يعرض 1 - 20 نتائج من 179 نتيجة بحث عن '"Sitnov, M. I."', وقت الاستعلام: 0.69s تنقيح النتائج
  1. 1
  2. 2
  3. 3
    Report
  4. 4
  5. 5
    Report
  6. 6
    Academic Journal
  7. 7
    Report
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: Stephens, G. K.; Sitnov, M. I.; Weigel, R. S.; Turner, D. L.; Tsyganenko, N. A.; Rogers, A. J.; Genestreti, K. J.; Slavin, J. A. (2023). "Global Structure of Magnetotail Reconnection Revealed by Mining Space Magnetometer Data." Journal of Geophysical Research: Space Physics 128(2): n/a-n/a.; https://hdl.handle.net/2027.42/175895; Journal of Geophysical Research: Space Physics; Stephens, G. K., Sitnov, M. I., Korth, H., Tsyganenko, N. A., Ohtani, S., Gkioulidou, M., & Ukhorskiy, A. Y. ( 2019 ). Global empirical picture of magnetospheric substorms inferred from multimission magnetometer data. Journal of Geophysical Research: Space Physics, 124 ( 2 ), 1085 – 1110. https://doi.org/10.1029/2018JA025843; Speiser, T. W. ( 1965 ). Particle trajectories in model current sheets: 1. Analytical solutions. Journal of Geophysical Research, 70 ( 17 ), 4219 – 4226. https://doi.org/10.1029/JZ070i017p04219; Stephens, G. K., Bingham, S. T., Sitnov, M. I., Gkioulidou, M., Merkin, V. G., Korth, H., & Ukhorskiy, A. Y. ( 2020 ). Storm time plasma pressure inferred from multimission measurements and its validation using van Allen probes particle data. Space Weather, 18 ( 12 ), e2020SW002583. https://doi.org/10.1029/2020SW002583; Stephens, G. K., & Sitnov, M. I. ( 2021 ). Concurrent empirical magnetic reconstruction of storm and substorm spatial scales using data mining and virtual spacecraft. Frontiers in Physics, 9, 210. https://doi.org/10.3389/fphy.2021.653111; Stephens, G. K., Sitnov, M. I., Weigel, R., Turner, D., Tsyganenko, N., Rogers, A., et al. ( 2022 ). Global structure of magnetotail reconnection revealed by mining space magnetometer data [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.6862829; Tanaka, T., Ebihara, Y., Watanabe, M., Den, M., Fujita, S., Kikuchi, T., & Kataoka, R. ( 2021 ). Roles of the M-I coupling and plasma sheet dissipation on the growth-phase thinning and subsequent transition to the onset. Journal of Geophysical Research: Space Physics, 126 ( 12 ), e2021JA029925. https://doi.org/10.1029/2021JA029925; Torbert, R. B., Burch, J. L., Phan, T. D., Hesse, M., Argall, M. R., Shuster, J., & Saito, Y. ( 2018 ). Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science, 362 ( 6421 ), 1391 – 1395. https://doi.org/10.1126/science.aat2998; Tsyganenko, N. A. ( 1991 ). Methods for quantitative modeling of the magnetic field from Birkeland currents. Planetary and Space Science, 39 ( 4 ), 641 – 654. https://doi.org/10.1016/0032-0633(91)90058-I; Tsyganenko, N. A. ( 1995 ). Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. Journal of Geophysical Research: Space Physics, 100 ( A4 ), 5599 – 5612. https://doi.org/10.1029/94JA03193; Tsyganenko, N. A. ( 1998 ). Modeling of twisted/warped magnetospheric configurations using the general deformation method. Journal of Geophysical Research: Space Physics, 103 ( A10 ), 23551 – 23563. https://doi.org/10.1029/98JA02292; Tsyganenko, N. A. ( 2002a ). A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure. Journal of Geophysical Research: Space Physics, 107 ( A8 ), SMP12-1 – SMP12-15. https://doi.org/10.1029/2001JA000219; Tsyganenko, N. A. ( 2002b ). A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations. Journal