يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"Sistemas de control pasivo"', وقت الاستعلام: 0.64s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
    Academic Journal

    المؤلفون: Cano Castaño, Hugo Alejandro

    المساهمون: Molina Herrera, Maritzabel, Villalba Morales, Jesús Daniel, Análisis, diseño y materiales - GIES

    وصف الملف: application/pdf

    Relation: A. Torres, S. Méndez-fajardo, L. López-kleine, y S. Galarza-molina, “Calidad de vida y ciudad : análisis del nivel de desarrollo en Bogotá a través del método de necesidades básicas insatisfechas”, Estud. Gerenciales, vol. 29, núm. 127, pp. 231–238, 2013.; AIS, Reglamento Colombiano de Construcción Sismo Resistente NSR-10. 2010.; G. Augusti, A. Baratta, y F. Casciati, Probabilistic methods in Structural Engineering. Taylor And Francis, 1984.; D. Valencia y G. Valencia, “Evaluación del coeficiente de disipación de energía , R , para algunos tipos de estructuras de acero”, Rev. Ing. e Investig., vol. 28, núm. 1, pp. 41–49, 2008.; ASCE, Minimum Design Loads and Associated Criteria for Buildings and Other Structures ASCE 7-16. 2017.; A. Navarro Gómez y J. L. Bonet, “Improving the seismic behaviour of reinforced concrete moment resisting frames by means of SMA bars and ultra-high performance concrete”, Eng. Struct., vol. 197, 2019.; D. Gómez, J. Marulanda, y P. Thomson, “Sistemas de Control para la Protección de Estructuras Civiles Sometidas a Cargas Dinámicas”, Dyna, vol. 75, núm. 155, pp. 77–89, 2008.; M. . Symans, F. A. Charney, A. Whittaker, M. C. Constantinou, y C. . Kircher, “Energy Dissipation Systems for Seismic Applications : Current Practice and Recent Developments”, J. Struct. Eng., vol. 134, núm. 1, pp. 3–21, 2008.; J. A. Oviedo y M. del pilar Duque, “Situación de las Técnicas de Control de Respuesta Sísmica en Colombia”, Rev. EIA, núm. 12, pp. 113–124, 2009.; J. G. Ardila Valencia, “Evaluación del Coeficiente de Disipación de Energía, R, para Edificios con un Sistema Estructural Combinado de Muros y Pórticos en Concreto, con Diferente Número de Pisos”, Universidad Nacional de Colombia, 2016.; R. Rochel Awad, Análisis y diseño sísmico de edificios, Fondo Edit. Medellín, 2012.; A. K. Chopra y R. K. Goel, “Modal Pushover Analysis of SAC Buildings”, Natl. Sci. Fund., pp. 1–10, 2001.; G. Villareal Castro y R. Oviedo Sarmiento, “Edificios con Disipadores de Energia”. Lima, Perú, 2009.; J. Cortés, “Alcaldía Mayor de Bogotá”, 2015. [En línea]. Disponible en: http://www.bogota.gov.co/article/hospital-el-tunal-25-años-trabajando-pensando-en-la-salud. [Consultado: 15-mar-2019].; R. J. McNamara, “Seismic Damage Control with Passive Energy Devices: A Case Study”. McNamara/Salvia Inc, Boston, 2003.; I. G. Buckle, “Passive control of structures for seismic loads”, en 12 h World Conference of Earthquake Engineering, 2000.; J. Oviedo Amézquita y M. Duque Uribe, “Sistemas de control de respuesta sísmica en edificaciones”, Rev. EIA, núm. 6, pp. 105–120, 2006.; H. Frahm, “Device for damping vibration of bodies”, 989958, 1909.; M. C. Constantinou y M. D. Symans, “Seismic response of structures with supplemental damping”, Struct. Des. Tall Build., vol. 2, pp. 77–92, 1993.; M. Sobarriba Gómez, “Efecto De Los Disipadores Metálicos De Energía Tipo ‘Adas’ Y ‘Tadas’ En La Respuesta Sísmica De Un Edificio Irregular”, Universidad Nacional de Ingeniería-Nicaragua, 2012.; I. Aiken, “Energy Dissipation Devices”, en 100th Anniversary Earthquake Conference Commemorating the 1906 San Francisco Earthquake, 2006.; Keh-Chyuan Tsai, Huan-Wei Chen, Ching-Ping Hong, y Yung-Feng Su, “Design of steel triangular plate energy absorbers for seismic-resistant construction”, Earthquake Spectra, vol. 9, núm. 3. pp. 505–528, 1993.; G. Palazzo, J. Francisco, y F. Crisafulli, “Evaluación De La Eficiencia De Disipadores Por Fluencia Usados Para La Rehabilitación De Pórticos”. Argentina.; R. Aguiar, M. Rodriguez, y E. David Mora, Análisis sísmico de estructuras con disipadores de energía ADAS o TADAS, núm. May. 2016.; J. M. Gere y B. J. Godno, Mecánica de materiales-Séptima Ed., Séptima. México D.F., 