يعرض 1 - 20 نتائج من 148 نتيجة بحث عن '"Suarez, Alexander"', وقت الاستعلام: 0.60s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
    Report
  4. 4
    Book
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Conference
  9. 9
    Conference
  10. 10
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المصدر: Biotechnology in the Agricultural and Agroindustrial Sector; Vol. 20 No. 1 (2022): Enero a Junio; 165-178 ; Biotecnología en el Sector Agropecuario y Agroindustrial; Vol. 20 Núm. 1 (2022): Enero a Junio; 165-178 ; 1909-9959 ; 1692-3561

    وصف الملف: application/pdf

    Relation: https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1879/1598; AH-HEN, K.; ZAMBRA, C.E.; AGUËRO, J.E.; VEGA-GÁLVEZ, A.; LEMUS-MONDACA, R. Moisture Diffusivity Coefficient and Convective Drying Modelling of Murta (Ugni molinae Turcz): Influence of Temperature and Vacuum on Drying Kinetics. Food and Bioprocess Technology, v. 6, n. 4, 2013, p. 919–930.https://doi.org/10.1007/s11947-011-0758-5; AOAC. Official Methods of Analysis, 13th ed. Association of the Official Agricultural Chemists. Washington D.C. (United States of America): 1980, p. 376-384.; ASHUTOSH, S.C.; SHWETA, S.; ATUL, D.; POWAR. Optimization of pineapple drying based on energy consumption, nutrient retention, and drying time through Multi-Criteria Decision-Making. Journal of Cleaner Production, v. 292, 2021, 135907.https://doi.org/10.1016/j.jclepro.2021.125913; AYALA, A.; CARDENAS, J.D.; TIRADO, D.F. Aloe vera gel drying by Refractance Window: Drying kinetics and High-Quality Retention. Foods, v. 10, 2021, n. 1445, p. 1-16.https://doi.org/10.3390/foods10071445; BERBERT, P.A.; TEREZINHA, M.; DE OLIVEIRA, R.; MARTINAZZO, A.P. Drying of Pineapple Slices in Natura and Pre- Osmodehydrated in Inverted Sugar, v. 32, n. 3, 2016, p. 597–610. https://doi.org/10.14393/BJ-v32n3a2016-26201; BRAGA, V.; GUIDI, L.R.; DE SANTANA, R.C.; ZOTARELLI, M.F. Production and characterization of pineapple-mint juice by spray drying. Powder Technology, v. 375, 2020, p. 409–419. https://doi.org/10.1016/j.powtec.2020.08.012; CORRÊA, P.C.; OLIVEIRA, G.H.H.; BOTELHO, F.M.; GONELI, A.L.D.; CARVALHO, F.M. Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, v. 57, n. 5, 2010, p. 595–601.https://doi.org/10.1590/S0034-737X2010000500005; DOMINGUEZ, P.; MEDINA, J.J.; MIRANDA, L.; LÓPEZ, J.M; ARIZA, M.T.; SORIA, C.; SANTOS, B.; TORRES, E.A.; HERNANDEZ, I. Effect of Planting and Harvesting Dates on Strawberry Fruit Quality under High Tunnels. International Journal of Fruit Science, v. 16, n.1, 2016, p. 228-238.https://doi.org/10.1080/15538362.2016.1219291; IZLI, N.; IZLI, G.; TASKIN, O. Impact of different drying methods on the drying kinetics, color, total phenolic content and antioxidant capacity of pineapple. Journal of Food, v. 16, n. 1, 2018, p. 213-221.https://doi.org/10.1080/19476337.2017.1381174; JHA, R.K.; PRABHAKAR, P.K.; SRIVASTAV, P.P.; RAO, V.V. Influence of temperature on vacuum drying characteristics, functional properties and micro structure of Aloe vera (Aloe barbadensis Miller) gel. Research in Agricultural Engineering, v. 61, n. 4, 2016, p. 141–149.https://doi.org/10.17221/13/2014-RAE; KAVEH, M.; TAGHINEZHAD, E.; AZIZ, M. Effects of physical and chemical pretreatments on drying and quality properties of blackberry (Rubus spp.) in hot air dryer. Food Science and Nutrition, v. 8, n. 7, 2020, p. 3843–3856.https://doi.org/10.1002/fsn3.1678; LEITON-RAMÍREZ, Y.M.; AYALA-APONTE, A.; OCHOA-MARTÍNEZ, C.I. Physicochemical Properties of Guava Snacks as Affected by Drying Technology. Processes, v. 8, n. 1, 2020, p. 106. https://doi.org/10.3390/pr8010106; MACEDO, L.L.; VIMERCATI, W.C.; DA SILVA-ARAÚJO, C.; SARAIVA, S.H.; TEIXEIRA, L.J.Q. Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. Journal of Food Process Engineering, v. 43, n. 49, 2020, p. 1–10. https://doi.org/10.1111/jfpe.13451; MARÍN, B.E.; LEMUS, M.R.; FLORES, M.V.; VEGA, G.A. La rehidratación de alimentos deshidratados. Revista Chilena de Nutrición, v. 33, n. 3, 2006, p. 527–538. https://doi.org/10.4067/S0717-75182006000500009; MARZEC, A.; KOWALSKA, H.; KOWALSKA, J.; DOMIAN, E.; LENART, A. Influence of Pear Variety and Drying Methods on the Quality of Dried Fruit. Molecules (Basel, Switzerland), v. 25, n. 21, 2020.https://doi.org/10.3390/molecules25215146; MICHALEWICZ, J.S.; HENRIQUEZ, J.R.; CHARAMBA, J.C. Secado de Cajuil (Anacardium Occidentale L.): Estudio Experimental y Modelado de la Cinética de Secado. Información Tecnológica, v. 22, n. 6, 2011, p. 63–74.https://doi.org/10.4067/S0718-07642011000600007; MOHAMMED, S.; EDNA, M.; SIRAJ, K. The effect of traditional and improved solar drying methods on the sensory quality and nutritional composition of fruits: A case of mangoes and pineapples. Heliyon, v. 6, n. 6, 2020.https://doi.org/10.1016/j.heliyon.2020.e04163; MONTES, E.J.; TORRES, R.; ANDRADE, R.D.; PÉREZ, O.A.; MARIMON, J.L.; MEZA, I.I. Modelado de la cinética de secado de ñame (Dioscorea rotundata) en capa delgada. Ingenieria e Investigacion, v. 28, n. 2, 2008, p. 45–52.; MOUSSAOUI, H.; BAHAMMOU, Y.; TAGNAMAS, Z.; KOUHILA, M.; LAMHARRAR, A.; IDLIMAM, A. Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer. Renewable Energy, v. 168, 2021, p. 131–140.https://doi.org/10.1016/j.renene.2020.12.046; NEMZER, B.; VARGAS, L.; XIA, X.; SINTARA, M.; FENG, H. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chemistry, v. 262, 2018, p. 242–250.https://doi.org/10.1016/j.foodchem.2018.04.047; OCHOA-MARTÍNEZ, C.I.; QUINTERO, P.T.; AYALA, A.A.; ORTIZ, M.J. Drying characteristics of mango slices using the Refractance WindowTM technique. Journal of Food Engineering, v. 109, n. 1, 2012, p. 69–75.https://doi.org/10.1016/j.jfoodeng.2011.09.032; OCHOA-MARTÍNEZ, C.I.; AYALA-APONTE, A. Modelos matemáticos de transferencia de masa en Deshidratación Osmótica. Ciencia y Tecnología Alimentaria, v. 4, n. 5, 2005, p. 330–342.https://doi.org/10.1080/11358120509487660; OLANIPEKUN, B.F.; TUNDE-AKINTUNDE, T.Y.; OYELADE, O.J.; ADEBISI, M.G.; ADENAYA, T.A. Mathematical Modeling of Thin-Layer Pineapple Drying. Journal of Food Processing and Preservation, v. 39, n. 6, 2015, p. 1431–1441. https://doi.org/10.1111/jfpp.12362; OLMOS, A. Cadena regional de piña departamento de Casanare. Yopal (Casanare): Gobernación de Casanare, Secretaria de Agricultura, Ganadería y Medio Ambiente, 2015, p. 1-15.; ONWUDE, D.I.; HASHIM, N.; JANIUS, R.B.; NAWI, N.M.; ABDAN, K. Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, v. 15, n. 3, 2016, p. 599–618. https://doi.org/10.1111/1541-4337.12196; ORTIZ-JEREZ, M.J.; GULATI, T.; DATTA, A.K.; OCHOA-MARTÍNEZ, C.I. Quantitative understanding of Refractance WindowTM drying. Food and Bioproducts Processing, v. 95, 2015, p. 237–253.https://doi.org/10.1016/j.fbp.2015.05.010; PONKHAM, K.; MEESO, N.; SOPONRONNARIT, S.; SIRIAMORNPUN, S. Modeling of combined far-infrared radiation and air drying of a ring shaped-pineapple with/without shrinkage. Food and Bioproducts Processing, v. 90, n. 2, 2012, p. 155–164. https://doi.org/10.1016/j.fbp.2011.02.008; POVEDA, N. Determinación de la influencia de las zonas de producción sobre el contenido de componentes bioactivos y la capacidad antioxidante de cinco frutas andinas [Tesis Ingeniería Bioquímica]. Ambato (Perú): Universidad Técnica de Ambato, 2014, p. 1-146.https://repositorio.uta.edu.ec/bitstream/123456789/8454/1/BQ%2055.pdf; RAGHAVI, L.M.; MOSES, J.A.; ANANDHARAMAKRISHNAN, C. Refractance window drying of foods: A review. Journal of Food Engineering, v. 222, 