of Geophysical Research: Space Physics, 107 ( A8 ), SMP10-1 – SMP10-17. https://doi.org/10.1029/2001JA000220; Tsyganenko, N. A. ( 2013 ). Data-based modeling of the Earth’s dynamic magnetosphere: A review. Annales Geophysicae, 31 ( 10 ), 1745 – 1772. https://doi.org/10.5194/angeo-31-1745-2013; Tsyganenko, N. A. ( 2014 ). Data-based modeling of the geomagnetosphere with an IMF-dependent magnetopause. Journal of Geophysical Research: Space Physics, 119 ( 1 ), 335 – 354. https://doi.org/10.1002/2013JA019346; Tsyganenko, N. A., Andreeva, V. A., & Gordeev, E. I. ( 2015 ). Internally and externally induced deformations of the magnetospheric equatorial current as inferred from spacecraft data. Annales Geophysicae, 33 ( 1 ), 1 – 11. https://doi.org/10.5194/angeo-33-1-2015; Tsyganenko, N. A., Andreeva, V., Kubyshkina, M., Sitnov, M. I., & Stephens, G. K. ( 2021 ). Data-based modeling of the Earth’s magnetic field. In Magnetospheres in the solar system (pp. 617 – 635 ). American Geophysical Union (AGU). https://doi.org/10.1002/9781119815624.ch39; Tsyganenko, N. A., Andreeva, V. A., Sitnov, M. I., Stephens, G. K., Gjerloev, J. W., Chu, X., & Troshichev, O. A. ( 2021 ). Reconstructing substorms via historical data mining: Is it really feasible? Journal of Geophysical Research: Space Physics, 126 ( 10 ), e2021JA029604. https://doi.org/10.1029/2021JA029604; Tsyganenko, N. A., & Fairfield, D. H. ( 2004 ). Global shape of the magnetotail current sheet as derived from geotail and polar data. Journal of Geophysical Research: Space Physics, 109 ( A3 ). https://doi.org/10.1029/2003JA010062; Tsyganenko, N. A., & Sitnov, M. I. ( 2005 ). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. Journal of Geophysical Research: Space Physics, 110 ( A3 ). https://doi.org/10.1029/2004JA010798; Tsyganenko, N. A., & Sitnov, M. I. ( 2007 ). Magnetospheric configurations from a high-resolution data-based magnetic field model. Journal of Geophysical Research: Space Physics, 112 ( A6 ), https://doi.org/10.1029/2007JA012260; Vassiliadis, D. ( 2006 ). Systems theory for geospace plasma dynamics. Reviews of Geophysics, 44 ( 2 ). https://doi.org/10.1029/2004RG000161; Vassiliadis, D., Klimas, A., & Baker, D. ( 1999 ). Models of D st geomagnetic activity and of its coupling to solar wind parameters. Physics and Chemistry of the Earth–Part C: Solar, Terrestrial & Planetary Science, 24 ( 1 ), 107 – 112. https://doi.org/10.1016/S1464-1917(98)00016-6; Vassiliadis, D., Klimas, A. J., Baker, D. N., & Roberts, D. A. ( 1995 ). A description of the solar wind-magnetosphere coupling based on nonlinear filters. Journal of Geophysical Research: Space Physics, 100 ( A3 ), 3495 – 3512. https://doi.org/10.1029/94JA02725; Verleysen, M., & François, D. ( 2005 ). The curse of dimensionality in data mining and time series prediction. In J. Cabestany, A. Prieto, & F. Sandoval (Eds.), Computational intelligence and bioinspired systems (pp. 758 – 770 ). Springer Berlin Heidelberg.; Wang, C.