يعرض 1 - 20 نتائج من 134 نتيجة بحث عن '"Site characterisation"', وقت الاستعلام: 0.64s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Report
  3. 3
    Conference
  4. 4
    Dissertation/ Thesis
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia

    وصف الملف: application/pdf

    Relation: Frontiers in Earth Science; /10(2022); Aki, K. (1957). Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors. Bull. Earthq. Res. Inst. 35, 415–457. Ameri, G., Oth, A., Pilz, M., Bindi, D., Parolai, S., luzi, L., et al. (2011). Separation of Source and Site Effects by Generalized Inversion Technique Using the Aftershock Recordings of the 2009 L’Aquila Earthquake. Bull. Earthq. Eng. 9, 717–739. doi:10.1007/s10518-011-9248-4 Ansal, A., Tönük, G., and Kurtulucs, A. (2009). “Microzonation for Urban Planning,”. Earthquakes and Tsunamis, Geotechnical, Geological, and Earthquake Engineering. Editor A. T. Tankut (Dordrecht: Springer), Vol 11, 133–152. doi:10.1007/978-90-481-2399-5_9 Ansal, A., Kurtuluş, A., and Tönük, G. (2010). Seismic Microzonation and Earthquake Damage Scenarios for Urban Areas. Soil Dyn. Earthq. Eng. 30, 1319–1328. doi:10.1016/j.soildyn.2010.06.004 Aversa, S., and Crespellani, T. (2016). Seismic Microzonation: an Essential Tool for Urban Planning in Seismic Areas. Upl. J. Urban Plann Landsc. Environ. Des. 1 (1), 121–152. doi:10.6092/2531-9906/5035 Bard, P.-Y. (2008). Foreword. Bull. Earthq. Eng. 6 (1), 1–2. doi:10.1007/s10518- 008-9059-4 Bard, P. Y. (2005). Site Effects Assessment Using Ambient Excitations (SESAME). WP 6: Derivation of Dispersion Curves. Grenoble: Technical report. Beck, J. L., and Hall, J. F. (1986). Factors Contributing to the Catastrophe in Mexico City during the Earthquake of September 19, 1985. Geophys. Res. Lett. 13, 593–596. doi:10.1029/gl013i006p00593 Bettig, B., Bard, P. Y., Scherbaum, F., Riepl, J., Cotton, F., Cornou, C., et al. (2001). Analysis of Dense Array Measurements Using the Modified Spatial Auto- Correlation Method (SPAC). Application to Grenoble Area. Bol. Geofis. Teor. Appl. 42 (3-4), 281–304. Bielak, J., Xu, J., and Ghattas, O. (1999). Earthquake Ground Motion and Structural Response in Alluvial Valleys. J. Geotechnical Geoenvironmental Eng. 125 (5), 413–423. doi:10.1061/(asce)1090-0241(1999)125:5(413) Bigi, G., Costantino, D., Parotto, M., Sartori, R., and Scandone, P. (1990). – Structural Model of Italy. Firenze, Società Elaborazioni Cartografiche (S.EL.CA.), Consiglio Nazionale Delle Ricerche Progetto Finalizzato Geodinamica, Scala 1:500.000, 9 Fogli. Bocherdt, R. D. (1970). Effects of Local Geology on Ground Motion Near San Francisco Bay. Bull. Seismol. Soc. Am. 60, 29–61. doi:10.1785/BSSA0600010029 Boore, D. M., and Akkar, S. (2003). Effect of Causal and Acausal Filters on Elastic and Inelastic Response Spectra. Earthq. Engng. Struct. Dyn. 32, 1729–1748. doi:10.1002/eqe.299 Capon, J. (1969). High-resolution Frequency-Wavenumber Spectrum Analysis. Proc. IEEE 57, 1408–1418. doi:10.1109/proc.1969.7278 Celikbilek, A., and Sapmaz, G. (2016). Risk Management and Microzonation in Urban Planning: an Analysis for Istanbul. Disaster Sci. Eng. 2 (2), 59–66. Crespellani, T. (2014). Seismic Microzoning in Italy: a Brief History and Recent Experiences. Ing. Sism 31 (2), 3–31.D’Amico, V., Picozzi, M., Baliva, F., Albarello, D., Menichetti, M., Bozzano, F., et al. (2006). “Test Sites in Europe for the Evaluation of GroundMotion Amplification: Site Response of the Gubbio Basin (Central Italy) Using Geological