2009.; L. E. García Reyes, Dinámica estructural aplicada al diseño sísmico. Bogotá, Colombia: Universidad de Los Andes, 1998.; M. A. Vidal, “Análisis y diseño de estructuras con disipadores de energía metálicos en base a criterios de desempeño”, Universidad Austral de Chile, 2008.; Federal Emergency Management Agency (FEMA), “NEHRP guidelines for the seismic rehabilitation of buildings: FEMA 273 report”, núm. October. Washington D.C., USA, p. 435, 1997.; T. . Soong y G. . Dargush, Passive Energy Dissipation in Structural Engineering. United Kingdom: John Wiley & Sons Ltda, 1997.; J. A. Oviedo, M. Midorikawa, y T. Asari, “Earthquake response of ten-story story-drift-controlled reinforced concrete frames with hysteretic dampers”, Eng. Struct., vol. 32, núm. 6, pp. 1735–1746, 2010.; J. A. Andrés Oviedo, M. Midorikawa, y T. Asari, “Optimum Strength Ratio of Buckling-Restrained Braces As Hysteretic Energy Dissipation Devices Installed in R/C Frames”, en The 14th World Conference on Earthquake Engineering, 2008.; R. D. Hanson, C. Xia, y Y.-F. Su, “Design of Supplemtal Steel Damping Device for Buildings”, en Earthquake Engineering Tenth World Conference, 1992.; H. de J. Nangullasmú y A. Tena, “Requisitos mínimos de detellado dúctil en marcos de concreto reforzado protegidos con disipadores histeréticos de energía”, Rev. Ing. Sísmica, núm. 95, pp. 1–32, 2016.; C. Xia y R. D. Hanson, “Influence of ADAS Element Parameters on Building Seismic Response”, J. Struct. Eng., vol. 118, núm. 7, pp. 1903–1918, 1992.; A. Teran-Gilmore y N. Virto-Cambray, “Displacement-based preliminary design of low-rise buildings stiffened with buckling-restrained braces”, en 9th US National and 10th Canadian Conference on Earthquake Engineering, 2010.; J. Kim y Y. Seo, “Seismic design of low-rise steel frames with buckling-restrained braces”, Eng. Struct., vol. 26, núm. 5, pp. 543–551, 2004.; A. Kawano y H. Hirata, “A method to improve the distribution of story drift angle responses in multi-story building with hysteretic dampers under earthquake excitations”, J. Struct. Constr. Eng., vol. 73, núm. 634, pp. 2247–2251, 2008.; T. Ishii, T. Mukai, H. Kitamura, T. Shimizu, K. Fuijisawa, y Y. Ishida, “Seismic retrofit for existing R/C Building using energy dissipative braces”, en 13 th World Conference on Earthquake Engineering, 2004.; N. Izumi, O. Chiba, K. Takahashi, y S. Iizuka, “Earthquake resistant performance of reinforcement concrete frames with energy dissipation devices.”, en 13 th World Conference on Earthquake Engineering, 2004.; J. A. Oviedo-amezquita, M. Mitsumasa, y A. Tetsuhiro, “Seismic Performance of Story-Drift-Controlled Reinforced Concrete Frames With Hysteretic Dampers”, Earthq. Spectra, vol. 28, núm. 4, pp. 1569–1587, 2012.; C. D. (Applied T. C. Comartin y R. W. (Applied T. C. Niewiarowski, “ATC40-Seismic evaluation and retrofit of existing reinforced concrete buildings-Volume 1”. p. 346, 1996.; M. Mora, J. Villalba, y E. Maldonado Rondón, “Deficiencias, limitaciones, ventajas y desventajas de las metodologías de análisis sísmico no lineal”, Rev. Ing. Univ. Medellín, vol. 5, núm. 9, pp. 59–74, 2006.; N. M. Newmark y W. J. Hall, “Procedures and criteria for earthquake resistant design”, en Building Practices for Disaster Mitigation, National Bureau of Standards, Building Science Series 46, 1972, pp. 209–236.; Federal Emergency Management Agency (FEMA), “NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures ( FEMA 450 )”. Washington D.C., USA, 2003.; P. Fajfar, “Structural analysis in earthquake engineering—a breakthrough of simplified non-linear methods”, en 12th European conference on earthquake engineering, 2002.; M. Mahmoudi y M. G. Abdi, “Evaluating response modification factors of TADAS frames”, J. Constr. Steel Res., vol. 71, pp. 162–170, 2012.; M. TahamouliRoudsari, M. B. Eslamimanesh, A. R. Entezari, O. Noori, y M. Torkaman, “Experimental Assessment of Retrofitting RC Moment Resisting Frames with ADAS and TADAS Yielding Dampers”, Structures, vol. 14, núm. February, pp. 75–87, 2018.; https://repositorio.unal.edu.co/handle/unal/78657