-P., Lyons, L. R., Nagai, T., & Samson, J. C. ( 2004 ). Midnight radial profiles of the quiet and growth-phase plasma sheet: The geotail observations. Journal of Geophysical Research: Space Physics, 109 ( A12 ). https://doi.org/10.1029/2004JA010590; Wettschereck, D., Aha, D. W., & Mohri, T. ( 1997 ). A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review, 11 ( 1 ), 273 – 314. https://doi.org/10.1023/A:1006593614256; Williams, T., Shulman, S., Ottenstein, N., Palmer, E., Riley, C., Letourneau, S., & Godine, D. ( 2020 ). Operational techniques for dealing with long eclipses during the MMS extended mission. In 2020 IEEE Aerospace Conference (pp. 1 – 12 ). https://doi.org/10.1109/AERO47225.2020.9172276; Xiao, C. J., Wang, X. G., Pu, Z. Y., Zhao, H., Wang, J. X., Ma, Z. W., et al. ( 2006 ). In situ evidence for the structure of the magnetic null in a 3-D reconnection event in the Earth’s magnetotail. Nature Physics, 2 ( 7 ), 478 – 483. https://doi.org/10.1038/nphys342; Yoon, P. H., & Lui, A. T. Y. ( 2005 ). A class of exact two-dimensional kinetic current sheet equilibria. Journal of Geophysical Research: Space Physics, 110 ( A1 ). https://doi.org/10.1029/2003JA010308; Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., & Zhou, B. ( 2021 ). International geomagnetic reference field: The thirteenth generation. Earth, Planets, and Space, 73 ( 1 ), 49. https://doi.org/10.1186/s40623-020-01288-x; Angelopoulos, V., Artemyev, A., Phan, T. D., & Miyashita, Y. ( 2020 ). Near-Earth magnetotail reconnection powers space storms. Nature Physics, 16 ( 3 ), 317 – 321. https://doi.org/10.1038/s41567-019-0749-4; Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey, H., & Kepko, L. ( 2008 ). Tail reconnection triggering substorm onset. Science, 321 ( 5891 ), 931 – 935. https://doi.org/10.1126/science.1160495; Angelopoulos, V., Runov, A., Zhou, X.-Z., Turner, D. L., Kiehas, S. A., Li, S.-S., & Shinohara, I. ( 2013 ). Electromagnetic energy conversion at reconnection fronts. Science, 341 ( 6153 ), 1478 – 1482. https://doi.org/10.1126/science.1236992; Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., & McPherron, R. L. ( 1996 ). Neutral line model of substorms: Past results and present view. Journal of Geophysical Research: Space Physics, 101 ( A6 ), 12975 – 13010. https://doi.org/10.1029/95JA03753; Birn, J., Hesse, M., & Schindler, K. ( 1996 ). MHD simulations of magnetotail dynamics. Journal of Geophysical Research: Space Physics, 101 ( A6 ), 12939 – 12954. https://doi.org/10.1029/96JA00611; Borovsky, J. E., & Yakymenko, K. ( 2017 ). Substorm occurrence rates, substorm recurrence times, and solar wind structure. Journal of Geophysical Research: Space Physics, 122 ( 3 ), 2973 – 2998. https://doi.org/10.1002/2016JA023625; Burch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. ( 2016 ). Magnetospheric multiscale overview and science objectives. Space Science Reviews, 199 ( 1–4 ), 5 – 21. https://doi.org/10.1007/s11214-015-0164-9; Burch, J. L., Torbert, R. B., Phan, T. D., Chen, L.-J., Moore, T. E., Ergun, R. E., & Chandler, M. ( 2016 ). Electron-scale measurements of magnetic reconnection in space. Science, 352 ( 6290 ). https://doi.org/10.1126/science.aaf2939; Burton, R. K., McPherron, R. L., & Russell, C. T. ( 1975 ). An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80 ( 31 ), 4204 – 4214. https://doi.org/10.1029/JA080i031p04204; Camporeale, E. ( 2019 ). The challenge of machine learning in space weather: Nowcasting and forecasting. Space Weather, 17 ( 8 ), 1166 – 1207. https://doi.org/10.1029/2018SW002061; Chen, L.-J., Wang, S., Hesse, M., Ergun, R. E., Moore, T., Giles, B., & Lindqvist, P.