Data and Seismic NoiseMeasurements,” in Proceeding of the 1st European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland (Geneva: Abstract Book), 301. D’Amico, V., Picozzi, M., Baliva, F., and Albarello, D. (2008). Ambient Noise Measurements for Preliminary Site-Effects Characterization in the Urban Area of Florence, Italy. Bull. Seismol. Soc. Am. 98 (3), 1373–1388. doi:10.1785/0120070231 Darendeli, M. B. (2001). Development of a New Family of Normalized Modulus Reduction and Material Damping Curves. (PhD thesis). Austin, Texas: University of Texas. Available at: https://repositories.lib.utexas.edu/ bitstream/handle/2152/10396/darendelimb016.pdf March, accessed 2022). De Ferrari, R., Ferretti, G., Barani, S., and Spallarossa, D. (2010). Investigating on the 1920 Garfagnana Earthquake (Mw=6.5): Evidences of Site Effects in Villa Collemandina (Tuscany, Italy). Soil Dyn. Earthq. Eng. 30, 1417–1429. doi:10.1016/j.soildyn.2010.07.004 De Franco, R., Biella, G., Caielli, G., Berra, F., Guglielmin, M., Lozej, A., et al. (2009). Overview of High Resolution Seismic Prospecting in Pre-Alpine and Alpine Basins. Quat. Int. 204 (1-2), 65–75. doi:10.1016/j.quaint.2009.02.011 Dondi, L., Mostardini, F., and Rizzini, A. (1982). “Evoluzione sedimentaria e paleogeografia nella pianura padana,” in Guida alla geologia del margine appenninico-padano, Guida Geol. Reg. S.G.I. Editors G. Cremonini and F. Ricci Lucchi (Bologna (Italy), 47–58. Eurocode 8, CEN (2004). Eurocode 8: Design of Structures for Earthquake Resistance. P1: General Rules, Seismic Actions and Rules for Buildings. Draft 6, 522. Doc CEN/TC250/SC8/N335. Fäh, D., Kind, F., and Giardini, D. (2001). A Theoretical Investigation of Average H/V Ratios. Geophys. J. Int. 145 (2), 535–549. doi:10.1046/j.0956-540x.2001.01406.x Fäh, D., Kind, F., and Giardini, D. (2003). Inversion of Local S-Wave Velocity Structures from Average H/V Ratios, and Their Use for the Estimation of Site- Effects. J. Seismol. 7 (4), 449–467. doi:10.1023/b:jose.0000005712.86058.42 Ferretti, G., Zunino, A., Scafidi, D., Barani, S., and Spallarossa, D. (2013). On Microseisms Recorded Near the Ligurian Coast (Italy) and Their Relationship with Sea Wave Height. Geophys. J. Int. 194, 524–533. doi:10.1093/gji/ggt114 Furumura, T., and Kennett, B. L. N. (1998). On the Nature of Regional Seismic Phases-III. The Influence of Crustal Heterogeneity on the Wavefield for Subduction Earthquakes: the 1985 Michoacan and 1995 Copala, Guerrero, Mexico Earthquakes. Geophys. J. Int. 135 (3), 1060–1084. doi:10.1046/j.1365- 246x.1998.00698.x GeoMol Team(2015). in GeoMol – Assessing Subsurface Potentials of the Alpine Foreland Basins for Sustainable Planning and Use of Natural Resources – Project Report. Lf. U. Augsburg, 188. Grazier, V., Shakal, A., Scrivner, C., Hauksson, E., Polet, J., and Jones, L. (2002). TriNet Strong-Motion Data from the M 7.1 Hector Mine, California, Earthquake of 16 October 1999. Bull. Seismol. Soc. Am. 92, 1525–1542. doi:10.1785/0120000925 Hailemikael, S., Amoroso, S., and Gaudiosi, I. (2020). Guest editorial: Seismic Microzonation of Central Italy Following the 2016-2017 Seismic Sequence. Bull. Earth. Eng. 18, 5415–5422. doi:10.1007/s10518-020-00929-6 Hanks, T. C. (1975). Strong Ground Motion of the San Fernando, California, Earthquake: Ground Displacements. Bull. Seismol. Soc. Am. 65 (1), 193–225. doi:10.1785/bssa0650010193 Hatayama, K. (2008). Lessons from the 2003 Tokachi-Oki, Japan, Earthquake for Prediction of Long-Period Strong Ground Motions and Sloshing Damage to Oil Storage Tanks. Journal.of Seismol 12, 255–263. doi:10.1007/s10950-007-9066-y Hisada, Y., Aki, K., and Teng, T. L. (1993). 