucanases”, J Bacteriol, vol. 129, núm. 1, pp. 52–58, ene. 1977, doi:10.1128/jb.129.1.52-58.1977; R. J. Beynon, C. P. Brown, y P. E. Butler, “The inactivation of streptomyces-derived proteinase inhibitors by mammalian tissue preparations.”, Acta Biol Med Ger, vol. 40, núm. 10–11, pp. 1539–46, 1981; P. D. Nair, “Morphological changes of poly(ethylene terephthalate) on multiple steam sterilization”, Clin Mater, vol. 5, núm. 1, pp. 43–46, ene. 1990, doi:10.1016/0267-6605(90)90070-C; R. C. RIGHELATO, A. P. J. TRINCI, S. J. PIRT, y A. PEAT, “The Influence of Maintenance Energy and Growth Rate on the Metabolic Activity, Morphology and Conidiation of Penicillium chrysogenum”, J Gen Microbiol, vol. 50, núm. 3, pp. 399–412, mar. 1968, doi:10.1099/00221287-50-3-399; F. Diba, A. Bakar, A. Munir, y A. Hamid, “Induction and expression of cutinase activity during saprophytic growth of the fungal plant”, Journal of Molecular Biology and Biotechnology, vol. 13, pp. 69–69, 2005; T. S. Lin y P. E. Kolattukudy, “Induction of a Biopolyester Hydrolase (Cutinase) by Low Levels of Cutin Monomers in Fusarium solani f. sp. pisi”, J Bacteriol, vol. 133, núm. 2, pp. 942–951, feb. 1978, doi:10.1128/jb.133.2.942-951.1978; W. Köller, “Role of Cutinase in the Penetration of Apple Leaves by Venturia inaequalis”, Phytopathology, vol. 81, núm. 11, p. 1375, 1991, doi:10.1094/Phyto-81-1375; T. Fontes Pío y G. Alves, “Optimizing the produticon of cutinase by Fusarium oxysporum using response surface methodology”, ELSEVIER, 2017, doi:10.1016/j.enzmictec.2007.05.008; G. Fischer-Colbrie, S. Heumann, S. Liebminger, E. Almansa, A. Cavaco-Paulo, y G. M. Guebitz, “New enzymes with potential for PET surface modification”, Biocatal Biotransformation, vol. 22, núm. 5–6, pp. 341–346, dic. 2004, doi:10.1080/10242420400024565; C. P. Woloshuk y P. E. Kolattukudy, “Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f. sp. pisi”, Proceedings of the National Academy of Sciences, vol. 83, núm. 6, pp. 1704–1708, mar. 1986, doi:10.1073/pnas.83.6.1704; E. Leao de Almeida, A. Felipe Carrillo Rincón, S. E. Nevalainen, S. Jackson, N. O’Leary, y A. Dobson, “Marine Streptomyces spp. isolates with synthetic polyesters-degrading activity”, Access Microbiol, vol. 1, núm. 1A, mar. 2019, doi:10.1099/acmi.ac2019.po0390; N. Puspitasari, S.-L. Tsai, y C.-K. Lee, “Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs”, Int J Biol Macromol, vol. 176, pp. 157–164, abr. 2021, doi:10.1016/j.ijbiomac.2021.02.026; H. K. Marambe y J. P. D. Wanasundara, “Protein From Flaxseed (Linum usitatissimum L.)”, en Sustainable Protein Sources, Elsevier, 2017, pp. 133–144. doi:10.1016/B978-0-12-802778-3.00008-1; K. T. Madhusudhan y N. Singh, “Isolation and characterization of the major fraction (12 S) of linseed proteins”, J Agric Food Chem, vol. 33, núm. 4, pp. 673–677, jul. 1985, doi:10.1021/jf00064a026; C. Groß, K. Hamacher, K. Schmitz, y S. Jager, “Cleavage Product Accumulation Decreases the Activity of Cutinase during PET Hydrolysis”, J Chem Inf Model, vol. 57, núm. 2, pp. 243–255, feb. 2017, doi:10.1021/acs.jcim.6b00556; K. Ahmed Al-Tammar, O. Omar, A. M. Abdul Murad, y F. D. Abu Bakar, “Expression and characterization of a cutinase (AnCUT2) from Aspergillus niger”, Open Life Sci, vol. 11, núm. 1, pp. 29–38, ene. 2016, doi:10.1515/biol-2016-0004; C. C. Pereira de Souza et al., “Analysis of Aspergillus nidulans germination, initial growth and carbon source response by flow cytometry”, J Basic Microbiol, vol. 51, núm. 5, pp. 459–466, oct. 2011, doi:10.1002/jobm.201000242; R. Wei et al., “Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging Determined by Their Polymer Microstructures”, Advanced Science, vol. 6, núm. 14, jul. 2019, doi:10.1002/advs.201900491; E. Pirzadeh, A. Zadhoush, y M. Haghighat, “Hydrolytic and thermal degradation of PET fibers and PET granule: The effects of crystallization, temperature, and humidity”, J Appl Polym Sci, vol. 106, núm. 3, pp. 1544–1549, nov. 2007, doi:10.1002/app.26788; T. B. Thomsen, C. J. Hunt, y A. S. Meyer, “Influence of substrate crystallinity and glass transition temperature on enzymatic degradation of polyethylene terephthalate (PET)”, N Biotechnol, vol. 69, pp. 28–35, jul. 2022, doi:10.1016/j.nbt.2022.02.006; Z. Chen, “The Crystallization of Poly(ethylene terephthalate) Studied by Thermal Analysis and FTIR Spectroscopy”, University of Birmingham, 2012; S. Carvalho, “Consumo de agua embotellada en envases plásticos y sus consecuencias para la salud familiar y comunitaria.”, El bosque, 2020; MERCK, “Terephthalic acid for synthesis”. Consultado: el 20 de diciembre de 2023. [En línea]. Disponible en: https://www.merckmillipore.com/CO/es/product/Terephthalic-acid,MDA_CHEM-800762?ReferrerURL=https%3A%2F%2Fwww.google.com%2F; S. A. Ravichandran, V. P. Rajan, P. V. Aravind, A. Seenivasan, D. G. Prakash, y K. Ramakrishnan, “Characterization of Terephthalic Acid Monomer Recycled from Post‐Consumer PET Polymer Bottles”, Macromol Symp, vol. 361, núm. 1, pp. 30–33, mar. 2016, doi:10.1002/masy.201400269; A. Singh et al., “Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate)”, Joule, vol. 5, núm. 9, pp. 2479–2503, sep. 2021, doi:10.1016/j.joule.2021.06.015; O. B. Rudakov, L. V. Rudakova, y V. F. Selemenev, “Acetonitrile as tops solvent for liquid chromatography and extraction”, Journal of Analytical Chromatography and Spectroscopy, vol. 1, núm. 2, nov. 2018, doi:10.24294/jacs.v1i2.883; J. Garritsen y H. Johannes, “Purification of Terephthalic acid”, 1340, el 18 de abril de 1972; M. Barth, T. Oeser, R. Wei, J. Then, J. Schmidt, y W. Zimmermann, “Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca”, Biochem Eng J, vol. 93, pp. 222–228, ene. 2015, doi:10.1016/j.bej.2014.10.012; D. J. Hillenga, H. Versantvoort, S. van der Molen, A. Driessen, y W. N. Konings, “Penicillium chrysogenum Takes up the Penicillin G Precursor Phenylacetic Acid by Passive Diffusion”, Appl Environ Microbiol, vol. 61, núm. 7, pp. 2589–2595, jul. 1995, doi:10.1128/aem.61.7.2589-2595.1995; M.-S. Jami et al., “Catabolism of phenylacetic acid in Penicillium rubens. Proteome-wide analysis in response to the benzylpenicillin side chain precursor”, J Proteomics, vol. 187, pp. 243–259, sep. 2018, doi:10.1016/j.jprot.2018.08.006; M. Goto, N. Kamiya, M. Miyata, y F. Nakashio, “Enzymatic Esterification by Surfactant‐Coated Lipase in Organic Media”, Biotechnol Prog, vol. 10, núm. 3, pp. 263–268, may 1994, doi:10.1021/bp00027a005; W.-J. Lu, S. A. Smirnov, y P. A. Levashov, “General characteristics of the influence of surfactants on the bacteriolytic activity of lysozyme based on the example of enzymatic lysis of Lactobacillus plantarum cells in the presence of Tween 21 and SDS”, Biochem Biophys Res Commun, vol. 575, pp. 73–77, oct. 2021, doi:10.1016/j.bbrc.2021.08.06; B. H. J. Hofstee, “Immobilization of enzymes through non-covalent binding to substituted agaroses”, Biochem Biophys Res Commun, vol. 53, núm. 4, pp. 1137–1144, ago. 1973, doi:10.1016/0006-291X(73)90583-4; Z. Ghalanbor et al., “Binding of Tris to Bacillus licheniformis-Amylase Can Affect Its Starch Hydrolysis Activity”, Protein Pept Lett, vol. 15, núm. 2, pp. 212–214, feb. 2008, doi:10.2174/092986608783489616; https://repositorio.unal.edu.co/handle/unal/86434; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  11. 11
    Academic Journal