-A. ( 2019 ). Electron diffusion regions in magnetotail reconnection under varying guide fields. Geophysical Research Letters, 46 ( 12 ), 6230 – 6238. https://doi.org/10.1029/2019GL082393; Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., & Navrátil, P. ( 2012 ). Visit: An end-user tool for visualizing and analyzing very large data. In High performance visualization-enabling extreme-scale scientific insight (pp. 357 – 372 ). https://doi.org/10.1201/b12985; Cowley, S. ( 1981 ). Magnetospheric asymmetries associated with the y-component of the IMF. Planetary and Space Science, 29 ( 1 ), 79 – 96. https://doi.org/10.1016/0032-0633(81)90141-0; Dungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47 – 48. https://doi.org/10.1103/PhysRevLett.6.47; Eastwood, J. P., Phan, T. D., Øieroset, M., & Shay, M. A. ( 2010 ). Average properties of the magnetic reconnection ion diffusion region in the earth’s magnetotail: The 2001–2005 Cluster observations and comparison with simulations. Journal of Geophysical Research: Space Physics, 115 ( A8 ). https://doi.org/10.1029/2009JA014962; Farrugia, C. J., Rogers, A. J., Torbert, R. B., Genestreti, K. J., Nakamura, T. K. M., Lavraud, B., & Dors, I. ( 2021 ). An encounter with the ion and electron diffusion regions at a flapping and twisted tail current sheet. Journal of Geophysical Research: Space Physics, 126 ( 3 ), e2020JA028903. https://doi.org/10.1029/2020JA028903; Fuselier, S. A., Trattner, K. J., & Petrinec, S. M. ( 2011 ). Antiparallel and component reconnection at the dayside magnetopause. Journal of Geophysical Research: Space Physics, 116 ( A10 ). https://doi.org/10.1029/2011JA016888; Gjerloev, J. W. ( 2012 ). The SuperMag data processing technique. Journal of Geophysical Research: Space Physics, 117 ( A9 ). https://doi.org/10.1029/2012JA017683; Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. ( 1994 ). What is a geomagnetic storm? Journal of Geophysical Research: Space Physics, 99 ( A4 ), 5771 – 5792. https://doi.org/10.1029/93JA02867; Greene, J. M. ( 1988 ). Geometrical properties of three-dimensional reconnecting magnetic fields with nulls. Journal of Geophysical Research: Space Physics, 93 ( A8 ), 8583 – 8590. https://doi.org/10.1029/JA093iA08p08583; Griton, L., Pantellini, F., & Meliani, Z. ( 2018 ). Three-dimensional magnetohydrodynamic simulations of the solar wind interaction with a hyperfast-rotating Uranus. Journal of Geophysical Research: Space Physics, 123 ( 7 ), 5394 – 5406. https://doi.org/10.1029/2018JA025331; Hones, E. W., Jr. ( 1984 ). Plasma sheet behavior during substorms. In Magnetic reconnection in space and laboratory plasmas (pp. 178 – 184 ). American Geophysical Union (AGU). https://doi.org/10.1029/GM030p0178; Ieda, A., Nishimura, Y., Miyashita, Y., Angelopoulos, V., Runov, A., Nagai, T., & Machida, S. ( 2016 ). Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm. Journal of Geophysical Research: Space Physics, 121 ( 5 ), 4548 – 4568. https://doi.org/10.1002/2015JA022244; Imber, S. M., Slavin, J. A., Auster, H. U., & Angelopoulos, V. ( 2011 ). A THEMIS survey of flux ropes and traveling compression regions: Location of the near-earth reconnection site during solar minimum. Journal of Geophysical Research: Space Physics, 116 ( A2 ). https://doi.org/10.1029/2010JA016026; Jackson, D. D. ( 1972 ). Interpretation of inaccurate, insufficient and inconsistent data. Geophysical Journal International, 28 ( 2 ), 97 – 109. https://doi.org/10.1111/j.1365-246X.1972.tb06115.x; Ji, H., Daughton, W., Jara-Almonte, J., Le, A., Stanier, A., & Yoo, J. ( 2022 ). Magnetic reconnection in the era of exascale computing and multiscale experiments. Nature Reviews