3-D Simulations of Surface Wave Propagation in the Kanto Sedimentary Basin, Japan Part 2: Application of the SurfaceWave BEM. Bull. Seismol. Soc. Am. 83 (6), 1700–1720. doi:10.1785/BSSA0830061700 Idriss, I.M., and Sun, J. I. (1993). User’sManual for SHAKE91: A Computer Program for Conducting Equivalent Linear Seismic Response Analyses ofHorizontally Layered Soil Deposits. Davis, CA, USA: Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California. ISPRAGeologico d’Italia, S., and Lombardia, R. (2016). in Carta Geologica d’italia alla scala 1:50.000, Foglio 118 Milano (con note illustrative). Editors V. Acura di Francani,A.Piccin,M.Credali, F.Berra, D.Battaglia, P. Gattinoni, et al. Joyner, W. B. (2000). Strong Motion from Surface Waves in Deep Sedimentary Basins. Bull. Seismol. Soc. Am. 90 (6B), S95–S112. doi:10.1785/0120000505 Kagawa, T., Zhao, B., Miyakoshi, K., and Irikura, K. (2004). Modeling of 3D Basin Structures for Seismic Wave Simulations Based on Available Information on the Target Area: Case Study of the Osaka Basin, Japan. Bull. Seismol. Soc. Am. 94 (4), 1353–1368. doi:10.1785/012003165 Kim, H.-S., Sun, C.-G., and Cho, H.-I. (2017). Geospatial Big Data-Based Geostatistical Zonation of Seismic Site Effects in Seoul Metropolitan Area. Int. J. Geo-Information 6 (6), 174. doi:10.3390/ijgi6060174 Klin, P., Laurenzano, G., Romano, M. A., Priolo, E., and Martelli, L. (2019). ER3D: a Structural and Geophysical 3-D Model of Central Emilia-Romagna (Northern Italy) for Numerical Simulation of Earthquake Ground Motion. Solid earth. 10 (3), 931–949. doi:10.5194/se-10-931-2019 Koketsu, K., Hatayama, K., Furumura, T., Ikegami, Y., and Akiyama, S. (2005). Damaging Long-Period Ground Motions from the 2003 Mw 8.3 Tokachi-Oki, Japan Earthquake. Seismol. Res. Lett. 76, 67–73. doi:10.1785/gssrl.76.1.67 Koketsu, K., and Miyake, H. (2008). A Seismological Overview of Long-Period Ground Motion. J. Seismol. 12 (2), 133–143. doi:10.1007/s10950-007-9080-0 Konno, K., and Ohmachi, T. (1998). Ground-motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor. Bull. Seismol. Soc. Am. 88, 228–241. doi:10.1785/bssa0880010228 Lacoss, R. T., Kelly, E. J., and Toksöz, M. N. (1969). Estimation of Seismic Noise Structure Using Arrays. Geophysics 34, 21–38. doi:10.1190/1.1439995 Lai, C. G., Poggi, V., Famà, A., Zuccolo, E., Bozzoni, F.,Meisina, C., et al. (2020). An Inter-disciplinary and Multi-Scale Approach to Assess the Spatial Variability of GroundMotion for SeismicMicrozonation: the Case Study of CavezzoMunicipality in Northern Italy. Eng. Geol. 274, 105722. doi:10.1016/j.enggeo.2020.105722 Laurenzano, G., Priolo, E., Mucciarelli, M., Martelli, L., and Romanelli, M. (2017). Site Response Estimation at Mirandola by Virtual Reference Station. Bull. Earthq. Eng. 15 (6), 2393–2409. doi:10.1007/s10518-016-0037-y Lermo, J., and Chávez-García, F. J. (1993). Site Effect Evaluation Using Spectral Ratios with Only One Station. Bull. Seism. Soc. Am. 83 (5), 1574–1594. doi:10. 1785/bssa0830051574 Liang, J. Z., Hao, H., Wang, Y., and Bi, K. M. (2009). Design Earthquake Ground Motion Prediction for Perth Metropolitan Area with Microtremor Measurements for Site Characterization. J. Earthq. Eng. 13 (7), 997–1028. doi:10.1080/13632460802687710 Liu, L., Chen, Q.