    المؤلفون: Pedraza Palacios, Laura Paola

    المساهمون: Suárez Méndez, Camilo Alberto, Universidad Nacional de Colombia - Sede Medellín, Bioprocesos y Flujos Reactivos

    وصف الملف: application/pdf

    Relation: Acosta, Erika, Patrick Mavingui, y María Valdés. 2011. SECUENCIACIÓN Y ANÁLISIS DEL MINICROMOSOMA (1.7 Mpb) de Azospirillum brasilense CBG497; Ade, Nilesh, Yogesh Koirala, y M. Sam Mannan. 2019. “Towards an inherently safer bioprocessing industry: A review”. Journal of Loss Prevention in the Process Industries 60(January): 125–32. https://doi.org/10.1016/j.jlp.2019.04.015.; Alexandre, G., S. E. Greer, y I. B. Zhulin. 2000. “Energy taxis is the dominant behavior in Azospirillum brasilense”. Journal of Bacteriology 182(21): 6042–48; Amaya, Yoelis, y Evelyn Arias. 2012. “Planteamiento de un modelo estequiométrico basado en restricciones bioquímicas de la ruta metabólica para la producción de n-butanol a partir de glucosa utilizando Clostridium acetobutylicum ATCC 824”. Universidad Industrial de Santande; Baart, Gino, y Dirk E. Martens. 2012. “Genome-scale metabolic models: reconstruction and analysis”. En Neisseria meningitidis: Advanced Methods and Protocols, ed. Myron ristodoulides. Springer Science+Business Media, 107–26.; Barroso, J., H. Chaves Neves, y M. S. Pais. 1986. “Production of indole-3-ethanol and indole-3- acetic acid by the mycorrhizal fungus of Ophrys lutea (orchidaceae)”. New phytologist 103(4): 745–49; Becker, Scott A et al. 2007. “Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox”. Nature protocols 2(3): 727–38.; Berg, JM, JL Tymoczko, y L Stryer. 2002. “Section 24.1. Nitrogen Fixation: Microorganisms Use ATP and a Powerful Reductant to Reduce Atmospheric Nitrogen to Ammonia”. En Biochemistry. 5th edition., New York: W. H. Freeman. https://www.ncbi.nlm.nih.gov/books/NBK22522/.; Burdman, Saul et al. 1998. “Aggregation in Azospirillum brasilense: Effects of chemical and physical factors and involvement of extracellular components”. Microbiology 144(7): 1989–99; Cárdenas Pinzón, Johanna Inés, y Luis Eudoro Vallejo Zamudio. 2016. “Agricultura y desarrollo rural en Colombia 2011-2013: una aproximación”. Apuntes Del Cenes 35(62): 87–123; Cassán, Fabricio Dario, Yaacov Okon, y Cecilia M . Creus, eds. 2015. 53 Journal of Chemical Information and Modeling Handbook for Azospirillum Technical Issues and Protocols. Springer Science & Business Media; Cassán, Fabricio, Jos Vanderleyden, y Stijn Spaepen. 2014. “Physiological and Agronomical Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria (PGPR) Belonging to the Genus Azospirillum”. Journal of Plant Growth Regulation 33(2): 440–59; Chen, Yuanye et al. 2018. “Rational design and analysis of an Escherichia coli strain for highefficiency tryptophan production”. Journal of Industrial Microbiology and Biotechnology 45(5): 357–67. https://doi.org/10.1007/s10295-018-2020-x.; Cueto-Rojas, Hugo F., A. J A van Maris, S. Aljoscha Wahl, y J. J. Heijnen. 2015. “Thermodynamics-based design of microbial cell factories for anaerobic product formation”.Trends in Biotechnology 33(9): 534–46.; Du, Lihong, Zhen Zhang, Qingyang Xu, y Ning Chen. 2019. “New strategy for removing acetic acid as a by-product during L-tryptophan production”. Biotechnology and Biotechnological Equipment 33(1): 1471–80. ttps://doi.org/10.1080/13102818.2019.1674692; Federación Nacional de Biocombustibles de Colombia. 2019. “Cifras Informativas del Sector Biocombustibles - Biodiésel”. http://www.fedebiocombustibles.com/v3/estadistica-producciontitulo-Biodiesel.htm.; Flamholz, Avi, Elad Noor, Arren Bar-Even, y Ron Milo. 2012. “EQuilibrator - The biochemical thermodynamics calculator”. Nucleic Acids Research 40(D1): 770–75.; Goddard, Alan D. et al. 2017. “The Paracoccus denitrificans NarK-like nitrate and nitrite transporters—probing nitrate uptake and nitrate/nitrite exchange mechanisms”. Molecular Microbiology 103(1): 117–33.; GRiSP Research Solutions. 2016a. “Tryptone #GCM23.0500”. http://www.grisp.pt/docs/gcm23-tryptone.pdf (el 14 de octubre de 2019); ———. 2016b. “Yeast Extract #GCM24.0500”. http://www.grisp.pt/docs/gcm24-yeast-extract.pdf (el 14 de octubre de 2019).; Guo, Daoyi et al. 2019. “De Novo Biosynthesis of Indole-3-acetic Acid in Engineered Escherichia coli”. Journal of Agricultural and Food Chemistry 67(29): 8186–90; Heijnen, JJ. 1999. “Bioenergetics of Microbial Growth”. En Encyclopedia of Bioprocess technology: fermentation, biocatalysis and bioseparation, eds. MC Flickinger y SW Drew. Chichester UK: John Wiley & Sons Ltd., 267–91.; Henry, Christopher S, Matthew D Jankowski, Linda J Broadbelt, y Vassily Hatzimanikatis. 