  3. 3
  4. 4
    Dissertation/ Thesis

    المساهمون: Molina Herrera, Maritzabel, Villalba Morales, Jesús Daniel, Análisis, Diseño y Materiales Gies, orcid:0000-0003-3721-059X, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000182645, https://www.researchgate.net/profile/Luis-Caballero-Castro

    وصف الملف: xix, 273 páginas; application/pdf

    Relation: IS, A. C. de I. S. (2009). Estudio General de Amenaza Sísmica. 1–229. http://www.rcrisis.com/Content/files/EstudioGeneraldeAmenazaSismicadeColombia2009_AIS_lo wres.pdf; AIS, A. C. de I. Sísmica. (2010). NSR10. Reglamento Colombiano De Construcción Sismo Resistente Nsr-10, 590.; American Society of Civil Engineers. (2016). ASCE STANDARD ASCE/SEI 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures. In ANSI/ASCE Standard (Issue 7 98).; Andrade García, C. (2015). perfiles I de acero - viga conectada al eje débil de la columna. 357.; Caballero, L. F., Molina, M., & Villalba, J. D. (2022). Caracterización mecánica y modelación estructural de un disipador pasivo de energía metálico triangular tipo TADAS. https://www.researchgate.net/publication/361354173; Cano Castaño, H. (2020). Evaluación del coeficiente de disipación de energía R, en edificaciones de concreto reforzado con disipadores histeréticos metálicos triangulares tipo TADAS, ubicados en zona de amenaza sísmica alta.; Daza-duarte, L. G. (2003). MODIFICACIÓN DE RESPUESTA. 1, 33–48.; Fajfar, P. (2002). Structural analysis in earthquake engineering—a breakthrough of simplified non-linear methods. 12th European Conference on Earthquake Engineering, c, 1–20.; Keh-Chyuan Tsai, Huan-Wei Chen, Ching-Ping Hong, & Yung-Feng Su. (1993). Design of steel triangular plate energy absorbers for seismic-resistant construction. In Earthquake Spectra (Vol. 9, Issue 3, pp. 505–528). https://doi.org/10.1193/1.1585727; Mahmoudi, M., & Abdi, M. G. (2012b). Evaluating response modification factors of TADAS frames. Journal of Constructional Steel Research, 71, 162–170. https://doi.org/10.1016/j.jcsr.2011.10.015; Oviedo A., J. A., Midorikawa, M., & Asari, T. (2010). Earthquake response of ten-story story-drift-controlled reinforced concrete frames with hysteretic dampers. Engineering Structures, 32(6), 1735–1746. https://doi.org/10.1016/j.engstruct.2010.02.025; Rodriguez, M. M., Mora, D., & Aguiar, R. (2016). Análisis Sísmico de Estructuras con Disipadores de Energía ADAS o TADAS (Issue May). https://www.researchgate.net/publication/303256522; Saeedi, F., Shabakhty, N., & Mousavi, S. R. (2016). Seismic assessment of steel frames with triangular-plate added damping and stiffness devices. Journal of Constructional Steel Research, 125, 15–25. https://doi.org/10.1016/j.jcsr.2016.06.011; Soong, T., & Dargush, G. F. (1999). Passive Energy Dissipation Systems in Structural Engineering. In Journal of Engineering Mechanics (Vol. 125, Issue 3). https://doi.org/10.1061/(asce)0733-9399(1999)125:3(371); TahamouliRoudsari, M., Eslamimanesh, M. B., Entezari, A. R., Noori, O., & Torkaman, M. (2018). Experimental Assessment of Retrofitting RC Moment Resisting Frames with ADAS and TADAS Yielding Dampers. Structures, 14, 75–87. https://doi.org/10.1016/j.istruc.2018.02.005; Valencia Restrepo, D., & Valencia Clement, G. (2008). Evaluación del coeficiente de disipación de energía, R, para algunos tipos de estructuras de acero. Ingeniería e Investigación, 28(1), 41–49.; Xia chuan. (1992). INFLUENCE O F ADAS E L E M E N T PARAMETERS ON. 118(7), 1903–1918.; https://repositorio.unal.edu.co/handle/unal/82844; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  5. 5
  6. 6
    Dissertation/ Thesis