-f., Wang, W., and Rohrbach, E. (2014). Ambient Noise as the New Source for Urban Engineering Seismology and Earthquake Engineering: a Case Study from Beijing Metropolitan Area. Earthq. Sci. 27 (1), 89–100. doi:10.1007/ s11589-013-0052-x Luzi, L., Pacor, F., Ameri, G., Puglia, R., Burrato, P., Massa, M., et al. (2013). Overview on the Strong-Motion Data Recorded during the May-June 2012 Emilia Seismic Sequence. Seismol. Res. Lett. 84 (4), 629–644. doi:10.1785/ 0220120154 Maddalena Michele, M., Raffaele Di Stefano, R., Lauro Chiaraluce, L., Marco Cattaneo,M., Pasquale De Gori, P.,Giancarlo Monachesi, G., et al. (2016). The Amatrice 2016 Seismic Sequence: a Preliminary Look at the Mainshock and Aftershocks Distribution. Ann. Geophys. Fast track 59, 59. doi:10.4401/ag-7227 Marcucci, S., Milana, G., Hailemikael, S., Carlucci, G., Cara, F., Di Giulio, G., et al. (2019). The Deep Bedrock in Rome, Italy: a New Constraint Based on Passive Seismic Data Analysis. Pure Appl. Geophys. 176 (6), 2395–2410. doi:10.1007/ s00024-019-02130-6 Martelli, L., and Romani, M. (2013). Microzonazione Sismica e analisi della condizione limite per l’emergenza delle aree epicentrali dei terremoti della pianura emiliana di maggio-giugno 2012, relazione illustrativa, Servizio geologico, sismico e dei suoli Regione Emilia Romagna (in Italian). Marzorati, S., and Bindi, D. (2006). Ambient Noise Levels in North Central Italy. G-Cube 7 (9), 1–14. doi:10.1029/2006gc001256 Mascandola, C., Massa, M., Barani, S., Lovati, S., and Santulin, M. (2017). Long- Period Amplification in Deep Alluvial Basins and Consequences for Site- Specific Probabilistic Seismic-Hazard Analysis: An Example from the Po Plain (Northern Italy). Bull. Seismol. Soc. Am. 107 (2), 770–786. doi:10. 1785/0120160166 Mascandola, C., Massa, M., Barani, S., Albarello, D., Lovati, S., Martelli, L., et al. (2019). Mapping the Seismic Bedrock of the Po Plain (Italy) through Ambient- Vibration Monitoring. Bull. Seismol. Soc. Am. 109 (1), 164–177. doi:10.1785/ 0120180193 Mascandola, C., Barani, S., Massa, M., and Albarello, D. (2021). New Insights on Long-Period (>1s) Seismic Amplification Effects in Deep Sedimentary Basins: the Case of the Po Plain (Northern Italy). Bull. Seism. Soc. Am. 111 (4), 2071–2086. doi:10.1785/0120200315 Massa, M., and Augliera, P. (2013). Teleseisms as Estimators of Experimental Long-Period Site Amplification: Application to the Po Plain (Italy) for the 2011 Mw 9.0 Tohoku-Oki (Japan) Earthquake. Bull. Seismol. Soc. Am. 103 (5), 2541–2556. doi:10.1785/0120120164 Milana, G., Bordoni, P., Cara, F., Di Giulio, G., Hailemikael, S., and Rovelli, A. (2013). 1D Velocity Structure of the Po River Plain (Northern Italy) Assessed by Combining Strong Motion and Ambient Noise Data. Bull. Earthq. Eng. 12 (5), 2195–2209. doi:10.1007/s10518-013-9483-y NTC (2018). Aggiornamento delle Norme Tecniche per le Costruzioni. Part 3.2.2: Categorie di sottosuolo e condizioni topografiche, 42. Rome: Gazzetta Ufficiale n. del 20 febbraio 2018 (in Italian). Miyazaki, S. I., Segall, P., Fukuda, J., and Kato, T. (2004). Space Time Distribution of Afterslip Following the 2003 Tokachi-oki Earthquake: Implications for Variations in Fault Zone Frictional Properties. Geophys. Res. Lett. 31 (6), 410. doi:10.1029/2003gl019410 Molnar, S., Assaf, J., Sirohey, A., and Adhikari, S. R. (2020). Overview of Local Site Effects and Seismic Microzonation Mapping in Metropolitan Vancouver, British Columbia, Canada. Eng. Geol. 270, 105568. doi:10.1016/j.enggeo. 