يعرض 1 - 20 نتائج من 62 نتيجة بحث عن '"Source appointment"', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المصدر: Water ; Volume 14 ; Issue 23 ; Pages: 3856

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Water and Climate Change; https://dx.doi.org/10.3390/w14233856

  9. 9
    Academic Journal

    المؤلفون: Kazuichi Hayakawa

    المصدر: Applied Sciences; Volume 12; Issue 21; Pages: 11259

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Environmental Sciences; https://dx.doi.org/10.3390/app122111259

  10. 10
  11. 11
    Academic Journal

    المصدر: International Journal of Environmental Research and Public Health; Volume 18; Issue 20; Pages: 10925

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Environmental Science and Engineering; https://dx.doi.org/10.3390/ijerph182010925

  12. 12
    Report

    المساهمون: Barraza, F, Lambert, F, MacDonell, Shelley, Sinclair, K, Fernandoy, F, Jorquera, H

    وصف الملف: pp.36817-36827; Print-Electronic

    Relation: The original publication is available from Springer Nature - https://doi.org/10.1007/s11356-021-12933-7 - http://dx.doi.org/10.1007/s11356-021-12933-7; Environmental Science and Pollution Research

  13. 13
  14. 14
    Academic Journal

    Relation: https://www.documentation.ird.fr/hor/fdi:010087572; oai:ird.fr:fdi:010087572; Wang B., Yang S. C., Li P., Qin C. Y., Wang C., Ali M. U., Yin R. S., Maurice Laurence, Point David, Sonke J. E., Zhang L. M., Feng X. B. Trace mercury migration and human exposure in typical mercury-emission areas by compound-specific stable isotope analysis. 2023, 174, p. 107891 [8 p.]