2018, p. 267–275.https://doi.org/10.1016/j.jfoodeng.2017.11.032; RAJORIYA, D.; SHEWALE, S.R.; BHAVYA, M.L.; HEBBAR, H.U. Far infrared assisted refractance window drying of apple slices: Comparative study on flavour, nutrient retention and drying characteristics. Innovative Food Science and Emerging Technologies, v. 66, 2020, 102530.https://doi.org/10.1016/j.ifset.2020.102530; RANI, P.; TRIPATHY, P.P. Effect of ultrasound and chemical pretreatment on drying characteristics and quality attributes of hot air-dried pineapple slices. Journal of Food Science and Technology, v. 56, n. 11, 2019, p. 4911–4924.https://doi.org/10.1007/s13197-019-03961-w; SALAZAR, D.M.; ÁLVAREZ, F.C.; ACURIO, L.P.; PEREZ, L.V.; ARANCIBIA, M.Y.; CARVAJAL, M.G.; VALENCIA, A.F.; RODRIGUEZ, C.A. Osmotic concentration of pineapple (Cayenne lisse) as a pretreatment for convection drying. IOP Conference Series: Earth and Environmental Science, v. 292, n. 1, 2019.https://doi.org/10.1088/1755-1315/292/1/012039; SETHI, K.; KAUR, M. Effect of osmotic dehydration on physicochemical properties of pineapple using honey, sucrose and honey-sucrose solutions. International Journal of Engineering and Advanced Technology, v. 9, n. 1, 2019, p. 6257–6262.https://doi.org/10.35940/ijeat.A2026.109119; SHAKER, M.A. Comparison between traditional deep-fat frying and air-frying for production of healthy fried potato strips. International Food Research Journal, v 22, n. 4, 2015, p. 1557-1563.; SILVA, K.S.; GARCIA, C.C.; AMADO, L.R.; MAURO, M.A. Effects of Edible Coatings on Convective Drying and Characteristics of the Dried Pineapple. Food and Bioprocess Technology, v. 8, n. 7, 2015, p. 1465–1475.https://doi.org/10.1007/s11947-015-1495-y; SOUZA, D.G.; RESENDE, O.; DE MOURA, L.C.; JUNIOR, W.N.F.; ANDRADE, J.W.D.S. Drying kinetics of the sliced pulp of biofortified sweet potato (Ipomoea batatas L.). Engenharia Agrícola, v. 39, n. 2, 2019, p. 176–181.https://doi.org/10.1590/1809-4430-eng.agric.v39n2p176-181/2019; VEGA, A.; URIBE, E.; LEMUS, R.; MIRANDA, M. Hot-air drying characteristics of Aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. LWT - Food Science and Technology, v. 40, n. 10, 2007, p. 1698–1707. https://doi.org/10.1016/j.lwt.2007.01.001; VEGA-GÁLVEZ, A.; TELLO-IRELAND, C.; LEMUS-MONDACA, R. Simulación matemática del proceso de secado de la gracilaria chilena (Gracilaria Chilensis). Ingeniare. Revista Chilena de Ingeniería, v. 15, n. 1, 2007.https://doi.org/10.4067/S0718-33052007000100008; VILLAMIZAR, R.H.; QUICENO, M.C.; GIRALDO, G.A. Effect of vacuum frying process on the quality of a snack of mango (Manguifera indica L.). Acta Agronómica, v. 61, n. 1, 2012, p. 40-51.; WU, M.Y.; SHIAU, S.Y. Effect of the Amount and Particle Size of Pineapple Peel Fiber on Dough Rheology and Steamed Bread Quality. Journal of Food Processing and Preservation, v. 39, n. 6, 2015, p. 549–558.https://doi.org/10.1111/jfpp.12260; ZHANG, M.; CHEN, H.; MUJUMDAR, A.S.; TANG, J.; MIAO, S.; WANG, Y. Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition, v. 57, n. 6, 2017, p. 1239–1255.https://doi.org/10.1080/10408398.2014.979280; ZHANG, Z.; WEI, Q.; NIE, M.; JIANG, N.; LIU, C.; LIU, C.; LI, D.; XU, L. Microstructure and bioaccessibility of different carotenoid species as affected by hot air drying: Study on carrot, sweet potato, yellow bell pepper and broccoli. LWT Food Science and Technology, v. 96, 2018, p. 357–363.https://doi.org/10.1016/j.lwt.2018.05.061; ZZAMAN, W.; BISWAS, R.; HOSSAIN, M. A. Application of immersion pre-treatments and drying temperatures to improve comprehensive quality of pineapple (Ananas comosus) slices. Heliyon, v. 7, n. 1, 2021.https://doi.org/10.1016/j.heliyon.2020.e05882; https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/1879