2006 “Genome-scale thermodynamic analysis of Escherichia coli metabolism”. Biophysical Journal 90(4): 1453–61. ttp://dx.doi.org/10.1529/biophysj.105.071720.; Jaime-Infante, R. A. et al. 2014. “Herramienta para la optimización de flujos metabólicos en un sistema biológico”. Revista Investigación Operacional 35(2): 96–103.; Jeske, Lisa et al. 2019. “BRENDA in 2019: A European ELIXIR core data resource”. Nucleic Acids Research 47(D1): D542–49.; Kanehisa, Minoru et al. 2016. “KEGG as a reference resource for gene and protein annotation”. Nucleic Acids Research 44: D457–62.; Kumar, Lalit R, Sravan Kumar, R D Tyagi, y Xiaolei Zhang. 2019. “Bioresource Technology A review on variation in crude glycerol composition , bio-valorization of crude and purified glycerol as carbon source for lipid production”. Bioresource Technology 293(August): 122155. https://doi.org/10.1016/j.biortech.2019.122155.; Lee, Jeong Wook et al. 2011. “Microbial production of building block chemicals and polymers”. Current Opinion in Biotechnology 22(6): 758–67. http://dx.doi.org/10.1016/j.copbio.2011.02.011; Madigan, Michael T. et al. 2009. “Diversidad metabólica: catabolismo de los compuestos orgánicos”. En BROCK. BIOLOGÍA DE LOS MICROORGANISMOS, Pearson, 690–93.; Mathews, C. K., K. E. Van Holde, D. R. Appling, y S. J. Anthony-Cahill. 2012. “The Energetics of Life”. En Biochemistry, Toronto: Pearson, 58–89; Moir, J W B, y N J Wood. 2001. “Nitrate and nitrite transport in bacteria”. Cellular and Molecular Life Sciences CMLS 58(2): 215–24.; Moreno Sarmiento, Nubia. 2016. “La agricultura sostenible un reto para la microbiología del suelo”. Revista Colombiana de Biotecnología 18(1): 5–6.; Nolan, Ryan P., Andrew P. Fenley, y Kyongbum Lee. 2006. “Identification of distributed metabolic objectives in the hyperm; De Noronha Pissarra, Pedro, y Jens Nielsen. 1997. “Thermodynamics of metabolic pathways for penicillin production: analysis of thermodynamic feasibility; Olubayi, Olubayi, Rodulio Caudales, Amy Atkinson, y Carlos A. Neyra. 1998. “Differences in chemical composition between nonflocculated and flocculated Azospirillum brasilense Cd”. Canadian Journal of Microbiology 44: 386–90.; Puerta Jiménez, Daniel. 2019. “Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica”. Universidad Nacional de Colombia.; Romasi, Elisa Friska, y Jinho Lee. 2013. “Development of indole-3-acetic acid-producing Escherichia coli by functional expression of IpdC, AspC, and Iad1”. Journal of Microbiology and Biotechnology 23(12): 1726–36.; Schellenberger, Jan, Nathan E. Lewis, y Bernhard Palsson. 2011. “Elimination of thermodynamically infeasible loops in steady-state metabolic models”. Biophysical Journal 100(3): 544–53. http://dx.doi.org/10.1016/j.bpj.2010.12.3707; Sellés Vidal, Lara, Ciarán L. Kelly, Paweł M. Mordaka, y John T. Heap. 2018. “Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application”. Biochimica et Biophysica Acta - Proteins and Proteomics 1866(2): 327–47; Smets, I. Y. et al. 2004. “A Prototype Model for Indole-3-Acetic Acid (IAA) Production by Azospirillum brasilense Sp245”. IFAC Proceedings Volumes 37(9): 493–98; Steenhoudt, O., y J. Vandereyden. 2000. “Azospirillum, fee-living nitrogen fixing bacterium closely ssociated with grasses: genetic, biochemical and ecological aspects”. FEMS Microbiology Reviews 24(4): 487–506; Szenk, Mariola, Ken A. Dill, y Adam M.R. de Graff. 2017. “Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis”. Cell Systems 5(2):95–104. http://dx.doi.org/10.1016/j.cels.2017.06.005.; Taymaz-Nikerel, Hilal et al. 2010. “Genome‐derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry”. Biotechnology and Bioengineering 107(2): 369–81; Tervo, Christopher J., y Jennifer L. Reed. 2012. “FOCAL: an experimental design tool for systematizing metabolic discoveries and model development”. Genome biology 13(12): R116. http://genomebiology.com/content/13/12/R116.; Varma, A., B. W. Boesch, y B. O. Palsson. 1993. “Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates”. Applied and Environmental Microbiology 59(8): 2465–73.; Wang, Jian et al. 2013. “Genetic engineering of Escherichia coli to enhance production of Ltryptophan”. Applied Microbiology and Biotechnology 97(17): 7587–96.; Wisniewski-Dyé, Florence et al. 2012. “Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation”. Genes 3(4): 576–602.; Wood, Craig C., Raymond J. Ritchie, y Ivan R. Kennedy. 1998. “Membrane potential, proton and sodium motive forces in Azospirillum brasilense Sp7-S”. FEMS Microbiology Letters 164(2):295–301.; Wood, Craig C., Raymond J. Ritchie, y Ivan R. Kennedy. 1998. “Membrane potential, proton and sodium motive forces in Azospirillum brasilense Sp7-S”. FEMS Microbiology Letters 164(2): 295–301.; Yazdani, Syed Shams, y Ramon Gonzalez. 2007. “Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry”. Current Opinion in Biotechnology 18(3): 213–19.; Zavlanos, Michael M., y A. Agung Julius. 2011. Proceedings of the 2011 American Control Conference Robust flux balance analysis of metabolic networks. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5991248. Zhang, An, y Shang Tian Yang. 2009. “Propionic acid production from glycerol by metabol; https://repositorio.unal.edu.co/handle/unal/76125