Physics, 4, 263 – 282. https://doi.org/10.1038/s42254-021-00419-x; Juusola, L., Østgaard, N., Tanskanen, E., Partamies, N., & Snekvik, K. ( 2011 ). Earthward plasma sheet flows during substorm phases. Journal of Geophysical Research: Space Physics, 116 ( A10 ). https://doi.org/10.1029/2011JA016852; Korth, H., Sitnov, M. I., & Stephens, G. K. ( 2018 ). Magnetic field modeling database description final [Dataset]. NASA Space Physics Data Facility. Retrieved from https://spdf.gsfc.nasa.gov/pub/data/aaa_special-purpose-datasets/empirical-magnetic-field-modeling-database-with-TS07D-coefficients/; Liemohn, M. W., McCollough, J. P., Jordanova, V. K., Ngwira, C. M., Morley, S. K., Cid, C., & Vasile, R. ( 2018 ). Model evaluation guidelines for geomagnetic index predictions. Space Weather, 16 ( 12 ), 2079 – 2102. https://doi.org/10.1029/2018SW002067; Liu, R., Kliem, B., Titov, V. S., Chen, J., Wang, Y., Wang, H., et al. ( 2016 ). Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. The Astrophysical Journal, 818 ( 2 ), 148. https://doi.org/10.3847/0004-637x/818/2/148; McPherron, R. L., Russell, C. T., & Aubry, M. P. ( 1973 ). Satellite studies of magnetospheric substorms on 15 August 1968: 9. Phenomenological model for substorms. Journal of Geophysical Research, 78 ( 16 ), 3131 – 3149.; Mead, G. D., & Beard, D. B. ( 1964 ). Shape of the geomagnetic field solar wind boundary. Journal of Geophysical Research, 69 ( 7 ), 1169 – 1179. https://doi.org/10.1029/JZ069i007p01169; Nagai, T., Fujimoto, M., Nakamura, R., Baumjohann, W., Ieda, A., Shinohara, I., & Mukai, T. ( 2005 ). Solar wind control of the radial distance of the magnetic reconnection site in the magnetotail. Journal of Geophysical Research: Space Physics, 110 ( A9 ). https://doi.org/10.1029/2005JA011207; Nagai, T., & Shinohara, I. ( 2022 ). Solar wind energy input: The primary control factor of magnetotail reconnection site. Journal of Geophysical Research: Space Physics, 127 ( 8 ). e2022JA030653. https://doi.org/10.1029/2022JA030653; Nelder, J. A., & Mead, R. ( 1965 ). A simplex method for function minimization. The Computer Journal, 7 ( 4 ), 308 – 313. https://doi.org/10.1093/comjnl/7.4.308; Newell, P. T., & Gjerloev, J. W. ( 2011 ). Evaluation of SuperMag auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research: Space Physics, 116 ( A12 ). https://doi.org/10.1029/2011JA016779; Newell, P. T., & Gjerloev, J. W. ( 2012 ). SuperMag-based partial ring current indices. Journal of Geophysical Research: Space Physics, 117 ( A5 ). https://doi.org/10.1029/2012JA017586; Nishida, A., Scholer, M., Terasawa, T., Bame, S. J., Gloeckler, G., Smith, E. J., & Zwickl, R. D. ( 1986 ). Quasi-stagnant plasmoid in the middle tail: A new pre-expansion phase phenomenon. Journal of Geophysical Research: Space Physics, 91 ( A4 ), 4245 – 4255. https://doi.org/10.1029/JA091iA04p04245; Partamies, N., Juusola, L., Tanskanen, E., & Kauristie, K. ( 2013 ). Statistical properties of substorms during different storm and solar cycle phases. Annales Geophysicae, 31 ( 2 ), 349 – 358. https://doi.org/10.5194/angeo-31-349-2013; Phan, T. D., Eastwood, J. P., Shay, M. A., Drake, J. F., Sonnerup, B. U. Ö., Fujimoto, M., & Magnes, W. ( 2018 ). Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature, 557 ( 7704 ), 202 – 206. https://doi.org/10.1038/s41586-018-0091-5; Press, W. H., Teukolsky, S. A., Flannery, B. P., & Vetterling, W. T. ( 1992 ). Numerical recipes in FORTRAN: The art of scientific computing ( 2nd ed. ). Cambridge University Press.; Reyes, P. I., Pinto, V. A., & Moya, P. S. ( 2021 ). Geomagnetic storm occurrence and their relation with solar cycle phases. Space Weather, 19 ( 9 ), e2021SW002766. https://doi.org/10.1029/2021SW002766; Rogers, A. J., Farrugia, C. J., & Torbert, R. B. ( 2019 ). Numerical algorithm for detecting ion diffusion regions in the geomagnetic tail with applications to MMS tail season 1 May to 30 September 2017. Journal of Geophysical Research: Space Physics, 124 ( 8 ), 6487 – 6503. https://doi.org/10.1029/2018JA026429; Rogers, A. J., Farrugia, C. J., Torbert, R. B., & Rogers, T. J. ( 2023 ). Applying magnetic curvature to MMS data to identify thin current sheets relative to tail reconnection. Journal of Geophysical Research: Space Physics, 128, e2022JA030577. https://doi.org/10.1029/2022JA030577; Runov, A., Sergeev, V. A., Baumjohann, W., Nakamura, R., Apatenkov, S., Asano, Y., & Rème, H. ( 2005 ). Electric current and magnetic field geometry in flapping magnetotail current sheets. Annales Geophysicae, 23 ( 4 ), 1391 – 1403. https://doi.org/10.5194/angeo-23-1391-2005; Russell, C. T., & McPherron, R. L. ( 1973 ). The magnetotail and substorms. Space Science Reviews, 15 ( 2 ), 205 – 266. https://doi.org/10.1007/BF00169321; Sergeev, V. A., Angelopoulos, V., Kubyshkina, M., Donovan, E., Zhou, X.-Z., Runov, A., & Nakamura, R. ( 2011 ). Substorm growth and expansion onset as observed with ideal ground-spacecraft THEMIS coverage. Journal of Geophysical Research: Space Physics, 116 ( A5 ). https://doi.org/10.1029/2010JA015689; Sergeev, V. A., Sormakov, D. A., Apatenkov, S. V., Baumjohann, W., Nakamura, R., Runov, A. V., & Nagai, T. ( 2006 ). Survey of large-amplitude flapping motions in the midtail current sheet. Annales Geophysicae, 24 ( 7 ), 2015 – 2024. https://doi.org/10.5194/angeo-24-2015-2006; Shiota, D., Isobe, H., Chen, P. F., Yamamoto, T. T., Sakajiri, T., & Shibata, K. ( 2005 ). Self-consistent magnetohydrodynamic modeling of a coronal mass ejection, coronal dimming, and a giant cusp-shaped arcade formation. The Astrophysical Journal, 634 ( 1 ), 663 – 678. https://doi.org/10.1086/496943; Shue, J.-H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., & Kawano, H. ( 1998 ). Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 103 ( A8 ), 17691 – 17700. https://doi.org/10.1029/98JA01103; Shukhtina, M. A., Dmitrieva, N. P., & Sergeev, V. A. ( 2014 ). On the conditions preceding sudden magnetotail magnetic flux unloading. Geophysical Research Letters, 41 ( 4 ), 1093 – 1099. https://doi.org/10.1002/2014GL059290; Sibeck, D. G., Lopez, R. E., & Roelof, E. C. ( 1991 ). Solar wind control of the magnetopause shape, location, and motion. Journal of Geophysical Research: Space Physics, 96 ( A4 ), 5489 – 5495. https://doi.org/10.1029/90JA02464; Sitnov, M. I., Birn, J., Ferdousi, B., Gordeev, E., Khotyaintsev, Y., Merkin, V., & Zhou, X. ( 2019 ). Explosive magnetotail activity. Space Science Reviews, 215 ( 4 ), 31. https://doi.org/10.1007/s11214-019-0599-5; Sitnov, M. I., Buzulukova, N., Swisdak, M., Merkin, V. G., & Moore, T. E. ( 2013 ). Spontaneous formation of dipolarization fronts and reconnection onset in the magnetotail. Geophysical Research Letters, 40 ( 1 ), 22 – 27. https://doi.org/10.1029/2012GL054701; Sitnov, M. I., & Merkin, V. G. ( 2016 ). Generalized magnetotail equilibria: Effects of the dipole field, thin