-
1Academic Journal
المؤلفون: Cortese, Francesca, De Angelis, Flavio, Bontempo, Luana, Carrara, Nicola, Cuda, Maria Teresa, Longa, Elisa Dalla, Cecchi, Iacopo Moggi, Sarti, Lucia, Silvestri, Letizia, Rickards, Olga, Rolfo, Mario Federico
المساهمون: Ministero dell'Istruzione dell'Università e della Ricerca, Prehistoric Society
المصدر: Data in Brief ; volume 57, page 111000 ; ISSN 2352-3409
-
2Dissertation/ Thesis
-
3Academic Journal
المؤلفون: Cortese, Francesca, De Angelis, Flavio, Achino, Katia Francesca, Bontempo, Luana, di Cicco, Maria Rosa, Gatta, Maurizio, Lubritto, Carmine, Salari, Leonardo, Silvestri, Letizia, Rickards, Olga, Rolfo, Mario Federico
المصدر: Archaeological and Anthropological Sciences, 2022, Vol.14(10) [Peer Reviewed Journal]
وصف الملف: application/pdf
Relation: dro:37425; http://dro.dur.ac.uk/37425/; https://doi.org/10.1007/s12520-022-01673-5; http://dro.dur.ac.uk/37425/1/37425.pdf
-
4Academic Journal
المؤلفون: Rolfo, Mario Federico, Cortese, Francesca, Achino, Katia Francesca, Gatta, Maurizio, Salari, Leonardo, Silvestri, Letizia
المصدر: IpoTESI di Preistoria; V. 14 (2021); 1-14 ; IpoTesi di Preistoria; Vol. 14 (2021); 1-14 ; 1974-7985
مصطلحات موضوعية: Central Italy, Cave archaeology, Italian Protohistory, Cave stratigraphy, Archaeology of ritual, Italia centrale, Archeologia delle grotte, Protostoria italiana, Stratigrafia delle grotte, Archeologia del rituale
وصف الملف: application/pdf
Relation: https://ipotesidipreistoria.unibo.it/article/view/14323/13908; https://ipotesidipreistoria.unibo.it/article/view/14323
-
5Academic Journal
المؤلفون: Saupe, Tina, Montinaro, Francesco, Scaggion, Cinzia, Carrara, Nicola, Kivisild, Toomas, D'Atanasio, Eugenia, Hui, Ruoyun, Solnik, Anu, Lebrasseur, Ophélie, Larson, Greger, Alessandri, Luca, Arienzo, Ilenia, De Angelis, Flavio, Rolfo, Mario Federico, Skeates, Robin, Silvestri, Letizia, Beckett, Jessica, Talamo, Sahra, Dolfini, Andrea, Miari, Monica, Metspalu, Mait, Benazzi, Stefano, Capelli, Cristian, Pagani, Luca, Scheib, Christiana
المساهمون: Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia, Department of Biology-Genetics, University of Bari, Via E. Orabona, 4, Bari 70124, Italy - Department of Geosciences, University of Padova, Via Gradenigo 6, Padova 35131, Italy, Department of Geosciences, University of Padova, Via Gradenigo 6, Padova 35131, Italy, Museum of Anthropology, University of Padova, Palazzo Cavalli, via Giotto 1, Padova 35121, Italy, Department of Human Genetics, KU Leuven, Leuven, Herestraat 49 3000, Belgium 6Institute of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, Rome 00185, Italy 7McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK, Institute of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, Rome 00185, Italy 7McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK, McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK, Core Facility, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia, Department of Archaeology, Classics and Egyptology, University of Liverpool, 12-14 Abercromby Square, Liverpool L69 7WZ, UK - Palaeogenomics & Bio-Archaeology Research Network, School of Archaeology, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK 11Groningen Institute of Archaeology, University of Groningen, Poststraat 6, Groningen 9712, the Netherlands 12Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Via Diocleziano 328, Naples 80125, Ital, Groningen Institute of Archaeology, University of Groningen, Poststraat 6, Groningen 9712, the Netherlands, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome ‘‘Tor Vergata,’’ Via della Ricerca Scientifica 1, Rome 00133, Italy, Department of History, Culture