  12. 12
    Report

    المؤلفون: Rueda García, Kareng Andrea

    المساهمون: Suárez Méndez, Camilo Alberto

    وصف الملف: application/pdf

    Relation: Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias; Facultad de Ciencias; Rueda García, Kareng Andrea (2018) Propuesta didáctica para integrar las ciencias naturales en el proceso de enseñanza-aprendizaje de la reproducción celular. Documento de trabajo. Sin Definir. (Enviado); https://repositorio.unal.edu.co/handle/unal/63812; http://bdigital.unal.edu.co/64368/

  13. 13
    Dissertation/ Thesis

    المؤلفون: Fajardo Figueroa, Lina Maria

    المساهمون: Suárez Méndez, Camilo Alberto, Bioprocesos y Flujos Reactivos

    وصف الملف: xx, 88 páginas; application/pdf

    Relation: RedCol; LaReferencia; Adnan, N. A. A., Suhaimi, S. N., Abd-Aziz, S., Hassan, M. A., & Phang, L. Y. (2014). Optimization of bioethanol production from glycerol by Escheric h ia coli SS1.Renewable Energy, 66, 625–633. https://doi.org/10.1016/j.renene.2013.12.032; Almudena, L. M. (1999). Desarrollo de Modelos Cinéticos para Bioprocesos: Aplicación a la Producción de Xantano. Universidad Complutense de Madrid; Antoniewicz, M. R. (2015). Methods and advances in metabolic flux analysis: a mini-review. Journal of Industrial Microbiology and Biotechnology, 42(3), 317–325.https://doi.org/10.1007/s10295-015-1585-x; Antoniewicz, M. R. (2021). A guide to metabolic flux analysis in metabolic engineering:Methods, tools and applications. Metabolic Engineering, 63(October 2020), 2–12.https://doi.org/10.1016/j.ymben.2020.11.002; Bédard, C., Tom, R., & Kamen, A. (1993). Growth, Nutrient Consumption, and End‐Product Accumulation in Sf‐9 and BTI‐EAA Insect Cell Cultures: Insights into Growth Limitation and Metabolism. Biotechnology Progress, 9(6), 615–624.https://doi.org/10.1021/bp00024a008; Bernal, V., Carinhas, N., Yokomizo, A. Y., Carrondo, M. J. T., & Alves, P. M. (2009). Cell density effect in the baculovirus-insect cells system: A quantitative analysis of energetic metabolism. Biotechnology and Bioengineering, 104(1), 162–180. https://doi.org/10.1002/bit.22364; Berretta, M. F., López, M. G., Taboga, O., Sciocco-Cap, A., & Romanowski, V. (2013).Functional analysis of Spodoptera frugiperda nucleopolyhedrovirus late expression factors in Sf9 cells. Virus Genes, 46(1), 152–161. https://doi.org/10.1007/s11262-012-0843-5; Bhatia, R., Jesionowski, G., Ferrance, J., & Ataai, M. M. (1997). Insect cell physiology. In Cytotechnology (Vol. 24, Issue 1, pp. 1–9). https://doi.org/10.1023/A:1007985208221; Blissard, G. W., & Theilmann, D. A. (2018). Baculovirus entry and egress from insect cells. Annual Review of Virology, 5, 113–139. https://doi.org/10.1146/annurev- virology-092917-043356; Bosma, B., du Plessis, F., Ehlert, E., Nijmeijer, B., de Haan, M., Petry, H., & Lubelski, J. (2018). Optimization of viral protein ratios for production of rAAV serotype 5 in the baculovirus system. Gene Therapy, 25(6), 415–424. https://doi.org/10.1038/s41434- 018-0034-7; Carinhas, N., Bernal, V., Monteiro, F., Carrondo, M. J. T., Oliveira, R., & Alves, P. M. (2010). Improving baculovirus production at high cell density through manipulation of energy metabolism. Metabolic Engineering, 12(1), 39–52. https://doi.org/10.1016/j.ymben.2009.08.008; Carinhas, N., Bernal, V., Teixeira, A. P., Carrondo, M. J. T., Alves, P. M., & Oliveira, R. (2011). Hybrid metabolic flux analysis: Combining stoichiometric and statistical constraints to model the formation of complex recombinant products. BMC Systems Biology, 5. https://doi.org/10.1186/1752-0509-5-34; Chang, D., Liu, Y., Chen, Y., Hu, X., Burov, A., Puzyr, A., Bondar, V., & Yao, L. (2020).Study of the immunogenicity of the VP2 protein of canine parvovirus produced using an improved Baculovirus expression system. BMC Veterinary Research, 16(1), 1–9. https://doi.org/10.1186/s12917-020-02422-3; Chiou, T. W., Hsieh, Y. C., & Ho, C. S. (2000). High density culture of insect cells using rational medium design and feeding strategy. Bioprocess Engineering, 22(6), 483– 491. https://doi.org/10.1007/s004499900091; Contreras-Gómez, A., Sánchez-Mirón, A., García-Camacho, F., Molina-Grima, E., & Chisti, Y. (2014). Protein production using the baculovirus-insect cell expression system. Biotechnology Progress, 30(1), 1–18. https://doi.org/10.1002/btpr.1842; Contreras-Gómez, Antonio, Beas-Catena, A., Sánchez-Mirón, A., García-Camacho, F., & Molina Grima, E. (2018). The use of an artificial neural network to model the infection strategy for baculovirus production in suspended insect cell cultures. Cytotechnology, 70(2), 555–565. https://doi.org/10.1007/s10616-017-0128-x; Cox, M., Alves, P., Carrondo, M., & Vicente, T. (2014). Industrial