current sheets, and magnetic flux accumulation. Journal of Geophysical Research: Space Physics, 121 ( 8 ), 7664 – 7683. https://doi.org/10.1002/2016JA023001; Sitnov, M. I., & Schindler, K. ( 2010 ). Tearing stability of a multiscale magnetotail current sheet. Geophysical Research Letters, 37 ( 8 ). https://doi.org/10.1029/2010GL042961; Sitnov, M. I., Sharma, A. S., Papadopoulos, K., & Vassiliadis, D. ( 2001 ). Modeling substorm dynamics of the magnetosphere: From self-organization and self-organized criticality to nonequilibrium phase transitions. Physical Review E—Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 65, 016116. https://doi.org/10.1103/PhysRevE.65.016116; Sitnov, M. I., Stephens, G. K., Motoba, T., & Swisdak, M. ( 2021 ). Data mining reconstruction of magnetotail reconnection and implications for its first-principle modeling. Frontiers in Physics, 9. https://doi.org/10.3389/fphy.2021.644884; Sitnov, M. I., Stephens, G. K., Tsyganenko, N. A., Miyashita, Y., Merkin, V. G., Motoba, T., & Genestreti, K. J. ( 2019b ). Signatures of nonideal plasma evolution during substorms obtained by mining multimission magnetometer data. Journal of Geophysical Research: Space Physics, 124 ( 11 ), 8427 – 8456. https://doi.org/10.1029/2019JA027037; Sitnov, M. I., Stephens, G. K., Tsyganenko, N. A., Ukhorskiy, A. Y., Wing, S., Korth, H., & Anderson, B. J. ( 2017 ). Spatial structure and asymmetries of magnetospheric currents inferred from high-resolution empirical geomagnetic field models. In Dawn-dusk asymmetries in planetary plasma environments (pp. 199 – 212 ). American Geophysical Union (AGU). https://doi.org/10.1002/9781119216346.ch15; Sitnov, M. I., & Swisdak, M. ( 2011 ). Onset of collisionless magnetic reconnection in two-dimensional current sheets and formation of dipolarization fronts. Journal of Geophysical Research: Space Physics, 116 ( A12 ). https://doi.org/10.1029/2011JA016920; Sitnov, M. I., Swisdak, M., Guzdar, P. N., & Runov, A. ( 2006 ). Structure and dynamics of a new class of thin current sheets. Journal of Geophysical Research: Space Physics, 111 ( A8 ). https://doi.org/10.1029/2005JA011517; Sitnov, M. I., Tsyganenko, N. A., Ukhorskiy, A. Y., & Brandt, P. C. ( 2008 ). Dynamical data-based modeling of the storm-time geomagnetic field with enhanced spatial resolution. Journal of Geophysical Research: Space Physics, 113 ( A7 ). https://doi.org/10.1029/2007JA013003; Sitnov, M. I., Ukhorskiy, A. Y., & Stephens, G. K. ( 2012 ). Forecasting of global data-binning parameters for high-resolution empirical geomagnetic field models. Space Weather, 10 ( 9 ). https://doi.org/10.1029/2012SW000783

  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المؤلفون: Arnold, H.1 (AUTHOR) harryarnold@gmail.com, Sitnov, M. I.1 (AUTHOR)

    المصدر: Geophysical Research Letters. 8/16/2023, Vol. 50 Issue 15, p1-10. 10p.

  14. 14
    Academic Journal
  15. 15
    Report
  16. 16
    Academic Journal

    المؤلفون: Sitnov, M. I., Arnold, H.

    المصدر: Journal of Geophysical Research. Space Physics; Nov2022, Vol. 127 Issue 11, p1-19, 19p

  17. 17
    Academic Journal

    المصدر: Journal of Geophysical Research. Space Physics; Oct2022, Vol. 127 Issue 10, p1-18, 18p

  18. 18
    Electronic Resource
  19. 19
    Academic Journal

    المؤلفون: Ukhorskiy, A. Y., Sitnov, M. I.

    المصدر: Space Science Reviews ; volume 179, issue 1-4, page 545-578 ; ISSN 0038-6308 1572-9672

  20. 20
    Report