2020.105568 Molnar, S., Sirohey, A., Assaf, J., Bard, P. Y., Castellaro, S., Cornou, C., et al. (2022). A Review of the Microtremor Horizontal-To-Vertical Spectral Ratio (MHVSR) Method. J. Seismol 16, 1–33. doi:10.1007/s10950-021-10062-9 Moya, A., Schmidt, V., Segura, C., Boschini, I., and Atakan, K. (2000). Empirical Evaluation of Site Effects in the Metropolitan Area of San José, Costa Rica. Soil Dyn. Earthq. Eng. 20 (1-4), 177–185. doi:10.1016/s0267-7261(00)00049-x MPSWorking Group (2004). Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM del 20marzo 2003Rapporto Conclusivo per il Dipartimento della Protezione Civile. Mucciarelli, M., Gallipoli, M. R., Di Giacomo, D., Di Nota, F., and Nino, E. (2005). The Influence of Wind on Measurements of Seismic Noise. Geophys. J. Int. 161 (2), 303–308. doi:10.1111/j.1365-246x.2004.02561.x Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., et al. (2003). Onset of Major Pleistocene Glaciations in the Alps. Geol 31 (11), 989–992. doi:10.1130/g19445.1 Nakamura, Y. (1989). A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor or the Ground Surface. QR Railw. Tech. Res. Inst. 30 (1), 25–33. Ohori, M., Nobata, A., and Wakamatsu, K. (2002). A Comparison of ESAC and FK Methods of Estimating Phase Velocity Using Arbitrarily Shaped Microtremor Arrays. Bull. Seismol. Soc. Am. 92, 2323–2332. doi:10.1785/0119980109 Okada, H. (2003). The Microtremor Survey Method. Houston, TX, United States: SEG library. Paolucci, E., Albarello, D., D’Amico, S., Lunedei, E., Martelli, L., Mucciarelli, M., et al. (2015). A Large Scale Ambient Vibration Survey in the Area Damaged by May-June 2012 Seismic Sequence in Emilia Romagna, Italy. Bull. Earthq. Eng. 13 (11), 3187–3206. doi:10. 1007/s10518-015-9767-5 Park, C. B., Miller, R. D., and Xia, J. (1998). “Imaging Dispersion Curves of Surface Waves on Multi-Channel Record,” in SEG Technical Program Expanded Abstracts 1998 (Houston, TX, United States: Society of Exploration Geophysicists), 1377–1380. Park, C. B., Miller, R. D., and Xia, J. (1999). Multichannel Analysis of Surface Waves. Geophysics 64, 800–808. doi:10.1190/1.1444590 Parolai, S., Bindi, D., and Augliera, P. (2000). Application of the Generalized Inversion Technique (GIT) to a Microzonation Study: Numerical Simulations and Comparison with Different Site-Estimation Techniques. Bull. Seismol. Soc. Am. 90 (2), 286–297. doi:10.1785/0119990041 Parolai, S., Picozzi, M., Richwalski, S. M., and Milkereit, C. (2005). Joint Inversion of Phase Velocity Dispersion and H/V Ratio Curves from Seismic Noise Recordings Using a Genetic Algorithm, Considering Higher Modes. Geophys. Res. Lett. 32, L01303. doi:10.1029/2004GL021115 Parolai, S., Richwalski, S. M., Milkereit, C., and Fäh, D. (2006). S-wave Velocity Profiles for Earthquake Engineering Purposes for the Cologne Area (Germany). Bull. Earthq. Eng. 4, 65–94. doi:10.1007/s10518-005-5758-2 Picozzi, M., Strollo, A., Parolai, S., Durukal, E., Özel, O., Karabulut, S., et al. (2009). Site Characterization by Seismic Noise in Istanbul, Turkey. Soil Dyn. Earthq. Eng. 29 (3), 469–482. doi:10.1016/j.soildyn.2008.05.007 Pieri, M., and Groppi, G. (1981). “Subsurface Geological Structure of the Po Plain, Italy,” in Progetto Finalizzato Geodinamica/Sottoprogetto “Modello Strutturale” (Rome: Consiglio Nazionale delle Ricerche Publ. N°), 414. Poggi, V., and Fäh, D. (2010). Estimating Rayleigh Wave Particle Motion from Three-Component Array Analysis of Ambient Vibrations. Geophys. J. Int. 180 (Issue 1), 251–267. doi:10.1111/j.1365-246x.2009.04402.x Puglia, R., Tokeshi, K., Picozzi, M., D’Alema, E., Parolai, S., and Foti, S. (2011). Interpretation of Microtremor 2D Array Data Using Rayleigh and Love Waves: the Case Study of Bevagna (Central Italy). Near Surf. Geophys. 