يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"Sotelo Montero, Sebastián"', وقت الاستعلام: 0.29s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Sotelo Montero, Sebastián

    المساهمون: Bloch Morel, Natasha Ivonne, Reyes Barrios, Luis Humberto, Cruz Jiménez, Juan Carlos, Muñoz Camargo, Carolina, Sutachán Rubio, Jhon Jairo, Briceño Triana, Juan Carlos, Facultad de Ingeniería::Grupo de Ingenieria Biomédica

    وصف الملف: 23 páginas; application/pdf

    Relation: Allemailem, K. S., Almatroodi, S. A., Almatroudi, A., Alrumaihi, F., Al Abdulmonem, W., Al-Megrin, W. A. I., Aljamaan, A. N., Rahmani, A. H., & Khan, A. A. (2023). Recent Advances in Genome-Editing Technology with CRISPR/Cas9 Variants and Stimuli-Responsive Targeting Approaches within Tumor Cells: A Future Perspective of Cancer Management. International journal of molecular sciences, 24(8), 7052. https://doi.org/10.3390/ijms24087052; Arango, D., Cifuentes, J., Ruiz Puentes, P., Beltran, T., Bittar, A., Ocasión, C., Bloch, N. I., Reyes, L. H., & Cruz, J. C. (2023). Tailoring Magnetite Nanoparticle-Based Nanocarriers for Gene 2 Delivery: Exploiting CRISPRa Potential in Reducing Conditions. Nanomaterials, 13(11), 1782. https://doi.org/10.3390/nano13111782; Balaban, R. S., Nemoto, S., & Finkel, T. (2005). Mitochondria, oxidants, and ageing. In Cell, 120(4), 483–495. https://doi.org/10.1016/j.cell.2005.02.001; Bantle, C. M., Hirst, W. D., Weihofen, A., & Shlevkov, E. (2021). Mitochondrial Dysfunction in Astrocytes: A Role in Parkinson’s Disease?. Frontiers in Cell and Developmental Biology, 8. https://doi.org/10.3389/fcell.2020.608026; Barodia, S. K., McMeekin, L. J., Creed, R. B., Quinones, E. K., Cowell, R. M., & Goldberg, M. S. (2019). PINK1 phosphorylates ubiquitin predominantly in astrocytes. NPJ Parkinsons disease, 5, 29. https://doi.org/10.1038/s41531-019-0101-9; Beaudet, A. L., & Meng, L. (2016). Gene-targeting pharmaceuticals for single-gene disorders. Human molecular genetics, 25(R1), R18–R26. https://doi.org/10.1093/hmg/ddv476; Beckhauser, T. F., Francis-Oliveira, J., & De Pasquale, R. (2016). Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity. Journal of Experimental Neuroscience, 10(Suppl 1), 23–48. https://doi.org/10.4137/JEN.S39887; Bittar-Yepes, A. (2020). Diseño y construcción de sistemas CRISPRa y CRISPRi para el desarrollo de una terapia génica para el Parkinson. Universidad de los Andes.; Booth, H. D. E., Hirst, W. D., & Wade-Martins, R. (2017). The Role of Astrocyte Dysfunction in Parkinson’s Disease Pathogenesis. Trends in Neurosciences, 40(6), 358–370. Elsevier Ltd. https://doi.org/10.1016/j.tins.2017.04.001; Bryson, A., Hatch, R. J., Zandt, B. J., Rossert, C., Berkovic, S. F., Reid, C. A., Grayden, D. B., Hill, S. L., & Petrou, S. (2020). GABA-mediated tonic inhibition differentially modulates gain in functional subtypes of cortical interneurons. Proceedings of the National Academy of Sciences of the United States of America, 117(6), 3192–3202. https://doi.org/10.1073/pnas.1906369117; Calabresi, P., Mechelli, A., Natale, G., Volpicelli-Daley, L., di Lazzaro, G., & Ghiglieri, V. (2023). Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death and Disease, 14(3). https://doi.org/10.1038/s41419-023-05672-9; Chakrabarti, S., & Bisaglia, M. (2023). Oxidative Stress and Neuroinflammation in Parkinsons Disease: The Role of Dopamine Oxidation Products. Antioxidants, 12(4), 955. https://doi.org/10.3390/antiox12040955; Cho, H. U., Kim, S., Sim, J., Yang, S., An, H., Nam, M. H., Jang, D. P., & Lee, C. J. (2021). Redefining differential roles of MAO-A in dopamine degradation and MAO-B in tonic GABA synthesis. Experimental and Molecular Medicine, 53(7), 1148–1158. https://doi.org/10.1038/s12276-021-00646-3; Cifuentes, J., Cifuentes-Almanza, S., Ruiz Puentes, P., Quezada, V., González Barrios, A. F., Calderón-Peláez, M.