  15. 15
    Academic Journal

    المؤلفون: Burbano Ardila, Kelly Johana

    المساهمون: Rojas, Néstor Yesid, Calidad del Aire

    وصف الملف: application/pdf

    Relation: Agency for Toxic Substances and Disease Registry. (2012). Standards and regulations for polycyclic aromatic hydrocarbons (PAH). Retrieved from https://www.atsdr.cdc.gov/csem/csem.%0Aasp?csem=13&po=8; Aguiar Gil, D., Gómez Peláez, L. M., Álvarez Jaramillo, T., Correa Ohoa, M. A., & Saldarriaga Molina, J. C. (2020). Evaluating the impact of PM2.5 atmospheric pollution on population mortality in an urbanized valley in the American tropics. Atmospheric Environment, 117343. https://doi.org/10.1016/j.atmosenv.2020.117343; Alvarado, G. M. (2006). Estimación del aporte de diferentes fuentes a la contaminación atmosférica por partículas en Santiago, mediante un modelo de balance de masas de elementos químicos. Universidad de Chile.; Alves, C. A., Oliveira, C., Martins, N., Mirante, F., Caseiro, A., Pio, C., … Camões, F. (2016). Road tunnel, roadside, and urban background measurements of aliphatic compounds in size-segregated particulate matter. Atmospheric Research, 168, 139–148. https://doi.org/10.1016/j.atmosres.2015.09.007; Anlauf, K., Li, S.-M., Leaitch, R., Brook, J., Hayden, K., Toom-Sauntry, D., & Wiebe, A. (2006). Ionic composition and size characteristics of particles in the Lower Fraser Valley: Pacific 2001 field study. Atmospheric Environment, 40(15), 2662–2675. https://doi.org/https://doi.org/10.1016/j.atmosenv.2005.12.027; Baklanov, A., Molina, L. T., & Gauss, M. (2016). Megacities, air quality and climate. Atmospheric Environment, 126, 235–249. https://doi.org/10.1016/j.atmosenv.2015.11.059; Belis, C. A., Larsen, B. R., Amato, F., El Haddad, I., Favez, O., Harrison, R. M., … Viana, M. (2014). European guide on air pollution source apportionment with receptor models. https://doi.org/10.2788/9307; Bell, M. L., Cifuentes, L. A., Davis, D. L., Cushing, E., Gusman Telles, A., & Gouveia, N. (2011). Environmental health indicators and a case study of air pollution in latin american cities. Environmental Resarch, 111, 57–66.; Bourotte, C., Forti, M. C., Taniguchi, S., Bícego, M. C., & Lotufo, P. A. (2005). A wintertime study of PAHs in fine and coarse aerosols in São Paulo city, Brazil. Atmospheric Environment, 39(21), 3799–3811. https://doi.org/10.1016/j.atmosenv.2005.02.054; Byambaa, B., Yang, L., Matsuki, A., Nagato, E. G., Gankhuyag, K., Chuluunpurev, B., & Banzragch, L. (2019). Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City , Mongolia. Environmental Research and Public Health, 16. https://doi.org/10.3390/ijerph16030442; Cao, J. J., Lee, S. C., Ho, K. F., Fung, K., Chow, J. C., & Watson, J. G. (2006). Characterization of Roadside Fine Particulate Carbon and its Eight Fractions in Hong Kong. Aerosol and Air Quality Research, 6(2); Castañeda, D., & Mendez, J. (2018). Estimación De La Relación Entre Material Particulado Pm10 Atmosférico Y El Susceptible De Resuspensión En Algunas Vías De Bogotá. (Universidad de la Salle). Retrieved from https://pdfs.semanticscholar.org/782b/c6d17926deba7e0c70c94c2ee879abcfbe5a.pdf; Castro, L. M., Pio, C. A., Harrison, R. M., & Smith, D. J. T. (1999). Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmospheric Environment, 33(17), 2771–2781. https://doi.org/10.1016/S1352-2310(98)00331-8; Cheng, S., Lang, J., Zhou, Y., Wang, G., & Chen, D. (2013). A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Beijing, China. Atmospheric Environment, 79, 308–316. https://doi.org/https://doi.org/10.1016/j.atmosenv.2013.06.043; Cheng, Z., Luo, L., Wang, S., Wang, Y., Sharma, S., Shimadera, H., … Hao, J. (2016). Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 89–90, 212–221.; Chiang, H. L., & Lin, Y. H. (2005). Mass-size distributions of particulate sulfate, nitrate, and ammonium in a particulate matter nonattainment region in southern Taiwan. Journal of the Air and Waste Management Association, 55(4), 502–509. https://doi.org/10.1080/10473289.2005.10464640; Chow, J.C., Watson, J. G., Lu, Z., Lowenthal, D. H., Frazier, C. A., Solomon, P. A., … and Magliano, K. (1996). Descriptive Analysis of PM2.5 and PM10 at Regionally representative locations during SJVAQS/AUSPEX. Atmospheric Environment, 30(2079–2112).; Chow, Judith C., Lowenthal, D. H., Chen, L. W. A., Wang, X., & Watson, J. G. (2015). Mass reconstruction methods for PM2.5: a review. Air Quality, Atmosphere and Health, 8(3), 243–263. https://doi.org/10.1007/s11869-015-0338-3; Chow, Judith C, Watson, J. G., Frank, N., & Homolya, J. (1998). Guideline on speciated particulate monitoring. Desert Research Institute, (August), 291. Retrieved from epa.gov/ttnamti1/files/ambient/pm25/spec/drispec.pdf; Cortés, J., Cobo, M., González, C. M., Gómez, C. D., Abalos, M., & Aristizábal, B. H. (2016). Environmental variation of PCDD/Fs and dl-PCBs in two tropical Andean Colombian cities using passive samplers. Science of the Total Environment, 568, 614–623. https://doi.org/10.1016/j.scitotenv.2016.02.094; Crilley, L. R., Lucarelli, F., Bloss, W. J., Harrison, R. M., Beddows, D. C., Calzolai, G., … Vecchi, R. (2017). Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environmental Pollution, 220, 766–778. https://doi.org/10.1016/j.envpol.2016.06.002; Cuellar, Y., Buitrago-Tello, R., & Belalcazar-Ceron, L. C. (2016). Life cycle emissions from a bus rapid transit system and comparison with other modes of passenger transportation. Ciencia, Tecnología y Futuro., 6(3), 123–134.; Dao, X., Wang, Z., Lv, Y., Teng, E., Zhang, L., & Wang, C. (2014). Chemical characteristics of water-soluble ions in particulate matter in three metropolitan areas in the North China Plain. PLoS ONE, 9(12), 1–16. https://doi.org/10.1371/journal.pone.0113831; Deng, Q., Ou, C., Chen, J., & Xiang, Y. (2018). Particle deposition in tracheobronchial airways of an infant, child and adult. Science of the Total Environment, 612, 339–346. https://doi.org/10.1016/j.scitotenv.2017.08.240; Departamento Nacional de Planeación. (2018). Calidad del aire una prioridad de politica pública en Colombia. Retrieved from https://colaboracion.dnp.gov.co/CDT/Prensa/Presentación Calidad del Aire 15_02_2018.pdf; Deshmukh, D. K., Deb, M. K., Tsai, Y. I., & Mkoma, S. L. (2010). Atmospheric ionic species in PM2.5 and PM1 aerosols in the ambient air of eastern central India. Journal of Atmospheric Chemistry, 66(1–2), 81–100. https://doi.org/10.1007/s10874-011-9194-1; Deshmukh, D. K., Kawamura, K., & Deb, M. K. (2016). Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes. Chemosphere, 161, 27–42. https://doi.org/10.1016/j.chemosphere.2016.06.107; Deutsch, F., Vankerkom, J., Janssen, L., Lefebre, F., Mensink, C., Fierens, F., … Roekens, E. (2008). Extension of the EUROS integrated air quality model to fine particulate matter by coupling to CACM/MADRID 2. Environmental Modeling and Assessment, 13(3), 431–437. https://doi.org/10.1007/s10666-007-9100-z; Ding, L., Chan, T. W., Ke, F., & Wang, D. K. W. (2014). Characterization of chemical composition and concentration of fine particulate matter during a transit strike in Ottawa, Canada. Atmospheric Environment, 89, 433–442. https://doi.org/10.1016/j.atmosenv.2014.02.013; Ding, X. X., Kong, L. D., Du, C. T., Zhanzakova, A., Fu, H. B., Tang, X. F., … Cheng, T. T.(2017). Characteristics of size-resolved atmospheric inorganic and carbonaceous aerosols in urban Shanghai. Atmospheric Environment, 167, 625–641. https://doi.org/10.1016/j.atmosenv.2017.08.043; Elmes, M., & Gasparon, M. (2017). Sampling and single particle analysis for the chemical characterisation of fine atmospheric particulates: A review. Journal of Environmental Management, 202, 137–150. https://doi.org/10.1016/j.jenvman.2017.06.067; Engel-cox, J., Thi, N., Oanh, K., Donkelaar, A. Van, Martin, R. V, & Zell, E. (2013). Toward the next generation of air quality monitoring : Particulate Matter. Atmospheric Environment, 80, 584–590. https://doi.org/http://dx.doi.org/10.1016/j.atmosenv.2013.08.016; Flynn, S. J., Tong, Z. B., Yang, R. Y., Kamiya, H., Yu, A. B., & Chan, H. K. (2015). Computational fluid dynamics (CFD) investigation of the gas-solid flow and performance of Andersen cascade impactor. Powder Technology, 285, 128–137. https://doi.org/10.1016/j.powtec.2015.03.039; Fomba, K. W., Müller, K., Van Pinxteren, D., Poulain, L., Van Pinxteren, M., & Herrmann, H. (2014). Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011. Atmospheric Chemistry and Physics, 14(17), 8883–8904. https://doi.org/10.5194/acp-14-8883-2014; Fomba, Khanneh Wadinga, van Pinxteren, D., Müller, K., Spindler, G., & Herrmann, H. (2018). Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig. Atmospheric Environment, 176(December 2017), 60–70. https://doi.org/10.1016/j.atmosenv.2017.12.024; Franco, J. F., Gidhagen, L., Morales, R., & Behrentz, E. (2019). Towards a better understanding of urban air quality management capabilities in Latin America. 102(April), 43–53.; Gao, Y., Lee, S. C., Huang, Y., Chow, J. C., & Watson, J. G. (2016). Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area. Atmospheric Research, 170, 112–122. https://doi.org/10.1016/j.atmosres.2015.11.015; García-Avila, P., & Rojas, N. Y. (2016). Análisis del origen de PM 10 y PM 2.5 en Bogotá usando gráficos polares. Mutis. Editorial UTADEO, 6(2), 47–58. https://doi.org/10.21789/22561498.1150; García Lozada, H. M. (2009). EVALUACIÓN DEL RIESGO POR EMISIONES DE PARTÍCULAS EN FUENTES ESTACIONARIAS DE COMBUSTIÓN. ESTUDIO DE CASO: BOGOTÁ: 2006. Ingeniería e Investigación, 29, 153–154. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092009000300028&lng=en&tlng=es.; Garcia Villgas, N., & Parra Garcés, D. M. (2017). ANÁLISIS PRELIMINAR DE LA CARACTERIZACIÓN Y CONTRIBUCIÓN DE FUENTES DE MATERIAL PARTICULADO -PM10 EN EL AIRE AMBIENTE DE BOGOTÁ. Mutis.; Genga, A., Ielpo, P., Siciliano, T., & Siciliano, M. (2017). Carbonaceous particles and aerosol mass closure in PM2.5 collected in a port city. Atmospheric Research, 183, 245–254. https://doi.org/10.1016/j.atmosres.2016.08.022; Golly, B., Waked, A., Weber, S., Samake, A., Jacob, V., Conil, S., … Jaffrezo, J. L. (2018). Organic markers and OC source apportionment for seasonal variations of PM2.5 at 5 rural sites in France. Atmospheric Environment, 198, 142–157. https://doi.org/10.1016/j.atmosenv.2018.10.027; Guerrero, F., Alvarez-Ospina, H., Retama, A., López-Medina, A., Castro, T., & Salcedo, D. (2017). Seasonal changes in the PM 1 chemical composition north of Mexico City. Atmosfera, 30(3), 243–258. https://doi.org/10.20937/ATM.2017.30.03.05; Han, Y. M., Chen, L. W. A., Huang, R. J., Chow, J. C., Watson, J. G., Ni, H. Y., … Cao, J. J. (2016). Carbonaceous aerosols in megacity Xi’an, China: Implications of thermal/optical protocols comparison. Atmospheric Environment, 132, 58–68. https://doi.org/10.1016/j.atmosenv.2016.02.023; Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in. Environmental Science & Technology, 30(3), 825–832. https://doi.org/10.1021/es950252d; Hassanien, M. A., & Abdel-Latif, N. M. (2008). Polycyclic aromatic hydrocarbons in road dust over Greater Cairo, Egypt. Journal of Hazardous Materials, 151(1), 247–254. https://doi.org/10.1016/j.jhazmat.2007.05.079; Hernandez, L. A., & Jimenez, R. (2016). Caracterización de la Contaminación por Material Particulado en Bogotá mediante Fotometría Solar (Universidad Nacional de Colombia.Sede Bogotá). Retrieved from http://www.bdigital.unal.edu.co/56063/1/80164122.2017.pdf; Herner, J. D., Ying, Q., Aw, J., Gao, O., Chang, D. P. Y., & Kleeman, M. J. (2006). Dominant Mechanisms that Shape the Airborne Particle Size and Composition Distribution in Central California. Aerosol Science and Technology, 40(10), 827–844. https://doi.org/https://doi.org/10.1080/02786820600728668; Huang, X.