    المساهمون: Molina Herrera, Maritzabel, Villalba Morales, Jesús Daniel, Análisis, Diseño y Materiales Gies

    وصف الملف: vi, 224 páginas; application/pdf

    Relation: AIS, “Reglamento Colombiano de Construcción Sismo Resistente NSR 10,” 2010.; C. López, R. Retamales, and T. Kannegiesser, Protección Sísmica de Estructuras, 29th ed. Corporación de desarrollo tecnológico, 2011.; L. Di Sarno and A. S. Elnashai, “Innovative strategies for seismic retrofitting of steel and composite structures,” Prog. Struct. Eng. Mater., vol. 7, no. 3, pp. 115–135, 2005.; Federal Emergency Management Agency - FEMA, “NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings,” 1997.; J. Marko, D. Thambiratnam, and N. Perera, “Influence of damping systems on building structures subject to seismic effects,” Eng. Struct., no. 13, 2004.; A. Javanmardi, Z. Ibrahim, K. Ghaedi, H. Benisi Ghadim, and M. U. Hanif, “State-of-the-Art Review of Metallic Dampers: Testing, Development and Implementation,” Arch. Comput. Methods Eng., vol. 27, no. 2, pp. 455–478, 2020.; J. A. Oviedo and M. P. Duque, “Situación de las técnicas de control de respuesta sísmica en Colombia,” Rev. EIA, vol. 12, pp. 113–124, 2009.; J. Pimiento, A. Salas, and D. Ruiz, “Desempeño sísmico de un pórtico con disipadores de energía pasivos de placas ranuradas de acero,” Rev. Ing. Constr., vol. 29, no. 3, pp. 283–298, 2014.; S. Garivani, A. A. Aghakouchak, and S. Shahbeyk, “Seismic Behavior of Steel Frames Equipped with Comb-Teeth Metallic Yielding Dampers,” Int. J. Steel Struct., vol. 19, no. 4, pp. 1070–1083, 2019.; S. Garivani, A. A. Aghakouchak, and S. Shahbeyk, “Numerical and experimental study of comb-teeth metallic yielding dampers,” Int. J. Steel Struct., vol. 16, no. 1, pp. 177–196, 2016.; V. Budaházy, “Uniaxial cyclic steel behavior and model for dissipative structures Theses of the PhD Dissertation Supervisor,” 2015.; R. K. Mohammadi, A. Nasri, and A. Ghaffary, “TADAS dampers in very large deformations,” Int. J. Steel Struct., vol. 17, no. 2, pp. 515–524, 2017.; T. Paulay and M. J. N. Priestley, “Seismic Design Of Reinforced Concrete And Masonry Buildings.” Wiley,New York, 1992.; M. J. N. Priestley, G. M. Calvi, and M. J. Kowalsky, “Displacement-Based Seismic Design of Structures. IUSS Press.” 2007.; C. Christopoulos and A. Filiatrault, “Principles of Passive Supplemental Damping and Seismic Isolation.” IUSS Press, 2006.; M. Mahmoudi and M. Zaree, “Determination the response modification factors of buckling restrained braced frames,” Procedia Eng., vol. 54, no. 2005, pp. 222–231, 2013.; M. C. Constantinou, T. T. Soong, and G. F. Dargush, Passive Energy Dissipation Systems for Structural Design and Retrofit. Multidisciplinary Center for Earthquake Engineering Research, 1998.; Keh-Chyuan Tsai, Huan-Wei Chen, Ching-Ping Hong, and Yung-Feng Su, “Design of steel triangular plate energy absorbers for seismic-resistant construction,” Earthquake Spectra, vol. 9, no. 3. pp. 505–528, 1993.; S. Garivani, “Experimental and numerical study of metallic yielding damper with appropriate characteristics for application in simple steel frames,” Tarbiat Modares University (In persian), 2015.; D. R. Teruna, T. A. Majid, and B. Budiono, “Experimental study of hysteretic steel damper for energy dissipation capacity,” Adv. Civ. Eng., vol. 2015, no. Figure 2, 2015.; V. Budaházy and L. Dunai, “Parameter-refreshed Chaboche model for mild steel cyclic plasticity behavior,” Period. Polytech. Civ. Eng., vol. 57, no. 2, pp. 139–155, 2013.; G. Cailletaud, K. Saï, and L. Taleb, Multi-mechanism Modeling of Inelastic Material Behavior, vol. 11, no. 19. London: John Wiley & Sons, Inc., 2018.; M. G. Lee and F. Barlat, Modeling of Plastic Yielding, Anisotropic Flow, and the Bauschinger Effect, vol. 2. Elsevier, 2014.; J. L. Chaboche and G. Rousselier, “On the plastic and viscoplastic constitutive equations, Parts I and II,” J. Press. Vessel Technol. Trans. ASME, vol. 105, no. 2, pp. 153–158, 1983.; J. L. J.