and Society, University of Rome ‘‘Tor Vergata,’’ Via Columbia 1, Rome 00133, Italy, Department of Archaeology, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK, Independent scholar, Cagliari, Italy, Department of Chemistry ‘‘Giacomo Ciamician,’’ University of Bologna, Via Selmi 2, Bologna 40126, Italy - Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany, School of History, Classics and Archaeology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK, School of HistorySuperintendency of Archeology, Fine Arts and Landscape for the metropolitan city of Bologna and the provinces of Modena, Reggio Emilia and Ferrara, Comune di Bologna, Sede Via Belle Arti n. 52, Bologna 40126, Italy, Department of Cultural Heritage, University of Bologna, Via degli Ariani, 1, Ravenna 40126, Italy, Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK - Dipartimento di Scienze Chimiche, della Vita e della Sostenibilita` Ambientale, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy, Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia - Department of Biology, University of Padova, Via U. Bassi, 58/B, Padova 35122, Italy, Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia - St. John’s College, University of Cambridge, St. John’s Street, Cambridge CB2 1TP, UK
مصطلحات موضوعية: ancient DNA, gene flow, genome-wide shotgun data, human population genetics, immunity, isotopes, kinship, later prehistory
وصف الملف: application/pdf
Relation: Current biology; 12/31(2021); Pearce, M. (2019). The ‘‘copper age’’—a history of the concept. J. World Prehist. 32, 229–250. 2. Dolfini, A. (2020). From the Neolithic to the Bronze Age in Central Italy: settlement, burial, and social change at the dawn of metal production. J. Archaeol. Res. 28, 503–556. 3. Skoglund, P., Malmstro¨ m, H., Raghavan, M., Stora˚ , J., Hall, P., Willerslev, E., Gilbert, M.T.P., Go¨ therstro¨ m, A., and Jakobsson, M. (2012). Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469. 4. Mathieson, I., Alpaslan-Roodenberg, S., Posth, C., Szecs enyi-Nagy, A., Rohland, N., Mallick, S., Olalde, I., Broomandkhoshbacht, N., Candilio, F., Cheronet, O., et al. (2018). The genomic history of southeastern Europe. Nature 555, 197–203. 5. Hofmanova´ , Z., Kreutzer, S., Hellenthal, G., Sell, C., Diekmann, Y., Dı´ez Del-Molino, D., van Dorp, L., Lo´ pez, S., Kousathanas, A., Link, V., et al. (2016). Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl. Acad. Sci. USA 113, 6886–6891. 6. Lazaridis, I., Patterson, N., Mittnik, A., Renaud, G., Mallick, S., Kirsanow, K., Sudmant, P.H., Schraiber, J.G., Castellano, S., Lipson, M., et al. (2014). Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413. 7. Allentoft, M.E., Sikora, M., Sjo¨ gren, K.-G., Rasmussen, S., Rasmussen, M., Stenderup, J., Damgaard, P.B., Schroeder, H., Ahlstro¨ m, T., Vinner, L., et al. (2015). Population genomics of Bronze Age Eurasia. Nature 522, 167–172. 8. Olalde, I., Mallick, S., Patterson, N., Rohland, N., Villalba-Mouco, V., Silva, M., Dulias, K., Edwards, C.J., Gandini, F., Pala, M., et al. (2019). The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234. 9. Olalde, I., Brace, S., Allentoft, M.E., Armit, I., Kristiansen, K., Booth, T., Rohland, N., Mallick, S., Szecs enyi-Nagy, A., Mittnik, A., et al. (2018). The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196. 10. Haak, W., Lazaridis, I., Patterson, N., Rohland, N., Mallick, S., Llamas, B., Brandt, G., Nordenfelt, S., Harney, E., Stewardson, K., et al. (2015). Massive migration from the steppe was a source for Indo-European lan guages in Europe. Nature 522, 207–211. 