Large Scale of Suspension Culture of Insect Cells. In Industrial Scale Suspension Culture of Living Cells (First Edit).; Cox, M. M. J. (2012). Recombinant protein vaccines produced in insect cells. Vaccine, 30(10), 1759–1766. https://doi.org/10.1016/j.vaccine.2012.01.016; Cueto Rojas, H. F. (2016). Anaerobic Amino Acid Production in Saccharomyces cerevisiae: A Thermodynamics Approach [Delft University of Technology]. In TU Delft University. https://doi.org/https://doi.org/10.4233/uuid:a565936a-b081-4581- 9eb0-8c66bff307a8; de Gooijer, C. D., van Lier, F. L. J., van den End, E. J., Vlak, J. M., & Tramper, J. (1989). A model for baculovirus production with continuous insect cell cultures. Applied Microbiology and Biotechnology, 30(5), 497–501. https://doi.org/10.1007/BF00263855; Dee, K. U., & Shuler, M. L. (1997). A mathematical model of the trafficking of acid- dependent enveloped viruses: Application to the binding, uptake, and nuclear accumulation of baculovirus. Biotechnology and Bioengineering, 54(5), 468–490. https://doi.org/10.1002/(SICI)1097-0290(19970605)54:53.0.CO;2-C; Doran, M. P. (2013). Engineering Principles Second Edition. In Academic Press.; Doverskog, M., Jacobsson, U., Chapman, B. E., Kuchel, P. W., & Häggström, L. (2000). Determination of NADH-dependent glutamate synthase (GOGAT) in Spodoptera frugiperda (Sf9) insect cells by a selective 1H/15N NMR in vitro assay. Journal of Biotechnology, 79(1), 87–97. https://doi.org/10.1016/S0168-1656(00)00215-7; Drugmand, J. C. (2007). Characterization of insect cell lines is required for appropriate industrial processes : case study of high-five cells for recombinant protein production. Universidad Católica de Lovaina.; Drugmand, J., Schneider, Y., & Agathos, S. N. (2012). Insect cells as factories for biomanufacturing. Biotechnology Advances, 30(5), 1140–1157. https://doi.org/10.1016/j.biotechadv.2011.09.014; Fabre, L. L., Arrías, P. N., Masson, T., Pidre, M. L., & Romanowski, V. (2019). Baculovirus-derived vectors for immunization and therapeutic applications. Emerging and Reemerging Viral Pathogens: Volume 2: Applied Virology Approaches Related to Human, Animal and Environmental Pathogens, 197–224. https://doi.org/10.1016/B978-0-12-814966-9.00011-1; Ferrance, J. P., Goel, A., & Ataai, M. M. (1993). Utilization of glucose and amino acids in insect cell cultures: Quantifying the metabolic flows within the primary pathways and medium development. Biotechnology and Bioengineering, 42(6), 697–707; Garnier, A., Voyer, R., Tom, R., Perret, S., Jardin, B., & Kamen, A. (1996). Dissolved carbon dioxide accumulation in a large scale and high density production of TGFβ receptor with baculovirus infected Sf-9 cells. Cytotechnology, 22(1–3), 53–63. https://doi.org/10.1007/BF00353924; Ghosh, A., Dhall, H., & Dietzgen, R. G. (2020). Insect cell culture as a tool in plant virus research : a historical overview.; Gotoh, T., Chiba, K., & Kikuchi, K. I. (2004). Oxygen consumption profiles of Sf-9 insect cells and their culture at low temperature to circumvent oxygen starvation. Biochemical Engineering Journal, 17(2), 71–78. https://doi.org/10.1016/S1369- 703X(03)00140-2; Gotoh, T., Fukuhara, M., & Kikuchi, K. I. (2008). Mathematical model for change in diameter distribution of baculovirus-infected Sf-9 insect cells. Biochemical Engineering Journal, 40(2), 379–386. https://doi.org/10.1016/j.bej.2008.01.008; Grzywacz, D. (2017). Basic and Applied Research: Baculovirus. In Microbial Control of Insect and Mite Pests: From Theory to Practice. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803527-6.00003-2; Hefferon, K. L., Oomens, A. G. P., Monsma, S. A., Finnerty, C. M., & Blissard, G. W. (1999). Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology, 258(2), 455–468. https://doi.org/10.1006/viro.1999.9758; Heijnen, J. J., & Kleerebezem, R. (2010). Bioenergetics of Microbial Growth. Encyclopedia of Industrial Biotechnology, 1–24. https://doi.org/10.1002/9780470054581.eib084; Heinen, J. J. (2010). Impact of thermodynamic principles in systems biology. In Advances in Biochemical Engineering/Biotechnology (Vol. 121, pp. 139–162). Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_63; Hu, Y. C., & Bentley, W. E. (2000). A kinetic and statistical-thermodynamic model for baculovirus infection and virus-like particle assembly in suspended insect cells. Chemical Engineering Science, 55(19), 3991–4008. https://doi.org/10.1016/S0009- 2509(99)00579-5; Jhaveri, R. (2021). The Next Set of COVID-19 Vaccines: Leveraging New Development Platforms to Increase Access for More People Around the World. Clinical Therapeutics, 1–9. https://doi.org/10.1016/j.clinthera.2021.03.007; Kamen, A. A., Venereo-sanchez, A., & Chahal, P. S. (2021). Advancements in molecular design and bioprocessing of recombinant adeno-associated virus gene delivery vectors using the insect-cell baculovirus expression platform. Biotechnology Journal, 16(April 2020), 1–17. https://doi.org/10.1002/biot.202000021; Liu, F., Wu, X., Li, L., Liu, Z., & Wang, Z. (2013). Use of baculovirus expression system for generation of virus-like particles: Successes and challenges. Protein Expression and Purification, 90(2), 104–116. https://doi.org/10.1016/j.pep.2013.05.009; Liu, Y., Yang, C., Liu, C., Shen, C., Shiau, L., & Ioeng, J. B. I. B. (2010). Using a fed- batch culture strategy to enhance rAAV production in the baculovirus / insect cell system. JBIOSC, 110(2), 187–193. https://doi.org/10.1016/j.jbiosc.2010.02.004; Lubelski, J., Hermens, W., & Petry, H. (2014). Insect Cell-Based Recombinant Adeno- Associated Virus Production: Molecular Process Optimization. BioProcessing Journal, 13(3), 6–11. https://doi.org/10.12665/j133.lubelski; Marheineke, K., Grünewald, S., Christie, W., & Reilander, H. (1998). Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Letters, 441(1), 49–52. https://doi.org/10.1016/S0014- 5793(98)01523-3; Miller, W. M., Wilke, C. R., & Blanch, H. W. (1989). Transient responses of hybridoma cells to nutrient additions in continuous culture: I. Glucose pulse and step changes. Biotechnology and Bioengineering, 33(4), 477–486. https://doi.org/10.1002/bit.260330413; Monteiro, F. (2015). Rational Design of Insect Cell-based Vaccine Production - Bridging Metabolomics with Mathematical Tools to Study Virus-Host Interactions. 207. www.itqb.unl.pt%5Cnwww.ibet.pt; Monteiro, F., Bernal, V., & Alves, P. M. (2017). The role of host cell physiology in the productivity of the baculovirus-insect cell system: Fluxome analysis of Trichoplusia ni and Spodoptera frugiperda cell lines. Biotechnology and Bioengineering, 114(3), 674–684. https://doi.org/10.1002/bit.26089; Monteiro, F., Carinhas, N., Carrondo, M. J. T., Bernal, V., & Alves, P. M. (2012). Toward system-level understanding of baculovirus-host cell interactions: From molecular fundamental studies to large-scale proteomics approaches. In Frontiers in Microbiology (Vol. 3, Issue NOV). https://doi.org/10.3389/fmicb.2012.00391; Morgenroth, E. (2015). How are characteristic times ( char ) and non-dimensional numbers related ? Fall, 1–8. https://www.ethz.ch/content/dam/ethz/special- interest/baug/ifu/water-management- dam/documents/education/Lectures/UWM3/SAMM.HS15.Handout.CharacteristicTim es.pdf; Mukhopadhyay, A., Mukhopadhyay, S. N., & Talwar, G. P. (1993). Influence of serum proteins on the kinetics of attachment of vero cells to cytodex microcarriers. Journal of Chemical Technology & Biotechnology, 56(4), 369–374. https://doi.org/10.1002/jctb.280560407; Nandakumar, S., Ma, H., & Khan, A. S. (2017). Whole-Genome Sequence of the Spodoptera frugiperda Sf9 Insect Cell Line. In American Society for Microbiology.; Niklas, J., Schneider, K., & Heinzle, E. (2010). Metabolic flux analysis in eukaryotes. Current Opinion in Biotechnology, 21(1), 63–69. https://doi.org/10.1016/j.copbio.2010.01.011; Öhman, L., Ljunggren, J., & Häggström, L. (1995). Induction of a metabolic switch in insect cells by substrate-limited fed batch cultures. Applied Microbiology and Biotechnology, 43(6), 1006–1013. https://doi.org/10.1007/BF00166917; Öhman, Lars., Alarcon, M., Ljunggren, J., Ramqvist, A. K., & Häggström, L. (1996). Glutamine is not an essential amino acid for Sf-9 insect cells. Biotechnology Letters, 18(7), 765–770. https://doi.org/10.1007/BF00127885; Ortega Quintana, F. A., Álvarez, H., & Botero Castro, H. A. (2017). Enfrentando el modelado de bioprocesos: una revisión de las metodologías de modelado. Revista ION, 30(1), 73–90. https://doi.org/10.18273/revion.v30n1-2017006; Paul, A., & Prakash, S. (2010). Baculovirus reveals a new pH-dependent direct cell-fusion pathway for cell entry and transgene delivery. Future Virology, 5(5), 533–537. https://doi.org/10.2217/fvl.10.45; Possee, R. D., Chambers, A. C., Graves, L. P., Aksular, M., & King, L. A. (2020). Recent Developments in the Use of Baculovirus Expression Vectors.; Roldão, A., Vieira, H. L. A., Charpilienne, A., Poncet, D., Roy, P., Carrondo, M. J. T., Alves, P. M., & Oliveira, R. (2007). Modeling rotavirus-like particles production in a baculovirus expression vector system: Infection kinetics, baculovirus DNA replication, mRNA synthesis and protein production. Journal of Biotechnology, 128(4), 875–894. https://doi.org/10.1016/j.jbiotec.2007.01.003; Sandler, S. I. (2006). Chemical, Biochemical Engineering, And TermodinamicsChemical, Biochemicai Engineering, And Termodinamic (Wiley (ed.); 4ta Edición).; Saxena, A., Byram, P. K., Singh, S. K., Chakraborty, J., Murhammer, D., & Giri, L. (2018). A structured review of baculovirus infection process: Integration of mathematical models and biomolecular information on cell–virus interaction. Journal of General Virology, 99(9), 1151–1171. https://doi.org/10.1099/jgv.0.001108; Shu, B., Zhang, J., Sethuraman, V., Cui, G., Yi, X., & Zhong, G. (2017). Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-12713-9; Slack, J., Arif, B. M., Monteiro, F., Carinhas, N., Carrondo, M. J. T., Bernal, V., & Alves, P. M. (2006). The Baculoviruses Occlusion-Derived Virus: Virion Structure and Function. Advances in Virus Research, 3(NOV), 99–165. https://doi.org/10.3389/fmicb.2012.00391; Sokolenko, S., George, S., Wagner, A., Tuladhar, A., Andrich, J. M. S., & Aucoin, M. G. (2012). Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnology Advances, 30(3), 766–781. https://doi.org/10.1016/j.biotechadv.2012.01.009; Stein, R. (2020). Process Intensification of Spodoptera frugiperda ( Sf ) Cell Growth via Multi-Parallel Bioreactor System (Issue 2012). MIT Sloan School of Management.; Suarez-Zuluaga, D. A., Borchert, D., Driessen, N. N., Bakker, W. A. M., & Thomassen, Y. E. (2019). Accelerating bioprocess development by analysis of all available data: A USP case study. Vaccine, 37(47), 7081–7089. https://doi.org/10.1016/j.vaccine.2019.07.026; Széliová, D., Štor, J., Thiel, I., Weinguny, M., Hanscho, M., Lhota, G., Borth, N., Zanghellini, J., Ruckerbauer, D. E., & Rocha, I. (2021). Inclusion of maintenance energy improves the intracellular flux predictions of CHO. In PLoS Computational Biology (Vol. 17, Issue 6). https://doi.org/10.1371/journal.pcbi.1009022; Tripathi, N. K., & Shrivastava, A. (2019). Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Frontiers in Bioengineering and Biotechnology, 7(December). https://doi.org/10.3389/fbioe.2019.00420; van Oers, M. M. (2011). Opportunities and challenges for the baculovirus expression system. Journal of Invertebrate Pathology, 107(SUPPL.), S3–S15. https://doi.org/10.1016/j.jip.2011.05.001; Van Oers, M. M., Pijlman, G. P., & Vlak, J. M. (2015). Thirty years of baculovirus-insect cell protein expression: From dark horse to mainstream technology. Journal of General Virology, 96(1), 6–23. https://doi.org/10.1099/vir.0.067108-0; VLAK, J. M., de GOOIJER, C. D., TRAMPER, J., & MILTENBURGER, H. G. (2002). Insect Cell Cultures: Fundamental and Applied Aspects. 1, 303.; von Kamp, A., Thiele, S., Hädicke, O., & Klamt, S. (2017). Use of CellNetAnalyzer in biotechnology and metabolic engineering. Journal of Biotechnology, 261(January), 221–228. https://doi.org/10.1016/j.jbiotec.2017.05.001; Von Stockar, U. (2013). The role of thermodynamics in biochemical engineering. In Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering. EFPL Press. https://doi.org/10.1201/b15428-3; von Stosch, M., Carinhas, N., & Oliveira, R. (2014). Hybrid modeling for systems biology: Theory and practice. Modeling and Simulation in Science, Engineering and Technology, 65, 367–388. https://doi.org/10.1007/978-3-319-08437-4_7; Wang, L., Lai, L., Ouyang, Q., & Tang, C. (2011). Flux balance analysis of ammonia assimilation network in E. coli predicts preferred regulation point. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0016362; Wickham, T. J., Shuler, M. L., Hammer, D. A., Granados, R. R., & Wood, H. A. (1992). Equilibrium and kinetic analysis of Autographa californica nuclear polyhedrosis virus attachment to different insect cell lines. Journal of General Virology, 73(12), 3185– 3194. https://doi.org/10.1099/0022-1317-73-12-3185; Xie, L., & Wang, D. I. C. (1994). Stoichiometric analysis of animal cell growth and its application in medium design. Biotechnology and Bioengineering, 43(11), 1164– 1174. https://doi.org/10.1002/bit.260431122; Yu, Q., Xiong, Y., Gao, H., Liu, J., Chen, Z., Wang, Q., & Wen, D. (2015). Comparative proteomics analysis of Spodoptera frugiperda cells during Autographa californica multiple nucleopolyhedrovirus infection. Virology Journal, 12(1), 1–11. https://doi.org/10.1186/s12985-015-0346-9; Zhang, Y., Enden, G., Wei, W., Zhou, F., Chen, J., & Merchuk, J. C. (2020). Baculovirus transit through insect cell membranes: A mechanistic approach. Chemical Engineering Science, 223, 115727. https://doi.org/10.1016/j.ces.2020.115727; Haas, R. (2004). Asynchronies in Synchronous Baculovi rus Infections. The University of Queensland.; https://repositorio.unal.edu.co/handle/unal/83129; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  14. 14
    Report