9 (6), 529–540. doi:10.3997/1873-0604.2011031 Priolo, E., Romanelli, M., Barnaba, C., Mucciarelli, M., Laurenzano, G., Dall’Olio, L., et al. (2012). The Ferrara Thrust Earthquakes of May-June 2012: Preliminary Site Response Analysis at the Sites of the OGS Temporary Network. Ann. Geophy. 55 (4), 591–597. doi:10.4401/ag-6172 Ratchkovski, N. A., Hansen, R. A., Stachnik, J. C., Cox, T., Fox, O., Rao, L., et al. (2003). Aftershock Sequence of the Mw 7.9 Denali Fault, Alaska, Earthquake of 3 November 2002 from Regional Seismic Network Data. Seismol. Res. Lett. 74 (6), 743–752. doi:10.1785/gssrl.74.6.743 Regione Lombardia, Eni Divisione Agip (2002). Geologia degli acquiferi Padani della Regione Lombardia, a cura di Cipriano Carcano e Andrea Piccin. Firenze: S.EL.CA. (in Italian). Ritter, J. R. R., Balan, S. F., Bonjer, K.-P., Diehl, T., Forbriger, T., Marmureanu, G., et al. (2005). Broadband Urban Seismology in the Bucharest Metropolitan Area. Seismol. Res. Lett. 76 (5), 574–580. doi:10.1785/gssrl.76.5.574 Rizzini, A., and Dondi, L. (1978). Erosional Surface of Messinian Age in the Subsurface of the Lombardian Plain (Italy). Mar. Geol. 27, 303–325. doi:10. 1016/0025-3227(78)90037-3 Ronald Abraham, J., Lai, C. G., and Papageorgiou, A. (2015). Basin-effects Observed during the 2012 Emilia Earthquake Sequence in Northern Italy. Soil Dyn. Earthq. Eng. 78, 230–242. doi:10.1016/j.soildyn.2015.08.007 Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini, P. (2020). The Italian Earthquake Catalogue CPTI15. Bull. Earthq. Eng. 18 (7), 2953–2984. doi:10. 1007/s10518-020-00818-y Sambridge, M. (1999). Geophysical Inversion with a Neighbourhood Algorithm-I. Searching a Parameter Space. Geophys. J. Int. 138, 479–494. doi:10.1046/j.1365- 246x.1999.00876.x Sato, T., Graves, R. W., and Somerville, P. G. (1999). Three-dimensional Finite- Difference Simulations of Long-Period Strong Motions in the Tokyo Metropolitan Area during the 1990 Odawara Earthquake (MJ 5.1) and the Great 1923 Kanto Earthquake (MS 8.2) in Japan. Bull. Seismol. Soc. Am. 89 (3), 579–607. doi:10.1785/bssa0890030579 Scardia, G., De Franco, R., Muttoni, G., Rogledi, S., Caielli, G., Carcano, C., et al. (2012). Stratigraphic Evidence of a Middle Pleistocene Climate-driven Flexural Uplift in the Alps. Tectonics 31 (6), 3108. doi:10.1029/2012tc003108 Schnabel, P. B., Lysmer, J., and Seed, H. B. (1993). SHAKE-91: Equivalent Linear Seismic Response Analysis of Horizontally Layered Soil Deposits. Berkeley, CA, USA: The Earthquake Engineering Online Archive NISEE E-Library. Schnabel, P. B. (1972). SHAKE a Computer Program for Earthquake Response Analysis of Horizontally Layered Sites. Berkeley, CA, USA: EERC Report; University of California. Schneider, J. A., Mayne, P. W., and Rix, G. J. (2001). Geotechnical Site Characterization in the Greater Memphis Area Using Cone Penetration Tests. Eng. Geol. 62 (1-3), 169–184. doi:10.1016/s0013-7952(01)00060-6 SESAME (2004). Guidelines for the Implementation of H/V Spectral Ratio Technique on Ambient Vibration Measurements, Processing and Interpretation. Available at: http://sesame-fp5.obs.ujf-grenoble.fr/Delivrables/ Del-D23-HV_User_Guidelines.pdf Last accessed March, 2022). Somerville, P. G., Collins, N. F., Graves, R. W., and Pitarka, A. (2004). “An Engineering Ground Motion Model for Basin Generated Surface Waves,” in Proc. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 2004. Stephenson, W. J., Hartzell, S., Frankel, A. D., Asten,M., Carver, D. L., and Kim, W. Y. (2009). Site Characterization for Urban Seismic Hazards in Lower Manhattan, New York City, from Microtremor Array Analysis. Geophys. Res. Lett. 36 (3), 444. doi:10.1029/2008gl036444 Stucchi, M., Meletti, C., Montaldo, V., Crowley, H., Calvi, G. M., and Boschi, E. (2011). Seismic Hazard Assessment (2003-2009) for the Italian Building Code. Bull. Seismol. Soc. Am. 101, 1885–1911. doi:10.1785/0120100130 Sun, C.-G., Kim, H.-S., Chung, C.-K., and Chi, H.-C. (2014). Spatial Zonations for Regional Assessment of Seismic Site Effects in the Seoul Metropolitan Area. Soil Dyn. Earthq. Eng. 56, 44–56. doi:10.1016/j.soildyn.2013.10.003 Tarabusi, G., and Caputo, R. (2017). The Use of HVSR Measurements for Investigating Buried Tectonic Structures: the Mirandola Anticline, Northern Italy, as a Case Study. Int. J. Earth Sci. Geol. Rundsch) 106 (1), 341–353. doi:10. 1007/s00531-016-1322-3 Tragni, N., Calamita, G., Lastilla, L., Belloni, V., Ravanelli, R., Lupo, M., Salvia, V., and Gallipoli, M. R. (2021). Sharing Soil and Building Geophysical Data for Seismic Characterization of Cities Using CLARA WebGIS: A Case Study of Matera (Southern Italy). Appl. Sci. 11 (9), 4254. doi:10.3390/app11094254 ViDEPI project (2009). Visibilità dei dati afferenti all’attività di esplorazione petrolifera in Italia Ministero dello sviluppo economico DGRME - Società Geologica Italiana, Assomineraria. Available at: https://www.videpi.com. Vuan, A., Klin, P., Laurenzano, G., and Priolo, E. (2011). Far-Source Long-Period Displacement Response Spectra in the Po and Venetian Plains (Italy) from 3D Wavefield Simulations. Bull. Seismol. Soc. Am. 101 (3), 1055–1072. doi:10.1785/ 0120090371 Wang, J. H. (2008). Urban Seismology in the Taipei Metropolitan Area: Review and Prospective. TAO Terr. Atmos. Ocean. Sci. 19 (3), 2. doi:10.3319/tao.2008.19.3.213(t) Wathelet,M.,Chatelain, J.-L.,Cornou, C.,Giulio, G. D.,Guillier, B.,Ohrnberger,M., et al. (2020). Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seism. Soc. Lett. 91 (3), 1878–1889. doi:10.1785/0220190360 Wathelet, M., Jongmans, D., Ohrnberger, M., and Bonnefoy-Claudet, S. (2008). Array Performances for Ambient Vibrations on a Shallow Structure and Consequences over V S Inversion. J. Seismol. 12, 1–19. doi:10.1007/s10950-007-9067-x Wessel, P., and Smith, W. H. F. (1995). New Version of the Generic Mapping Tools. EOS Trans. AGU 76, 329. doi:10.1029/95eo00198; https://www.frontiersin.org/articles/10.3389/feart.2022.915083/full

  8. 8
    Academic Journal
  9. 9
    Dissertation/ Thesis
  10. 10
    Academic Journal

    المساهمون: The University of Newcastle. College of Engineering, Science & Environment, Global Centre for Environmental Remediation

    Relation: Frontiers in Environmental Science Vol. 9, Issue December, no. 756404; http://hdl.handle.net/1959.13/1455711; uon:45126

  11. 11
    Academic Journal

    المصدر: International Journal of Greenhouse Gas Control, 110

    وصف الملف: application/application/pdf

    Relation: info:eu-repo/semantics/altIdentifier/wos/000696710200003; http://hdl.handle.net/20.500.11850/497956

  12. 12
    Dissertation/ Thesis
  13. 13
  14. 14
  15. 15
    Report

    المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia

    وصف الملف: application/pdf