-F., & Yu, J. Z. (2008). Size distributions of elemental carbon in a coastal urban atmosphere in South China: characteristics, evolution processes, and implications for the mixing state. Atmospheric Chemistry and Physics Discussions, 7(4), 10743–10766. https://doi.org/10.5194/acpd-7-10743-2007; Huang, X., Yu, J. Z., He, L., & Yuan, Z. (2006). Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China : Size distribution characteristics , sources , and formation mechanisms. Geophysical Research, 111, 1–11. https://doi.org/10.1029/2006JD007408; IPCC. (2014). Climate change 2014. Synthesis report. Versión inglés. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental; IQAir. (2018). 2018 World Air Quality Report PM2.5 Ranking. 22.; Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821), 695–697. https://doi.org/10.1038/35055518; Javed, W., Wexler, A. S., Murtaza, G., Ahmad, H. R., & Basra, S. M. A. (2015). Spatial, temporal and size distribution of particulate matter and its chemical constituents in Faisalabad, Pakistan. Atmosfera. https://doi.org/10.20937/ATM.2015.28.02.03; Jia, S., Zhang, Q., Sarkar, S., Mao, J., Hang, J., Chen, W., … Zhou, S. (2020). Size-segregated deposition of atmospheric elemental carbon (EC) in the human respiratory system: A case study of the Pearl River Delta, China. Science of the Total Environment, 708, 134932. https://doi.org/10.1016/j.scitotenv.2019.134932; Johansson, L. S., Tullin, C., Leckner, B., & Sjövall, P. (2003). Particle emissions from biomass combustion in small combustors. Biomass and Bioenergy, 25(4), 435–446. https://doi.org/10.1016/S0961-9534(03)00036-9; John, W., Wall, S. M., Ondo, J. L., & Winklmayr, W. (1990). Modes in the size distributions of atmospheric inorganic aerosol. Atmospheric Environment, 24(9), 2349–2359. https://doi.org/https://doi.org/10.1016/0960-1686(90)90327-J; Kaneyasu, N., Yoshikado, H., Mizuno, T., Sakamoto, K., & Soufuku, M. (1999). Chemical forms and sources of extremely high nitrate and chloride in winter aerosol pollution in the Kanto Plain of Japan. Atmospheric Environment, 33(11), 1754–1756.; Karagulian, F., Belis, C. A., Francisco, C., Dora, C., Prüss-ustün, A. M., Bonjour, S., … Amann, M. (2015). Contributions to cities ’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483. https://doi.org/http://dx.doi.org/10.1016/j.atmosenv.2015.08.087; Karanasiou, A. A., Sitaras, I. E., Siskos, P. A., & Eleftheriadis, K. (2007). Size distribution and sources of trace metals and n-alkanes in the Athens urban aerosol during summer. Atmospheric Environment, 41(11), 2368–2381. https://doi.org/10.1016/j.atmosenv.2006.11.006; Kaupp, H., & McLachlan, M. S. (2000). Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAH) within the full size range of atmospheric particles. Atmospheric Environment, 34(1), 73–83. https://doi.org/10.1016/S1352-2310(99)00298-8; Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504–526. https://doi.org/10.1016/j.atmosenv.2012.06.039; Keshtkar, H., & Ashbaugh, L. L. (2007). Size distribution of polycyclic aromatic hydrocarbon particulate emission factors from agricultural burning. Atmospheric Environment, 41(13), 2729–2739. https://doi.org/10.1016/j.atmosenv.2006.11.043; Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143. https://doi.org/10.1016/j.envint.2014.10.005; Lan, Z. J., Chen, D. L., Li, X., Huang, X. F., He, L. Y., Deng, Y. G., … Hu, M. (2011). Modal characteristics of carbonaceous aerosol size distribution in an urban atmosphere of South China. Atmospheric Research, 100(1), 51–60. https://doi.org/10.1016/j.atmosres.2010.12.022; Lee, J. Y., Lane, D. A., Heo, J. B., Yi, S. M., & Kim, Y. P. (2012). Quantification and seasonal pattern of atmospheric reaction products of gas phase PAHs in PM2.5. Atmospheric Environment, 55, 17–25. https://doi.org/10.1016/j.atmosenv.2012.03.007; Leoni, C., Pokorná, P., Hovorka, J., Masiol, M., Topinka, J., Zhao, Y., … Hopke, P. K. (2018). Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environmental Pollution, 234, 145–154. https://doi.org/10.1016/j.envpol.2017.10.097; Li, J., Chen, H., Li, X., Wang, M., Zhang, X., Cao, J., … Yao, M. (2019). Differing toxicity of ambient particulate matter ( PM ) in global cities. 212(October 2018), 305–315.; Li, Q., Yang, Z., Li, X., Ding, S., & Du, F. (2019). Seasonal characteristics of sulfate and nitrate in size-segregated particles in ammonia-poor and-rich atmospheres in Chengdu, Southwest China. Aerosol and Air Quality Research, 19(12), 2697–2706. https://doi.org/10.4209/aaqr.2019.07.0368; Lippmann, M., Chen, L.-C., Gordon, T., Ito, K., & Thurston, G. D. (2013). National Particle Component Toxicity (NPACT) Initiative: integrated epidemiologic and toxicologic studies of the health effects of particulate matter components. In Research report (Health Effects Institute). Boston, Massachusetts; Liu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., & Wang, Y. (2017). Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere, 183, 119–131. https://doi.org/10.1016/j.chemosphere.2017.05.095; Long, S., Zeng, J., Li, Y., Bao, L., Cao, L., Liu, K., … Zhao, Y. (2014). Characteristics of secondary inorganic aerosol and sulfate species in size-fractionated aerosol particles in Shanghai. Journal of Environmental Sciences (China), 26(5), 1040–1051. https://doi.org/10.1016/S1001-0742(13)60521-5; Majoral, C., Le Pape, A., Diot, P., & Vecellio, L. (2006). Comparison of various methods for processing cascade impactor data. Aerosol Science and Technology, 40(9), 672–682. https://doi.org/10.1080/02786820600796582; Malandrino, M., Casazza, M., Abollino, O., Minero, C., & Maurino, V. (2016). Size resolved metal distribution in the PM matter of the city of Turin (Italy). Chemosphere, 147, 477–489. https://doi.org/10.1016/j.chemosphere.2015.12.089; Ministerio de Ambiente y Desarrollo sostenible. Resolución No 2254 (2017). , (2017).; Mohamed, G. E. T. (2012). Physical and Chemical Composition of Particulate Pollutants in an Urban Area of Cardiff , Wales. Retrieved from https://repository.cardiffmet.ac.uk/handle/10369/4738; Montoya Zubiria, A. F., & Moreno Melo, J. A. (2009). EVALUACIÓN DE LA COMPOSICIÓN DE METALES PESADOS EN DIFERENTES FUENTES EN LA CIUDAD DE BOGOTÁ Y SU ASOCIACIÓN FRENTE A LA CALIDAD DE AIRE. Universidad de la Salle; Moreno Melo, J. A., & Montoya Zubiria, A. F. (2009). EVALUACIÓN DE LA COMPOSICIÓN DE METALES PESADOS EN DIFERENTES FUENTES EN LA CIUDAD DE BOGOTÁ Y SU ASOCIACIÓN FRENTE A LA CALIDAD DE AIRE. Universidad de la Salle.; Moustafa, M., Mohamed, A., Ahmed, A. R., & Nazmy, H. (2014). Mass size distributions of elemental aerosols in industrial area. Journal of Advanced Research, 6(6), 827–832. https://doi.org/10.1016/j.jare.2014.06.006; Müller, K., Spindler, G., Van Pinxteren, D., Gnauk, T., Iinuma, Y., Brüggemann, E., & Herrmann, H. (2012). Ultrafine and fine particles in the atmosphere - Sampling, chemical characterization and sources. Chemie-Ingenieur-Technik, 84(7), 1130–1136. https://doi.org/10.1002/cite.201100208; Muránszky, G., Ovari, M., Virág, I., Csiba, P., Dobai, R., & Záray, G. (2011). Chemical characterization of PM10 fractions of urban aerosol. Microchemical Journal, 98(1), 1–10. https://doi.org/10.1016/j.microc.2010.10.002; Murillo-Tovar, M., Barradas-Gimate, A., Arias-Montoya, M., & Saldarriaga-Noreña, H. (2018). Polycyclic Aromatic Hydrocarbons (PAHs) Associated with PM2.5 in Guadalajara, Mexico: Environmental Levels, Health Risks and Possible Sources. Environments, 5(5), 62. https://doi.org/10.3390/environments5050062; Neusiiss, C., Pelzing, M., Plewka, A., & Herrmann, H. (2000). A new analytical approach for size-resolved speciation of organic compounds in atmospheric aerosol particles : results. 105, 4513–4527; Ny, M. T., & Lee, B. K. (2011). Size distribution of airborne particulate matter and associated metallic elements in an urban area of an industrial city in Korea. Aerosol and Air Quality Research, 11(6), 643–653. https://doi.org/10.4209/aaqr.2010.10.0090; Oberdörster, G., Stone, V., & Donaldson, K. (2007). Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 1(1), 2–25. https://doi.org/10.1080/17435390701314761; ONU. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Asamblea General, 15900, 40. Retrieved from http://www.un.org/ga/search/view_doc.asp?symbol=A/70/L.1&Lang=S; Pachon, J. E. (2017). Medición y predicción de emisiones de especies contaminantes y sus impactos en la atmósfera. 80. Retrieved from https://escuela-ids.itm.edu.co/calidad-del-aire/Memorias-EIDS/4-Presentacion-profesor-JORGE-EDUARDO-PACHON-QUINCHE.pdf; Pachon, J. E., Behrentz, E., & Rojas, N. Y. (2007). Challenges in Bogota air quality: Policies and technology. 100th Annual Conference and Exhibition of the Air and Waste Management Association 2007, ACE 2007, 1, 325–329. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0 44649117423&partnerID=40&md5=23c32c879728fe1e7df7c48f9242de3; Pachon, J. E., & Fundación Gas Natural Fenosa (Naturgy). (2018). Caso 7. La experiencia en Bogotá. In F. G. N. Fenosa (Ed.), La calidad del aire en las ciudades (Primera Ed, pp. 267–288). Madrid, España: Naturgy Energy Group S.A; Pachon, J. E., Russell, A. G., Sarmiento, H., & Galvis, B. R. (2008). Identification of secondary aerosol formation in Bogota: a preliminary study. Proceedings of 101st AWMA Annual Conference. Portland, USA.; Pachón, J. E., & Vela, H. S. (2008). Análisis espacio-temporal de la concentración de metales pesados en la localidad de Puente Aranda de Bogotá-Colombia Heavy metal determination and source emission identification in an industrial location of Bogotá-Colombia. Marzo Rev. Fac. Ing. Univ. Antioquia N.°, 43, 120–133.; Pachon, J., Weber, R. J., Zhang, X., Mulholland, J. A., & Russell, A. G. (2013). Revising the use of potassium (K) in the source apportionment of PM 2.5. Atmospheric Pollution Research, 4(1), 14–21. https://doi.org/10.5094/APR.2013.002; Park, M., Joo, H. S., Lee, K., Jang, M., Kim, S. D., Kim, I., … Park, K. (2018). Differential toxicities of fine particulate matters from various sources. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-35398-0; Paw-Armart, I., & Yoshizumi, K. (2013). Size Distributions of Atmospheric Aerosol Compositions in Saitama, Japan. Open Journal of Air Pollution, 02(01), 1–6. https://doi.org/10.4236/ojap.2013.21001; Peñaloza P, N. E., & Rojas, N. Y. (2010). DISTRIBUCIÓN ESPACIAL Y TEMPORAL DEL INVENTARIO DE EMISIONES PROVENIENTES DE LAS FUENTES MÓVILES Y FIJAS DE LA CIUDAD DE BOGOTÁ, D.C. Universidad Nacional de Colombia.; Pennanen, A. S., Sillanpää, M., Hillamo, R., Quass, U., John, A. C., Branis, M., … Salonen, R. O. (2007). Performance of a high-volume cascade impactor in six European urban environments: Mass measurement and chemical characterization of size-segregated particulate samples. Science of the Total Environment, 374(2–3), 297–310. https://doi.org/10.1016/j.scitotenv.2007.01.002; Pereira, G. M., De Oliveira Alves, N., Caumo, S. E. S., Soares, S., Teinilä, K., Custódio, D., … Vasconcellos, P. C. (2017). Chemical composition of aerosol in São Paulo, Brazil: influence of the transport of pollutants. Air Quality, Atmosphere and Health, 10(4), 457–468. https://doi.org/10.1007/s11869-016-0437-9; Pio, C., Cerqueira, M., Harrison, R. M., Nunes, T., Mirante, F., Alves, C., … Matos, M. (2011). OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmospheric Environment, 45(34), 6121–6132. https://doi.org/10.1016/j.atmosenv.2011.08.045; Pokorná, P., Hovorka, J., Klán, M., & Hopke, P. K. (2015). Source