-A., Velandia-Romero, M. L., Rafat, M., Muñoz-Camargo, C., Albarracín, S. L., & Cruz, J. C. (2023). Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of Parkinson’s disease. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1181842; Colella, P., Ronzitti, G., & Mingozzi, F. (2018). Emerging Issues in AAV-Mediated In Vivo Gene Therapy. Molecular Therapy - Methods and Clinical Development, 8, 87–104. Cell Press. https://doi.org/10.1016/j.omtm.2017.11.007; Deas, E., Plun-Favreau, H., & Wood, N. W. (2009). PINK1 function in health and disease. EMBO molecular medicine, 1(3), 152–165. https://doi.org/10.1002/emmm.200900024; Dias, V., Junn, E., & Mouradian, M. M. (2013). The role of oxidative stress in Parkinsons disease. Journal of Parkinsons disease, 3(4), 461–491. https://doi.org/10.3233/JPD-130230; Donadio, V., Incensi, A., Leta, V., Giannoccaro, M. P., Scaglione, C., Martinelli, P., Capellari, S., Avoni, P., Baruzzi, A., & Liguori, R. (2014). Skin nerve α-synuclein deposits: a biomarker for idiopathic Parkinson disease. Neurology, 82(15), 1362–1369. https://doi.org/10.1212/WNL.0000000000000316; Durcan, T. M., & Fon, E. A. (2015). The three Ps of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes & development, 29(10), 989–999. https://doi.org/10.1101/gad.262758.115; Edmondson D. E. (2014). Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: biological implications. Current pharmaceutical design, 20(2), 155–160. https://doi.org/10.2174/13816128113190990406; Gardin, A., & Ronzitti, G. (2023). Current limitations of gene therapy for rare pediatric diseases: Lessons learned from clinical experience with AAV vectors. Archives de Pédiatrie, 30(8, Supplement 1), 8S46-8S52. https://doi.org/https://doi.org/10.1016/S0929-693X(23)00227-0; Ge, P., Dawson, V. L., & Dawson, T. M. (2020). PINK1 and Parkin mitochondrial quality control: A source of regional vulnerability in Parkinson’s disease. Molecular Neurodegeneration, 15(1). https://doi.org/10.1186/s13024-020-00367-7; Gong, Y., Luo, S., Fan, P., Zhu, H., Li, Y., & Huang, W. (2020). Growth hormone activates PI3K/Akt signaling and inhibits ROS accumulation and apoptosis in granulosa cells of patients with polycystic ovary syndrome. Reproductive Biology and Endocrinology, 18(1). https://doi.org/10.1186/s12958-020-00677-x; Ghosh, S., Brown, A. M., Jenkins, C., & Campbell, K. (2020). Viral Vector Systems for Gene Therapy: A Comprehensive Literature Review of Progress and Biosafety Challenges. Applied Biosafety, 25(1), 7–18. https://doi.org/10.1177/1535676019899502; Hoshyar, N., Gray, S., Han, H., & Bao, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 11(6), 673–692. https://doi.org/10.2217/nnm.16.5; Kanafi, M. M., & Tavallaei, M. (2022). Overview of advances in CRISPR/deadCas9 technology and its applications in human diseases. Gene, 830, 146518. https://doi.org/https://doi.org/10.1016/j.gene.2022.146518; Keeler, A. M., & Flotte, T. R. (2019). Recombinant Adeno-Associated Virus Gene Therapy in Light of Luxturna (and Zolgensma and Glybera): Where Are We, and How Did We Get Here?. Annual review of virology, 6(1), 601–621. https://doi.org/10.1146/annurev-virology-092818-015530; Kim, H. Y., Jeon, H., Kim, H., Koo, S., & Kim, S. (2018). Sophora flavescens aiton decreases MPP+-induced mitochondrial dysfunction in SH-SY5Y cells. Frontiers in Aging Neuroscience, 10(APR). https://doi.org/10.3389/fnagi.2018.00119; Kim, S., Pajarillo, E., Nyarko-Danquah, I., Aschner, M., & Lee, E. (2023). Role of Astrocytes in Parkinsons Disease Associated with Genetic Mutations and Neurotoxicants. Cells, 12(4), 