    Relation: Carta Geologica d’Italia in scala 1:100.000 (1943) - Foglio 150 - Roma. ISPRA http://193.206.192.231/carta_geologica_italia/tavoletta.php?foglio=150 Carta Geologica d’Italia in scala 1:50.000 (in press) - Foglio 375 - Tivoli. ISPRA https://www.isprambiente.gov.it/Media/carg/375_TIVOLI/Foglio.html Commissione Tecnica per la Microzonazione Sismica (2015). Microzonazione sismica. Standard di rappresentazione e archiviazione informatica, Versione 4.0b (Commissione tecnica inter-istituzionale per la MS nominata con DPCM 21 aprile 2011) Danese E. & Mattei M. (2010) - The sedimentary substrate of the Colli Albani volcano. In: Funiciello, R. & Giordano, G. (eds) The Colli Albani Volcano. Special Publication of IAVCEI, 3. The Geological Society, London, 000141-151000. De Rita D., Faccenna C., Funiciello R. & Rosa. C. (1995) - Stratigraphy and volcano-tectonics. In: Trigila R. (A cura di): «The Volcano of the Alban Hills», Tipografia Sgs Roma: 33-71. EN 1998-5 (2004). Eurocode 8: Design of structures for earthquake resistance - Part 5: Foundations, retaining structures and geotechnical aspects, CEN European Committee for Standardization, Bruxelles, Belgium. Funiciello R. & Giordano, G. (a cura di ) (2010) - The Colli Albani Volcano. Special Publication of IAVCEI, 3. The Geological Society, London, 401pp. Funiciello R. & Parotto M. (1978) - Il substrato sedimentario nell’area dei Colli Albani: considerazioni geodinamiche e paleogeografiche sul margine tirrenico dell’Appennino centrale. Geologica Romana. 17: 233-287. Giordano G., De Benedetti A.A., Diana A., Diano G., Gaudioso F., Marasco F., Miceli M., Mollo S., Cas R.A.F. & Funiciello R. (2006) - The Colli Albani caldera (Roma, Italy): stratigraphy, structure and petrology. In: R.A.F. Cas & G. Giordano (A cura di): «Explosive Mafic Volcanism», J. Volcanol. Geotherm. Res., Spec. Vol., 155: 49-80. Giordano G., Mattei M. & Funiciello R. (2010) - Geological map of the Colli Albani volcano. In: Funiciello, R. & Giordano, G. (eds) The Colli Albani Volcano. Special Publication of IAVCEI, 3. The Geological Society, London. Insert. Konno, K., Ohmachi, T., 1998. Ground-motion characteristics estimated from spec- tral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88, 228e241. Luzi L, Pacor F, Puglia R (2019). Italian Accelerometric Archive v3.0. Istituto Nazionale di Geofisica e Vulcanologia, Dipartimento della Protezione Civile Nazionale. doi:10.13127/itaca.3.0. Norme Tecniche per le Costruzioni (NTC08). Ministero delle infrastrutture e dei Trasporti (2008). Decreto Ministero Infrastrutture. GU Serie Generale n. 29 del 04-02-2008 - Suppl. Ordinario n. 30. Norme Tecniche per le Costruzioni (NTC18). Ministero delle infrastrutture e dei Trasporti (2018). Decreto Ministero Infrastrutture. GU Serie Generale n. 42 del 20-02-2018 – Suppl. Ordinario n. 8. Regione Lazio – Geoportale - https://geoportale.regione.lazio.it/geoportale/ Regione Lazio - Studio di Microzonazione Sismica di I Livello del Comune di Gallicano nel Lazio http://www.regione.lazio.it/binary/prl_ambiente/tbl_sismicita/AMB_UAS_RM_Gallicano_nel_Lazio_MOPS_TAV_01.pdf Sambridge, M., 1999. Geophysical inversion with a neighbourhood algorithm: I. Searching a parameter space. Geophys. J. Int. 138, 479e494. Wathelet, M., Jongmans, D., Ohrnberger, M., 2005. Direct inversion of spatial autocorrelation curves with the neighborhood algorithm. Bull. Seismol. Soc. Am. 95, 1787e1800.; http://hdl.handle.net/2122/15090

  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
  20. 20