apportionment of size resolved particulate matter at a European air pollution hot spot. Science of the Total Environment, 502, 172–183. https://doi.org/10.1016/j.scitotenv.2014.09.021; Pooltawee, J., Pimpunchat, B., & Junyapoon, S. (2017). Size distribution, characterization and risk assessment of particle-bound polycyclic aromatic hydrocarbons during haze periods in Phayao Province, northern Thailand. Air Quality, Atmosphere and Health, 10(9), 1097–1112. https://doi.org/10.1007/s11869-017-0497-5; Querol, X. (2018). Contaminación y calidad del aire urbano. Unas primeras cuestiones de partida. In Fundación Gas Natural Fenosa (Ed.), La calidad del aire en las ciudades (Fundación, pp. 15–28).; Querol, X., Alastuey, A., Ruiz, C. R., Artiñano, B., Hansson, H. C., Harrison, R. M., … Schneider, J. (2004). Speciation and origin of PM10 and PM2.5 in selected European cities. Atmospheric Environment, 38(38), 6547–6555. https://doi.org/10.1016/j.atmosenv.2004.08.037; Ramírez, O., Sánchez de la Campa, A. M., Amato, F., Catacolí, R. A., Rojas, N. Y., & de la Rosa, J. (2018). Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environmental Pollution, 233, 142–155. https://doi.org/10.1016/j.envpol.2017.10.045; Ramírez, O., Sánchez de la Campa, A. M., & de la Rosa, J. (2018). Characteristics and temporal variations of organic and elemental carbon aerosols in a high–altitude, tropical Latin American megacity. Atmospheric Research, 210(April), 110–122. https://doi.org/10.1016/j.atmosres.2018.04.006; Rivera, J., & Behrentz, E. (2009). Identificación de fuentes de contaminación por material partuclado en Bogotá. Universidad de los Andes.; Robinson, A. L., Subramanian, R., Donahue, N. M., Bernando - Bricker, A., & Rogge, W. F. (2006). Source Apportionment of Molecular Markers and Organic Aerosols. 1 . Polycyclic Aromatic Hydrocarbons and Methodology for Data Visualization. Environmental Science & Technology, 40, 7803–7810.; Rojas, N. Y. (2007). Aire y problemas ambientales en Bogotá. Observatorio Ambeintal de Bogotá, 98–124.; Ruiz, C. F. (2006). Caracterización Del Material Particulado En Las Principales Vías Del Transporte Público Las Principales Vías Del Transporte Público.; Saffari, A., Daher, N., Shafer, M. M., Schauer, J. J., & Sioutas, C. (2013). Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM0.25) particles in the Los Angeles metropolitan area and characterization of their sources. Environmental Pollution, 181, 14–23. https://doi.org/10.1016/j.envpol.2013.06.001; Secretaria de Ambiente Quito. (2011). Informe Anual 2011. Calidad del aire Quito.; Secretaría del Medio Ambiente de la Ciudad México. (2017). Calidad del aire en la Ciudad de México; Secretaría Distrital de Ambiente Bogotá. (2019). Informe Anual de Calidad de Aire 2018.; Secretaria Distrital de Ambiente de Bogotá. (2010). Plan decenal de descontaminación del aire de Bogotá. Retrieved from http://ambientebogota.gov.co/plan-decenal-dedescontaminacion-%0Adel-aire-para-bogota.; Secretaria Distrital de Ambiente de Bogotá. (2017). Red de monitoreo de calidad del aire de Bogotá. Retrieved from http://ambientebogota.gov.co/red-de-calidad-delaire.; Secretaria Distritral de Ambiente. (2018a). Informe Mensual de Calidad del Aire de Bogotá. Marzo 2018; Secretaria Distritral de Ambiente. (2018b). Informe Mensual de Calidad del Aire de Bogotá. Mayo 2018.; Sefair, J. A., Espinosa, M., Behrentz, E., & Medaglia, A. L. (2019). Optimization model for urban air quality policy design: A case study in Latin America. Computers, Environment and Urban Systems, 78(March), 101385. https://doi.org/10.1016/j.compenvurbsys.2019.101385; Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics: From air pollution to climate change (Willey, Ed.).; Shah, S. D., Cocker, D. R., Miller, J. W., & Norbeck, J. M. (2004). Emission Rates of Particulate Matter and Elemental and Organic Carbon from In-Use Diesel Engines. Environmental Science & Technology, 38(9). https://doi.org/10.1021/es0350583; Sicre, M. ., J.C, M., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). ALIPHATIC AND AROMATIC HYDROCARBONS IN DIFFERENT SIZED AEROSOLS OVER THE MEDITERRANEAN SEA: OCCURRENCE AND ORIGIN. Atmospheric Environment (1967), 21(10), 2247–2259. https://doi.org/https://doi.org/10.1016/0004-6981(87)90356-8; Singh, A., Rastogi, N., Patel, A., & Singh, D. (2016). Seasonality in size-segregated ionic composition of ambient particulate pollutants over the Indo-Gangetic Plain: Source apportionment using PMF. Environmental Pollution, 219, 906–915. https://doi.org/10.1016/j.envpol.2016.09.010; Spindler, G., Brüggemann, E., Gnauk, T., Grüner, A., Müller, K., & Herrmann, H. (2010). A four-year size-segregated characterization study of particles PM10, PM2.5 and PM1 depending on air mass origin at Melpitz. Atmospheric Environment, 44(2), 164–173. https://doi.org/10.1016/j.atmosenv.2009.10.015; Spindler, Gerald, Rodger, A., Poulain, L., Muller, K., Birmili, W., Tuch, T., … Herrmann, H. (2014). OC and EC analyzed in PM by thermographic or thermo-optical method : A two year comparison for the central European site. Retrieved February 23, 2020, from Soot Aerosols- Workshop on Measurement methods and Perspectives. website: https://www.wmo-gaw-wcc-aerosol-physics.org/files/Spindler.pd; Ströher, G. L., Poppi, N. R., Raposo, J. L., & Gomes de Souza, J. B. (2007). Determination of polycyclic aromatic hydrocarbons by gas chromatography - ion trap tandem mass spectrometry and source identifications by methods of diagnostic ratio in the ambient air of Campo Grande, Brazil. Microchemical Journal, 86(1), 112–118. https://doi.org/10.1016/j.microc.2006.12.003; Tao, Y., Yin, Z., Ye, X., Ma, Z., & Chen, J. (2014). Size distribution of water-soluble inorganic ions in urban aerosols in Shanghai. Atmospheric Pollution Research, 5(4), 639–647. https://doi.org/10.5094/APR.2014.073; Tian, S. L., Pan, Y. P., & Wang, Y. S. (2016). Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes. Atmospheric Chemistry and Physics, 16(1), 1–19. https://doi.org/10.5194/acp-16-1-2016; Tisch Environmental, I. (1999). OPERATIONS MANUAL. Model 20-800 Ambient Cascade Impactor. 7610(877), 26.; Turpin, B. J., & Lim, H. (2001). Species Contributions to PM2 . 5 Mass Concentrations : Revisiting Common Assumptions for Estimating Organic Mass Species Contributions to PM2 . 5 Mass Concentrations : Revisiting Common Assumptions for Estimating Organic Mass. 6826.; Van Drooge, B. L., Prats, R. M., Reche, C., Minguillón, M. C., Querol, X., Grimalt, J. O., & Moreno, T. (2018). Origin of polycyclic aromatic hydrocarbons and other organic pollutants in the air particles of subway stations in Barcelona. Science of the Total Environment, 642, 148–154. https://doi.org/10.1016/j.scitotenv.2018.06.032; Van Pinxteren, D., Brüggemann, E., Gnauk, T., Iinuma, Y., Müller, K., Nowak, A., … Herrmann, H. (2009). Size and time resolved chemical particle characterization during carebeijing-2006: Different pollution regimes and diurnal profiles. Journal of Geophysical Research Atmospheres, 114(9). https://doi.org/10.1029/2008JD010890; Vargas, F. A., & Rojas, N. Y. (2010, August). Composición química y reconstrucción másica del material particulado suspendido en el aire de Bogotá Chemical composition and mass closure for airborne particulate matter in Bogotá. Ingeniería E Investigación. Repositorio Institucional Universidad Nacional de Colombia. Bdigital., 30(2), 105–115.; Vargas, F. A., Rojas, N. Y., Pachon, J. E., & Russell, A. G. (2012). PM10 characterization and source apportionment at two residential areas in Bogota. Atmospheric Pollution Research, 3(1), 72–80. https://doi.org/10.5094/APR.2012.006; Vasconcellos, P. C., Souza, D. Z., Ávila, S. G., Araújo, M. P., Naoto, E., Nascimento, K. H., … Behrentz, E. (2011). Comparative study of the atmospheric chemical composition of three South American cities. Atmospheric Environment, 45(32), 5770–5777. https://doi.org/10.1016/j.atmosenv.2011.07.018; Vecchi, R., Bernardoni, V., Valentini, S., Piazzalunga, A., Fermo, P., & Valli, G. (2018). Assessment of light extinction at a European polluted urban area during wintertime: Impact of PM1 composition and sources. Environmental Pollution, 233, 679–689. https://doi.org/10.1016/j.envpol.2017.10.059; Viana Rodriguez, M. del M. (2003). NIVELES, COMPOSICIÓN Y ORIGEN DEL MATERIAL PARTICULADO ATMOSFÉRICO EN LOS SECTORES NORTE Y ESTE DE LA PENÍNSULA IBÉRICA Y CANARIAS (Universitat de Barcelona). Retrieved from http://digital.csic.es/bitstream/10261/27476/1/Viana_Rodriguez_1.pdf; Villalobos, A. M., Barraza, F., Jorquera, H., & Schauer, J. J. (2015). Science of the Total Environment Chemical speciation and source apportionment of fi ne particulate matter. Science of the Total Environment, The, 512–513, 133–142. https://doi.org/10.1016/j.scitotenv.2015.01.006; Villalobos, A. M., Barraza, F., & Schauer, J. J. (2017). Wood burning pollution in southern Chile : PM 2.5 source apportionment using CMB and molecular markers *. Environmental Pollution, 225, 514–523. https://doi.org/10.1016/j.envpol.2017.02.069; Wan, X., Kang, S., Xin, J., Liu, B., Wen, T., Wang, P., … Cong, Z. (2016). Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau. Atmospheric Research, 174–175, 142–150. https://doi.org/10.1016/j.atmosres.2016.02.005; Wang, H. L., Zhu, B., An, J. L., Duan, Q., Zou, J. N., & Shen, L. J. (2014). Size distribution and characterization of OC and EC in atmospheric aerosols during the Asian youth games of Nanjing, China. Environmental Science, 35.; Wang, H., Zhu, B., Shen, L., Xu, H., An, J., Xue, G., & Cao, J. (2015). Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: Size-fractionated, seasonal variations and sources. Atmospheric Environment, 123, 370–379. https://doi.org/10.1016/j.atmosenv.2015.05.070; Wang, Jiao, Zhang, J. sheng, Liu, Z. jun, Wu, J. hui, Zhang, Y. fen, Feng, Y. chang, … Zhou, L. dong. (2017). Characterization of chemical compositions in size-segregated atmospheric particles during severe haze episodes in three mega-cities of China. Atmospheric Research, 187, 138–146. https://doi.org/10.1016/j.atmosres.2016.12.004; Wang, Jiao, Zhou, M., Liu, B. shuang, Wu, J. hui, Peng, X., Zhang, Y. fen, … Zhu, T. (2016). Characterization and source apportionment of size-segregated atmospheric particulate matter collected at ground level and from the urban canopy in Tianjin. Environmental Pollution, 219, 982–992. https://doi.org/10.1016/j.envpol.2016.10.069; Wang, Jingzhi, Hang Ho, S. S., Huang, R., Gao, M., Liu, S., Zhao, S., … Han, Y. (2016). Characterization of parent and oxygenated-polycyclic aromatic hydrocarbons (PAHs) in Xi’an, China during heating period: An investigation of spatial distribution and transformation. Chemosphere, 159(97), 367–377. https://doi.org/10.1016/j.chemosphere.2016.06.033; Watson, J. G., Chow, J. C., & Houck, J. E. (2001). PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere, 43(8), 1141–1151. https://doi.org/https://doi.org/10.1016/S0045-6535(00)00171-5; Wedding, J. B., McFarland, A. R., & Cermak, J. E. (1977). Large Particle Collection Characteristics of Ambient Aerosol Samplers. Environmental Science and Technology, 11(4), 387–390. https://doi.org/10.1021/es60127a005; Whitby, K. T. (1978). The physical characteristics of sulfur aerosols. Atmospheric Environment, 12, 153–159. https://doi.org/https://doi.org/10.1016/0004-6981(78)90196-8; World Health Organization (WHO). (2000). Air Quality Guidelines for Europe. Second Edition. Copenhagen.; World Health Organization (WHO). (2005). Air quality guidelines for particles matter, ozone, nitrogen dioxide and sulfur dioxide. Air Quality