  15. 15
    Conference

    وصف الملف: application/pdf

    Relation: Encuentro macrorregional de la Red Nacional de Repositorios Digitales de Ciencia, Tecnología e Innovación de Acceso Abierto - RENARE (18 de noviembre, 2019: Tarapoto, Perú); http://hdl.handle.net/20.500.12390/462

  16. 16
    Conference

    وصف الملف: application/pdf

    Relation: Encuentro macrorregional Sur de la Red Nacional de Repositorios Digitales de Ciencia, Tecnología e Innovación de Acceso Abierto - RENARE (19 de setiembre, 2019: Puno, Perú); http://hdl.handle.net/20.500.12390/439

  17. 17
    Conference

    وصف الملف: application/pdf

    Relation: Encuentro macrorregional de la Red Nacional de Repositorios Digitales de Ciencia, Tecnología e Innovación de Acceso Abierto - RENARE (15 de agosto, 2019: Huancayo, Perú); Rivero Suárez, Alexander (15 de agosto, 2019). Introducción a Dspace 7. Ponencia presentada en el Encuentro Macrorregional de la Red Nacional de Repositorios Digitales de Ciencia, Tecnología e Innovación de Acceso Abierto – RENARE, Huancayo - Perú.; http://hdl.handle.net/20.500.12390/411

  18. 18
    Conference

    وصف الملف: application/pdf

    Relation: Encuentro macrorregional de la Red Nacional de Repositorios Digitales de Ciencia, Tecnología e Innovación de Acceso Abierto - RENARE (22 de agosto, 2019: Lima, Perú); Olivares Poggi, César Augusto & Rivero Suarez, Alexander Javier (22 de agosto, 2019). Introducción a Dspace 7. Ponencia presentada en el Encuentro Macrorregional de la Red Nacional de Repositorios Digitales de Ciencia, Tecnología e Innovación de Acceso Abierto – RENARE, Lima – Perú.; http://hdl.handle.net/20.500.12390/410

  19. 19
    Conference

    وصف الملف: application/pdf

    Relation: Seminario “Repositorios Institucionales integrados al Repositorio Nacional Digital de Acceso Abierto - ALICIA” Macro Región Sur 2018; http://hdl.handle.net/20.500.12390/89; orcid:0000-0002-4172-2216

  20. 20
    Conference

    وصف الملف: application/pdf

    Relation: Seminario “Repositorios Institucionales integrados al Repositorio Nacional Digital de Acceso Abierto - ALICIA” Macro Región Norte 2018; http://hdl.handle.net/20.500.12390/85; orcid:0000-0002-4172-2216