    المساهمون: Suárez Mendez, Camilo Alberto

    وصف الملف: application/pdf

    Relation: Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias; Facultad de Ciencias; Palacio Montoya, Andrés de Jesús (2017) Propuesta de enseñanza que contribuya al aprendizaje significativo de la expresión génica. Documento de trabajo. Sin Definir. (Enviado); https://repositorio.unal.edu.co/handle/unal/59946; http://bdigital.unal.edu.co/57799/

  15. 15
    Dissertation/ Thesis

    المؤلفون: Puerta Jimenez, Daniel

    المساهمون: Suárez Méndez, Camilo Alberto, Gallego Suárez, Darío De Jesús

    وصف الملف: application/pdf

    Relation: Universidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de Química y Petróleos; Escuela de Química y Petróleos; 66 Ingeniería química y Tecnologías relacionadas/ Chemical engineering; Puerta Jimenez, Daniel (2019) Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica. Maestría thesis, Universidad Nacional de Colombia – Sede Medellin.; https://repositorio.unal.edu.co/handle/unal/76646; http://bdigital.unal.edu.co/73255/

  16. 16
    Dissertation/ Thesis

    المساهمون: Suárez Méndez, Camilo Alberto

    وصف الملف: application/pdf

    Relation: Universidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de Procesos y Energía; Escuela de Procesos y Energía; 66 Ingeniería química y Tecnologías relacionadas/ Chemical engineering; Avendaño Montoya, Leslie Astrid (2019) Diseño in silico de una plataforma biosintética que permita la valoración del gas de síntesis mediante su conversión en etileno, implementando herramientas de ingeniería metabólica. Maestría thesis, Universidad Nacional de Colombia- Sede Mdellín.; https://repositorio.unal.edu.co/handle/unal/77152; http://bdigital.unal.edu.co/74609/

  17. 17
    Dissertation/ Thesis

    المؤلفون: Cruz Ruiz, Kevin Alonso

    المساهمون: Ruiz Colorado, Ángela Adriana (Thesis advisor), Suárez Méndez, Camilo Alberto (Thesis advisor)

    وصف الملف: application/pdf

    Relation: Universidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de Química y Petróleos; Escuela de Química y Petróleos; Cruz Ruiz, Kevin Alonso (2012) Modelado del proceso de hidrólisis enzimática de almidones gelatinizados del fruto de la planta de banano. Maestría thesis, Universidad Nacional de Colombia, sede Medellín.; https://repositorio.unal.edu.co/handle/unal/10313; http://bdigital.unal.edu.co/7435/

  18. 18
    Dissertation/ Thesis

    المؤلفون: Lobatón García, Hugo Fabián

    المساهمون: Suárez Mendez, Camilo Alberto (Thesis advisor)

    وصف الملف: application/pdf

    Relation: Universidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de Procesos y Energía; Escuela de Procesos y Energía; Lobatón García, Hugo Fabián (2010) Simulacion de los ciclos de luz y oscuridad en un fotobiorreactor tipo columna de burbujeo usando CFD / Simulation of the light/dark cycles in a bubble column photobioreactor using CFD. Maestría thesis, Universidad Nacional de Colombia.; https://repositorio.unal.edu.co/handle/unal/7233; http://bdigital.unal.edu.co/3571/