11. Raveane, A., Aneli, S., Montinaro, F., Athanasiadis, G., Barlera, S., Birolo, G., Boncoraglio, G., Di Blasio, A.M., Di Gaetano, C., Pagani, L., et al. (2019). Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in Southern Europe. Sci. Adv. 5, eaaw3492. 12. Lazaridis, I., Mittnik, A., Patterson, N., Mallick, S., Rohland, N., Pfrengle, S., Furtwangler, A., Peltzer, A., Posth, C., Vasilakis, A., et al. (2017). € Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218. 13. Antonio, M.L., Gao, Z., Moots, H.M., Lucci, M., Candilio, F., Sawyer, S., Oberreiter, V., Calderon, D., Devitofranceschi, K., Aikens, R.C., et al. (2019). Ancient Rome: a genetic crossroads of Europe and the Mediterranean. Science 366, 708–714. 14. Keller, A., Graefen, A., Ball, M., Matzas, M., Boisguerin, V., Maixner, F., Leidinger, P., Backes, C., Khairat, R., Forster, M., et al. (2012). New in sights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat. Commun. 3, 698. 15. Fu, Q., Posth, C., Hajdinjak, M., Petr, M., Mallick, S., Fernandes, D., Furtwangler, A., Haak, W., Meyer, M., Mittnik, A., et al. (2016). The ge- € netic history of Ice Age Europe. Nature 534, 200–205. 16. Fernandes, D.M., Mittnik, A., Olalde, I., Lazaridis, I., Cheronet, O., Rohland, N., Mallick, S., Bernardos, R., Broomandkhoshbacht, N., Carlsson, J., et al. (2020). The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nat. Ecol. Evol. 4, 334–345. 17. Marcus, J.H., Posth, C., Ringbauer, H., Lai, L., Skeates, R., Sidore, C., Beckett, J., Furtwangler, A., Olivieri, A., Chiang, C.W.K., et al. (2020). € Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun. 11, 939. 18. Mittnik, A., Massy, K., Knipper, C., Wittenborn, F., Friedrich, R., Pfrengle, S., Burri, M., Carlichi-Witjes, N., Deeg, H., Furtwangler, A., et al. (2019). € Kinship-based social inequality in Bronze Age Europe. Science 366, 731–734. Schroeder, H., Margaryan, A., Szmyt, M., Theulot, B., W1odarczak, P., Rasmussen, S., Gopalakrishnan, S., Szczepanek, A., Konopka, T., Jensen, T.Z.T., et al. (2019). Unraveling ancestry, kinship, and violence in a Late Neolithic mass grave. Proc. Natl. Acad. Sci. USA 116, 10705– 10710. 20. Racimo, F., Sikora, M., Vander Linden, M., Schroeder, H., and Lalueza Fox, C. (2020). Beyond broad strokes: sociocultural insights from the study of ancient genomes. Nat. Rev. Genet. 21, 355–366. 21. Sa´ nchez-Quinto, F., Malmstro¨ m, H., Fraser, M., Girdland-Flink, L., Svensson, E.M., Simo˜ es, L.G., George, R., Hollfelder, N., Burenhult, G., Noble, G., et al. (2019). Megalithic tombs in western and northern Neolithic Europe were linked to a kindred society. Proc. Natl. Acad. Sci. USA 116, 9469–9474. 22. Scheib, C.L., Hui, R., D’Atanasio, E., Wohns, A.W., Inskip, S.A., Rose, A., Cessford, C., O’Connell, T.C., Robb, J.E., Evans, C., et al. (2019). East Anglian early Neolithic monument burial linked to contemporary Megaliths. Ann. Hum. Biol. 46, 145–149. 23. Saag, L., Varul, L., Scheib, C.L., Stenderup, J., Allentoft, M.E., Saag, L., Pagani, L., Reidla, M., Tambets, K., Metspalu, E., et al. (2017). Extensive farming in Estonia started through a sex-biased migration from the Steppe. Curr. Biol. 27, 2185–2193.e6. 24. Martiniano, R., Cassidy, L.M., O´ ’Maoldu´ in, R., McLaughlin, R., Silva, N.M., Manco, L., Fidalgo, D., Pereira, T., Coelho, M.J., Serra, M., et al. (2017). The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplo type-based methods. PLoS Genet. 13, e1006852. 25. Knipper, C., Mittnik, A., Massy, K., Kociumaka, C., Kucukkalipci, I., Maus, M., Wittenborn, F., Metz, S.E., Staskiewicz, A., Krause, J., and Stockhammer, P.W. (2017). Female exogamy and gene pool diversifica tion at the transition from the Final Neolithic to the Early Bronze Age in central Europe. Proc. Natl. Acad. Sci. USA 114, 10083–10088. 