-L. Chaboche, Mechanics of solid materials, vol. 19, no. 1. Cambridge University Press, 1994.; M. Ottosen, N. S., Ristinmaa, “The mechanics of constitutive modeling,” Elsevier, 2005.; G. R. Bhashyam, “ANSYS Mechanical — A Powerful Nonlinear Simulation Tool,” ANSYS, Inc., 2002.; Ansys Inc., “Mechanical APDL Element Reference,” no. November. Ansys Inc., Canonsburg, PA, 2010.; M. K. Thompson and J. M. Thompson, ANSYS Mechanical APDL for Finite Element Analysis. 2017.; V. Budaházy and L. Dunai, “Chaboche-based cyclic material model for steel and its numerical application,” Proc. 9th fib Int. PhD Symp. Civ. Eng., pp. 555–560, 2012.; S. F. Jacques Besson, Georges Cailletaud, Jean-Louis Chaboche, Non-Linear Mechanics of Materials. Netherlands: Springer, 2010.; J. L. Chaboche and D. Nouailhas, “Constitutive modeling of ratchetting effects-part I: Experimental facts and properties of the classical models,” J. Eng. Mater. Technol. Trans. ASME, vol. 111, no. 4, pp. 384–392, 1989.; Y. Huang, “Simulating the Inelastic Seismic Behavior of Steel Braced Frames Including the Effects of Low-Cycle Fatigue,” University of California, Berkeley, 2009.; S. Ahn, T., Kim, Y., Park, J., Kim H., Jang, D., Oh, “Development of New Steel Damper for Seismic Retrofit of Existing Structures,” 15th World Conf. Earthq. Eng., 2012.; K. Ghabraie, R. Chan, X. Huang, and Y. M. Xie, “Shape optimization of metallic yielding devices for passive mitigation of seismic energy,” Eng. Struct., vol. 32, no. 8, pp. 2258–2267, 2010.; H. Hernandez Ramirez and A. Tena Colunga, “Evaluación Del Diseño Sísmico Resiliente Conforme Al Método De Las Fuerzas De Marcos Dúctiles De Acero Con Disipadores De Energía Histeréticos,” Rev. Ing. Sísmica, vol. 76, no. 98, p. 45, 2018.; AISC, Steel Construction Manual, 15 th. American Institute of Steel Construction, 2017.; AISC, “Specification for Structural Steel Buildings, ANSI / AISC 360-16,” Am. Inst. Steel Constr., p. 676, 2016.; AISC, “Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16,” Am. Inst. Steel Constr., pp. 355–410, 2016.; ANSI/AISC 358-16, “Prequalified connections for pecial and intermediate steel moment frames for seismic applications,” Am. Inst. Steel Constr., no. 1, p. 284, 2016.; American Institute of Steel Construction, Steel Design Guide 29: Vertical Bracing Connections — Analysis and Design. AISC, 2014.; Z. Li, G. Shu, and Z. Huang, “Development and cyclic testing of an innovative shear-bending combined metallic damper,” J. Constr. Steel Res., vol. 158, pp. 28–40, 2019.; M. Seif, J. Main, J. Weigand, T. P. McAllister, and W. Luecke, “Finite element modeling of structural steel component failure at elevated temperatures,” Structures, vol. 6, pp. 134–145, 2016.; J. Montgomery, “Methods for Modeling Bolts in the Bolted Joint,” ANSYS User’s Conf., no. Figure 2, p. 15, 2002.; American Society of Civil Engineers, ASCE standard, ASCE/SEI, 41-17, seismic evaluation and retrofit of existing buildings, no. June. 2017.; EN1993-1-5, “Eurocode 3: Design of steel structures - Part 1-5: General rules - Plated structural elements,” CEN, Brussels, vol. 5, no. 2006, p. 53, 2006.; https://repositorio.unal.edu.co/handle/unal/80880; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/