Guidelines. https://doi.org/https://doi.org/10.1016/j.atmosenv.2; World Health Organization (WHO). (2007). Health Effects of Ambient Particulate Matter. Journal of the Korean Medical Association, 50(2), 175. https://doi.org/10.5124/jkma.2007.50.2.175; World Health Organization (WHO). (2014). Health relevance of particulate matter from various sources. Beilstein Journal of Nanotechnology, 5(1), 1590–1602. https://doi.org/EUR/07/5067587; World Health Organization (WHO). (2016). Ambient air pollution: A global assessment of exposure and burden of disease.; World Health Organization (WHO). (2018a). Air pollution and child health: Prescribing clean air. Retrieved from https://www.who.int/ceh/publications/air-pollution-child-health/en/; World Health Organization (WHO). (2018b). Ambient (outdoor) air quality database, by country and city. Retrieved from https://www.who.int/airpollution/data/cities/en/; Wu, T., & Boor, B. E. (2020). Urban Aerosol Size Distributions: A Global Perspective. Atmospheric Chemistry and Physics, (March). https://doi.org/10.5194/acp-2020-92; Wu, X., Vu, T. V., Shi, Z., Harrison, R. M., Liu, D., & Cen, K. (2018). Characterization and source apportionment of carbonaceous PM2.5 particles in China - A review. Atmospheric Environment, 189(January), 187–212. https://doi.org/10.1016/j.atmosenv.2018.06.025; Yamasoe, M., Artaxo, P., Miguel, A. H., & Allen, A. G. (2000). Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmospheric Environment, 34(10). https://doi.org/https://doi.org/10.1016/S1352-2310(99)00329-5; Yang, M., Chu, C., Bloom, M. S., Li, S., Chen, G., Heinrich, J., … Dong, G. H. (2018). Is smaller worse? New insights about associations of PM 1 and respiratory health in children and adolescents. Environment International, 120(May), 516–524. https://doi.org/10.1016/j.envint.2018.08.027; Yang, Y., Zhou, R., Yu, Y., Yan, Y., Liu, Y., Di, Y., … Zhang, W. (2017). Size-resolved aerosol water-soluble ions at a regional background station of Beijing, Tianjin, and Hebei, North China. Journal of Environmental Sciences (China), 55, 146–156. https://doi.org/10.1016/j.jes.2016.07.012; Yassaa, N., Meklati, B. Y., Cecinato, A., & Marino, F. (2001). Particulate n -alkanes , n -alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City Area. 35.; Zapata Mora, C. (2020). Hidrocarburos aromáticos policíclicos en el aire ambiente de manizales. Universidad Nacional de Colombia. Sede Manizales.; Zarate, E., Belalcazar, L. C., Clappier, A., & Manzi, V. (2007). Air quality modelling over Bogota , Colombia : Combined techniques to estimate and evaluate emission inventories. 41, 6302–6318. https://doi.org/10.1016/j.atmosenv.2007.03.011; Zhang, L., Yang, L., Zhou, Q., Zhang, X., Xing, W., Wei, Y., … Tang, N. (2020). Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: A review. Journal of Environmental Sciences (China), 88, 370–384. https://doi.org/10.1016/j.jes.2019.09.007; Zhang, Y., Lang, J., Cheng, S., Li, S., Zhou, Y., Chen, D., … Wang, H. (2018). Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Science of the Total Environment, 630, 72–82. https://doi.org/10.1016/j.scitotenv.2018.02.151; Zhao, J., Zhang, F., Chen, J., & Xu, Y. (2010). Characterization of polycyclic aromatic hydrocarbons and gas/particle partitioning in a coastal city, Xiamen, southeast China. Environmental Sciences, 22(7), 1014–1022.; Zhao, J., Zhang, F., Xu, Y., & Chen, J. (2011). Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen. Atmospheric Research, 99(3–4), 546–562. https://doi.org/10.1016/j.atmosres.2010.12.017; Zhao, T., Yang, L., Huang, Q., Zhang, Y., Bie, S., Li, J., … Wang, W. (2020). PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and their derivatives (nitrated-PAHs and oxygenated-PAHs) in a road tunnel located in Qingdao, China: Characteristics, sources and emission factors. Science of the Total Environment, 720, 137521. https://doi.org/10.1016/j.scitotenv.2020.137521; Zhao, Y., & Gao, Y. (2008). Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast. Atmospheric Environment, 42(18), 4063–4078. https://doi.org/10.1016/j.atmosenv.2008.01.032; Zhou, J., Xing, Z., Deng, J., & Du, K. (2016). Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions. Atmospheric Environment, 135, 20–30. https://doi.org/10.1016/j.atmosenv.2016.03.054; Zhuang, H., Chan, C. K., Fang, M., & Wexler, A. S. (1999). Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong. Atmospheric Environment, 33(6), 843–853. https://doi.org/10.1016/S1352-2310(98)00305-7; Agency for Toxic Substances and Disease Registry (ATSDR). (2012). Toxicity of Polycyclic Aromatic Hydrocarbons (PAH).; Alcaldía Local Fontibón, & Alcaldía Mayor Bogotá D.C. (2017). Plan Ambiental Localidad de Fontibón. Bogotá.; Alcaldía Mayor Bogotá D.C. (2018a). Análisis de condiciones, calidad de vida, salud y enfermedad - 2018 Fontibon.; Alcaldía Mayor Bogotá D.C. (2018b). Análisis demográfico y proyecciones poblacionales de Bogotá. Alcaldia Mayor de Bogotá D.C., 109. Retrieved from http://www.sdp.gov.co/sites/default/files/demografia_proyecciones_2017_0_0.pdf; https://repositorio.unal.edu.co/handle/unal/78532

  16. 16
  17. 17
  18. 18
    Academic Journal

    المصدر: Marine Pollution Bulletin

    وصف الملف: application/pdf

    Relation: https://eprints.qut.edu.au/81980/1/Weak%20acid%20extractable%20metals%20in%20Bramble%20Bay,%20Queensland,%20Australia%20Temporal%20behaviour,%20enrichment%20and%20source%20apportionment.pdf; Brady, James, Ayoko, Godwin, Martens, Wayde, & Goonetilleke, Ashantha (2015) Weak acid extractable metals in Bramble Bay, Queensland, Australia: Temporal behaviour, enrichment and source apportionment. Marine Pollution Bulletin, 91(1), pp. 380-388.; https://eprints.qut.edu.au/81980/; Institute for Future Environments; Science & Engineering Faculty

  19. 19
  20. 20
    Report