622. https://doi.org/10.3390/cells12040622; Karlson, C. K. S., Mohd-Noor, S. N., Nolte, N., & Tan, B. C. (2021). CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences. Plants, 10(10), 2055. https://doi.org/10.3390/plants10102055; Klein, C., & Westenberger, A. (2012). Genetics of Parkinsons disease. Cold Spring Harbor perspectives in medicine, 2(1). https://doi.org/10.1101/cshperspect.a008888; Kolodkin, A, N., Sharma, R. P., Colangelo, A. M., Ignatenko, A., Martorana, F., Jennen, D., Briedé, J. J., Brady, N., Barberis, M., Mondeel, T. D. G. A., Papa, M., Kumar, V., Peters, B., Skupin, A., Alberghina, L., Balling, R., & Westerhoff, H. v. (2020). ROS networks: designs, aging, Parkinson’s disease and precision therapies. Npj Systems Biology and Applications, 6(1). https://doi.org/10.1038/s41540-020-00150-w; Konermann, S., Brigham, M. D., Trevino, A. E., Joung, J., Abudayyeh, O. O., Barcena, C., Hsu, P. D., Habib, N., Gootenberg, J. S., Nishimasu, H., Nureki, O., & Zhang, F. (2015). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 517(7536), 583–588. https://doi.org/10.1038/nature14136; Korczyn, A. D. (2004). Drug treatment of Parkinson’s disease. Dialogues in Clinical Neuroscience, 6(3), 315–322). https://doi.org/10.31887/dcns.2004.6.3/akorczyn; Lascano, N. E. (2023). Evaluation of gene therapies for the treatment of Parkinsons disease using nanostructured vehicles and CRISPR/Cas9. Universidad de los Andes.; Leal, A. F., Cifuentes, J., Torres, C. E., Suárez, D., Quezada, V., Gómez, S. C., Cruz, J. C., Reyes, L. H., Espejo-Mojica, A. J., & Alméciga-Díaz, C. J. (2022). Delivery and assessment of a CRISPR/nCas9-based genome editing system on in vitro models of mucopolysaccharidoses IVA assisted by magnetite-based nanoparticles. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-19407-x; Lee, D. H., Kim, C. S., & Lee, Y. J. (2011). Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food and Chemical Toxicology, 49(1), 271–280. https://doi.org/10.1016/j.fct.2010.10.029; Lees, A. J. (2008). Evidence-Based Efficacy Comparison of Tolcapone and Entacapone as Adjunctive Therapy in Parkinson’s Disease. CNS Drug Reviews, 14(1), 83–93. https://doi.org/10.1111/j.1527-3458.2007.00035.x; Lek, A., Wong, B., Keeler, A., Blackwood, M., Ma, K., Huang, S., Sylvia, K., Batista, A. R., Artinian, R., Kokoski, D., Parajuli, S., Putra, J., Carreon, C. K., Lidov, H., Woodman, K., Pajusalu, S., Spinazzola, J. M., Gallagher, T., LaRovere, J., Balderson, D., … Flotte, T. (2023). Death after High-Dose rAAV9 Gene Therapy in a Patient with Duchennes Muscular Dystrophy. The New England journal of medicine, 389(13), 1203–1210. https://doi.org/10.1056/NEJMoa2307798; Lugli, E., Troiano, L., Ferraresi, R., Roat, E., Prada, N., Nasi, M., . & Cossarizza, A. (2005). Characterization of cells with different mitochondrial membrane potential during apoptosis. Cytometry Part A, 68(1), 28-35.; Mendell, J. R., Al-Zaidy, S. A., Rodino-Klapac, L. R., Goodspeed, K., Gray, S. J., Kay, C. N., Boye, S. L., Boye, S. E., George, L. A., Salabarria, S., Corti, M., Byrne, B. J., & Tremblay, J. P. (2021). Current Clinical Applications of In Vivo Gene Therapy with AAVs. Molecular Therapy, 29(2), 464–488. https://doi.org/10.1016/j.ymthe.2020.12.007; Meyer, J. H., & Braga, J. (2022). Development and Clinical Application of Positron Emission Tomography Imaging Agents for Monoamine Oxidase B. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.773404; Nam, M. H., Sa, M., Ju, Y. H., Park, M. G., & Lee, C. J. (2022). Revisiting the Role of Astrocytic MAOB in Parkinsons Disease. International journal of molecular sciences, 23(8), 4453. https://doi.org/10.3390/ijms23084453; Naso, M. F., Tomkowicz, B., Perry, W. L., & Strohl, W. R. (2017). Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs, 31(4), 317–334. https://doi.org/10.1007/s40259-017-0234-5; Orozco, J. L., Valderrama-Chaparro, J. A., Pinilla-Monsalve, G. D., Molina-Echeverry, M. I., Castaño, A. M. P., Ariza-Araújo, Y., Prada, S. I., & Takeuchi, Y. (2020). Parkinson’s disease prevalence, Colombia age distribution and staging in. Neurology International, 12(1), 9–14. https://doi.org/10.4081/ni.2020.8401; Perelman, A., Wachtel, C., Cohen, M., Haupt, S., Shapiro, H., & Tzur, A. (2012). JC-1: Alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death and Disease, 3(11). https://doi.org/10.1038/cddis.2012.171; Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E., & Lang, A. E. (2017). Parkinson disease. Nature Reviews Disease Primers, 3, 1–21. https://doi.org/10.1038/nrdp.2017.13; Popa-Wagner, A., Mitran, S., Sivanesan, S., Chang, E., & Buga, A. M. (2013). ROS and brain diseases: the good, the bad, and the ugly. Oxidative medicine and cellular longevity, 2013, 963520. https://doi.org/10.1155/2013/963520; Quinn, P. M. J., Moreira, P. I., Ambrósio, A. F., & Alves, C. H. (2020). PINK1/PARKIN signaling in neurodegeneration and neuroinflammation. Acta Neuropathologica Communications, 8(1), 189. https://doi.org/10.1186/s40478-020-01062-w; Ransom, B. R., Kunis, D. M., Irwin, I., & Langston, J. W. (1987). Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neuroscience letters, 75(3), 323–328. https://doi.org/10.1016/0304-3940(87)90543-x; Reed, X., Bandrés-Ciga, S., Blauwendraat, C., & Cookson, M. R. (2019). The role of monogenic genes in idiopathic Parkinson’s disease. Neurobiology of Disease, 124, 230–239. https://doi.org/https://doi.org/10.1016/j.nbd.2018.11.012; Salim S. (2017). Oxidative Stress and the Central Nervous System. The Journal of pharmacology and experimental therapeutics, 360(1), 201–205. https://doi.org/10.1124/jpet.116.237503; Saucier-Sawyer, J. K., Deng, Y., Seo, Y. E., Cheng, C. J., Zhang, J., Quijano, E., & Saltzman, W. M. (2015). Systemic delivery of blood-brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue. Journal of drug targeting, 23(7-8), 736–749. https://doi.org/10.3109/1061186X.2015.1065833; Schulz, J. B. (2007). Mechanisms of neurodegeneration in idiopathic Parkinson’s disease. Parkinsonism & Related Disorders, 13, S306–S308. https://doi.org/https://doi.org/10.1016/S1353-8020(08)70021-X; Simon, D. K., Tanner, C. M., & Brundin, P. (2020). Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clinics in geriatric medicine, 36(1), 1–12. https://doi.org/10.1016/j.cger.2019.08.002; Sivandzade, F., Bhalerao, A., & Cucullo, L. (2019). Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio-protocol, 9(1), e3128. https://doi.org/10.21769/BioProtoc.3128; Song, R., Pekrun, K., Khan, T. A., Zhang, F., Paşca, S. P., & Kay, M. A. (2022). Selection of rAAV vectors that cross the human blood-brain barrier and target the central nervous system using a transwell model. Molecular Therapy - Methods and Clinical Development, 27, 73–88. https://doi.org/10.1016/j.omtm.2022.09.002; Sternfeld, T., Tischleder, A., Schuster, M., & Bogner, J. R. (2009). Mitochondrial membrane potential and apoptosis of blood mononuclear cells in untreated HIV‐1 infected patients. HIV medicine, 10(8), 512-519.; Surmeier, D. J. (2018). Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS Journal, 285(19), 3657–3668. https://doi.org/10.1111/febs.14607; Sveinbjornsdottir S. (2016). The clinical symptoms of Parkinsons disease. Journal of neurochemistry, 139 Suppl 1, 318–324. https://doi.org/10.1111/jnc.13691; Tong, J., Rathitharan, G., Meyer, J. H., Furukawa, Y., Ang, L. C., Boileau, I., Guttman, M., Hornykiewicz, O., & Kish, S. J. (2017). Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders. Brain: A Journal of Neurology, 140(9), 2460–2474. https://doi.org/10.1093/brain/awx172; Xu, Y., & Li, Z. (2020). CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and structural biotechnology journal, 18, 2401–2415. https://doi.org/10.1016/j.csbj.2020.08.031; Yu, W., Sun, Y., Guo, S., & Lu, B. (2011). The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Human molecular genetics, 20(16), 3227–3240. https://doi.org/10.1093/hmg/ddr235; Yusuf, A., Almotairy, A. R. Z., Henidi, H., Alshehri, O. Y., & Aldughaim, M. S. (2023). Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles Physicochemical Properties on Responses in Biological Systems. Polymers, 15(7), 1596. https://doi.org/10.3390/polym15071596; https://hdl.handle.net/1992/73390; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/

  2. 2
    Dissertation/ Thesis

    المؤلفون: Sotelo Montero, Sebastián

    المساهمون: Bloch Morel, Natasha Ivonne, Bernal Giraldo, Adriana Jimena, Esmeral Lascano, Natalia Paola, Neurogenética y Comportamiento

    مصطلحات موضوعية: CRISPRa, DH10B, E. coli, Parkinson's disease, DH5 alpha, Microbiología

    وصف الملف: 14 páginas; application/pdf

    Relation: Bittar, A. F., Bloch, N. I., Reyes, L. H., & Bernal, A. J. (2020.). Diseño y construcción de sistemas CRISPRa y CRISPRi para el desarrollo de una terapia génica para el Parkinson. TESIS DE GRADO PARA OPTAR EL TÍTULO DE: Microbiólogo. Universidad de los Andes.; Dawson, T. M., & Dawson, V. L. (2010). The role of parkin in familial and sporadic Parkinson's disease. Movement Disorders, 25(SUPPL. 1). https://doi.org/10.1002/mds.22798; Durfee, T., Nelson, R., Baldwin, S., Plunkett, G., Burland, V., Mau, B., Petrosino, J. F., Qin, X., Muzny, D. M., Ayele, M., Gibbs, R. A., Csörgo, B., Pósfai, G., Weinstock, G. M., & Blattner, F. R. (2008). The complete genome sequence of Escherichia coli DH10B: Insights into the biology of a laboratory workhorse. Journal of Bacteriology, 190(7), 2597-2606. https://doi.org/10.1128/JB.01695-07; Dy, Lady, Chalasani, S., & Essani, K. (1993). Isolation of Escherichia coli mutants lacking methylcytosine-dependent restriction systems for cloning extensively methylated frog virus 3 DNA. Gene, 131(1), 87-91. https://doi.org/https://doi.org/10.1016/0378-1119(93)90673-Q; Fields, C. R., Bengoa-Vergniory, N., & Wade-Martins, R. (2019). Targeting Alpha-Synuclein as a Therapy for Parkinson's Disease. In Frontiers in Molecular Neuroscience (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fnmol.2019.00299; Freundt, E. C., Maynard, N., Clancy, E. K., Roy, S., Bousset, L., Sourigues, Y., Covert, M., Melki, R., Kirkegaard, K., & Brahic, M. (2012). Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Annals of Neurology, 72(4), 517-524. https://doi.org/10.1002/ana.23747; Hidalgo-Cantabrana, C., Goh, Y. J., Pan, M., Sanozky-Dawes, R., & Barrangou, R. (2019). Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proceedings of the National Academy of Sciences of the United States of America, 116(32), 15774-15783. https://doi.org/10.1073/pnas.1905421116; Kanafi, M. M., & Tavallaei, M. (2022). Overview of advances in CRISPR/deadCas9 technology and its applications in human diseases. Gene, 830, 146518. https://doi.org/https://doi.org/10.1016/j.gene.2022.146518; Kamienieva, I., Duszynski, J., & Szczepanowska, J. (2021). Multitasking guardian of mitochondrial quality: Parkin function and Parkinson's disease. In Translational Neurodegeneration (Vol. 10, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40035-020-00229-8; Klein, C., & Westenberger, A. (2012). Genetics of Parkinson's disease. Cold Spring Harbor Perspectives in Medicine, 2(1). https://doi.org/10.1101/cshperspect.a008888; Konermann, S., Brigham, M. D., Trevino, A. E., Joung, J., Abudayyeh, O. O., Barcena, C., Hsu, P. D., Habib, N., Gootenberg, J. S., Nishimasu, H., Nureki, O., & Zhang, F. (2015). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 517(7536), 583-588. https://doi.org/10.1038/nature14136; Korczyn, A. D. (2022). Drug treatment of Parkinson's disease. In Dialogues in Clinical Neuroscience (Vol. 6, Issue 3, pp. 315-322). https://doi.org/10.31887/dcns.2004.6.3/akorczyn; Kostylev, M., Otwell, A. E., Richardson, R. E., & Suzuki, Y. (2015). Cloning should be simple: Escherichia coli DH5á-mediated assembly of multiple DNA fragments with short end homologies. PLoS ONE, 10(9). https://doi.org/10.1371/journal.pone.0137466; Liu, W., Zhu, X., Lei, M., Xia, Q., Botella, J. R., Zhu, J. K., & Mao, Y. (2015). A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana. Science Bulletin, 60(15), 1332-1347. https://doi.org/10.1007/s11434-015-0848-2; Lowder, L. G., Zhou, J., Zhang, Y., Malzahn, A., Zhong, Z., Hsieh, T. F., Voytas, D. F., Zhang, Y., & Qi, Y. (2018). Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. Molecular Plant, 11(2), 245-256. https://doi.org/10.1016/j.molp.2017.11.010; Oertel, W., & Schulz, J. B. (2016). Current and experimental treatments of Parkinson's disease: A guide for neuroscientists. In Journal of Neurochemistry (pp. 325-337). Blackwell Publishing Ltd. https://doi.org/10.1111/jnc.13750; Orozco, J. L., Valderrama-Chaparro, J. A., Pinilla-Monsalve, G. D., Molina-Echeverry, M. I., Castaño, A. M. P., Ariza-Araújo, Y., Prada, S. I., & Takeuchi, Y. (2020). Parkinson's disease prevalence, colombiaage distribution, and staging in. Neurology International, 12(1), 9-14. https://doi.org/10.4081/ni.2020.8401; Ou, Z., Pan, J., Tang, S., Duan, D., Yu, D., Nong, H., & Wang, Z. (2021). Global Trends in the Incidence, Prevalence, and Years Lived With Disability of Parkinson's Disease in 204 Countries/Territories From 1990 to 2019. Frontiers in Public Health, 9. https://doi.org/10.3389/fpubh.2021.776847; Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E., & Lang, A. E. (2017). Parkinson disease. Nature Reviews Disease Primers, 3, 1-21. https://doi.org/10.1038/nrdp.2017.13; Schapira, A. H. V. (2005). Present and future drug treatment for Parkinson's disease. In Journal of Neurology, Neurosurgery, and Psychiatry (Vol. 76, Issue 11, pp. 1472-1478). BMJ Publishing Group. https://doi.org/10.1136/jnnp.2004.035980; Schapira, A. H. V. (2009). Neurobiology and treatment of Parkinson's disease. In Trends in Pharmacological Sciences (Vol. 30, Issue 1, pp. 41-47). https://doi.org/10.1016/j.tips.2008.10.005; Simon, D. K., Tanner, C. M. & Brundin. (2020). P. Parkinson's Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin Geriatr Med 36, 1-12. https://doi.org/10.1016/j.cger.2019.08.002; Wani, M. A., & Ganaie, A. A. (2019). Generation of CRISPR-cas9 construct for knockout of genes encoding chromatin-associated proteins. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0141-7; Wirdefeldt, K., Adami, H. O., Cole, P., Trichopoulos, D., & Mandel, J. (2011). Epidemiology and etiology of Parkinson's disease: A review of the evidence. In European Journal of Epidemiology (Vol. 26, Issue SUPPL. 1). https://doi.org/10.1007/s10654-011-9581-6; Wooley, R. E., Gibbs, P. S., Dickerson, H. W., Brown, J., & Nolan, L. K. (1996). Analysis of plasmids cloned from a virulent avian Escherichia coli and transformed into Escherichia coli DH5 alpha. Avian diseases, 40(3), 533-539.; Wu, Z., Chen, Z., Gao, X., Li, J., & Shang, G. (2019). Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing. Applied Microbiology and Biotechnology, 103(6), 2783-2795. https://doi.org/10.1007/s00253-019-09654-w; http://hdl.handle.net/1992/64471; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/