26. Furholt, M. (2019). Re-integrating archaeology: a contribution to aDNA studies and the migration discourse on the 3rd millennium BC in Europe. Proc. Prehist. Soc. 85, 115–129. 27. Olalde, I., Allentoft, M.E., Sa´ nchez-Quinto, F., Santpere, G., Chiang, C.W.K., DeGiorgio, M., Prado-Martinez, J., Rodrı´guez, J.A., Rasmussen, S., Quilez, J., et al. (2014). Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228. 28. Brace, S., Diekmann, Y., Booth, T.J., van Dorp, L., Faltyskova, Z., Rohland, N., Mallick, S., Olalde, I., Ferry, M., Michel, M., et al. (2019). Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 3, 765–771. 29. Saag, L., Laneman, M., Varul, L., Malve, M., Valk, H., Razzak, M.A., Shirobokov, I.G., Khartanovich, V.I., Mikhaylova, E.R., Kushniarevich, A., et al. (2019). The arrival of Siberian ancestry connecting the Eastern Baltic to Uralic speakers further East. Curr. Biol. 29, 1701–1711.e16. 30. Wilde, S., Timpson, A., Kirsanow, K., Kaiser, E., Kayser, M., Unterlander, € M., Hollfelder, N., Potekhina, I.D., Schier, W., Thomas, M.G., and Burger, J. (2014). Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc. Natl. Acad. Sci. USA 111, 4832–4837. 31. Mathieson, S., and Mathieson, I. (2018). FADS1 and the timing of human adaptation to agriculture. Mol. Biol. Evol. 35, 2957–2970. 32. Roberts, C.A., Lewis, M.E., and Manchester, K. (2002). The past and pre sent of leprosy: archaeological, historical, palaeopathological and clinical approaches. In Proceedings of the 3rd International Congress on the Evolution and Palaeoepidemiology of the Infectious Diseases, ICEPID, 26-31 July 1999, University of Bradford, C.A. Roberts, et al., eds. (Archaeopress). 33. Mariotti, V., Dutour, O., Belcastro, M.G., Facchini, F., and Brasili, P. (2005). Probable early presence of leprosy in Europe in a Celtic skeleton of the 4th-3rd century BC (Casalecchio di Reno, Bologna, Italy). Int. J. Osteoarchaeol. 15, 311–325. 34. Kalisch, P.A. (1975). An overview of research on the history of leprosy. Part 1. From Celsus to Simpson, Circa. 1 AD Part 2. From Virchow to Møller-Christense, 1845-1973. Int. J. Lepr. Other Mycobact. Dis. 43, 129–144. 35. Schuring, R.P., Hamann, L., Faber, W.R., Pahan, D., Richardus, J.H., Schumann, R.R., and Oskam, L. (2009). Polymorphism N248S in the hu man Toll-like receptor 1 gene is related to leprosy and leprosy reactions. J. Infect. Dis. 199, 1816–1819. 36. Wong, S.H., Gochhait, S., Malhotra, D., Pettersson, F.H., Teo, Y.Y., Khor, C.C., Rautanen, A., Chapman, S.J., Mills, T.C., Srivastava, A., et al. (2010). Leprosy and the adaptation of human toll-like receptor 1. PLoS Pathog. 6, e1000979. 37. Sapkota, B.R., Macdonald, M., Berrington, W.R., Misch, E.A., Ranjit, C., Siddiqui, M.R., Kaplan, G., and Hawn, T.R. (2010). Association of TNF, MBL, and VDR polymorphisms with leprosy phenotypes. Hum. Immunol. 71, 992–998. 38. Misch, E.A., Macdonald, M., Ranjit, C., Sapkota, B.R., Wells, R.D., Siddiqui, M.R., Kaplan, G., and Hawn, T.R. (2008). Human TLR1 defi ciency is associated with impaired mycobacterial signaling and protec tion from leprosy reversal reaction. PLoS Negl. Trop. Dis. 2, e231. 39. Krause-Kyora, B., Nutsua, M., Boehme, L., Pierini, F., Pedersen, D.D., Kornell, S.-C., Drichel, D., Bonazzi, M., Mo¨ bus, L., Tarp, P., et al. (2018). Ancient DNA study reveals HLA susceptibility locus for leprosy in medieval Europeans. Nat. Commun. 9, 1569. 40. Monroy Kuhn, J.M., Jakobsson, M., and Gu¨ nther, T. (2018). Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491. 41. Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., Butzin, M., Cheng, H., Lawrence Edwards, R., Friedrich, M., et al. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62, 725–757. 42. Stuiver, M., Reimer, P.J., and Reimer, R.W. (2021). CABLIB 8.2. http:// calib.org/calib/. 43. Ramsey, C.B. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. 44. Patterson, N., Price, A.L., and Reich, D. (2006). Population structure and eigenanalysis. PLoS Genet. 2, e190. 45. Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., and Reich, D. (2006). Principal components analysis corrects for stratifi cation in genome-wide association studies. Nat. Genet. 38, 904–909. 46. Lazaridis, I., Nadel, D., Rollefson, G., Merrett, D.C., Rohland, N., Mallick, S., Fernandes, D., Novak, M., Gamarra, B., Sirak, K., et al. (2016). Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424. 47. Lipson, M., Szecs enyi-Nagy, A., Mallick, S., Po ´ sa, A., Stegma ´r, B., Keerl, V., Rohland, N., Stewardson, K., Ferry, M., Michel, M., et al. (2017). Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372. 48. Brunel, S., Bennett, E.A., Cardin, L., Garraud, D., Barrand Emam, H., Beylier, A., Boulestin, B., Chenal, F., Ciesielski, E., Convertini, F., et al. (2020). Ancient genomes from present-day France unveil 7,000 years of its demographic history. Proc. Natl. Acad. Sci. USA 117, 12791– 12798. 49. Rivollat, M., Jeong, C., Schiffels, S., Ku¨ c¸ u¨ kkalıpc¸ ı, _ I., Pemonge, M.-H., Rohrlach, A.B., Alt, K.W., Binder, D., Friederich, S., Ghesquie`re, E., et al. (2020). Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344. 50. Shennan, S. (2018). The First Farmers of Europe: An Evolutionary Perspective (Cambridge University Press). 51. Sarno, S., Boattini, A., Pagani, L., Sazzini, M., De Fanti, S., Quagliariello, A., Gnecchi Ruscone, G.A., Guichard, E., Ciani, G., Bortolini, E., et al. (2017). Ancient and recent admixture layers in Sicily and Southern Italy race multiple migration routes along the Mediterranean. Sci. Rep. 7, 1984. 52. Joseph, T.A., and Pe’er, I. (2019). Inference of population structure from time-series genotype data. Am. J. Hum. Genet. 105, 317–333. 53. Alexander, D.H., Novembre, J., and Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655– 1664. 54. Sikora, M., Carpenter, M.L., Moreno-Estrada, A., Henn, B.M., Underhill, P.A., Sa´ nchez-Quinto, F., Zara, I., Pitzalis, M., Sidore, C., Busonero, F., et al. (2014). Population genomic analysis of ancient and modern ge nomes yields new insights into the genetic ancestry of the Tyrolean Iceman and the genetic structure of Europe. PLoS Genet. 10, e1004353. 55. Lawson, D.J., Hellenthal, G., Myers, S., and Falush, D. (2012). Inference of population structure using dense haplotype data. PLoS Genet. 8, e1002453. 56. Chaco´ n-Duque, J.-C., Adhikari, K., Fuentes-Guajardo, M., Mendoza Revilla, J., Acun˜ a-Alonzo, V., Barquera, R., Quinto-Sa´ nchez, M., Go´ mez-Valdes, J., Everardo Martı ´nez, P., Villamil-Ramı´rez, H., et al. (2018). Latin Americans show wide-spread Converso ancestry and imprint of local Native ancestry on physical appearance. Nat. Commun. 9, 5388. 57. Ongaro, L., Scliar, M.O., Flores, R., Raveane, A., Marnetto, D., Sarno, S., Gnecchi-Ruscone, G.A., Alarco´ n-Riquelme, M.E., Patin, E., Wangkumhang, P., et al. (2019). The genomic impact of European colo nization of the Americas. Curr. Biol. 29, 3974–3986.e4. 58. Kivisild, T. (2017). The study of human Y chromosome variation through ancient DNA. Hum. Genet. 136, 529–546. 59. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7. 60. Hui, R., D’Atanasio, E., Cassidy, L.M., Scheib, C.L., and Kivisild, T. (2020). Evaluating genotype imputation pipeline for ultra-low coverage ancient genomes. Sci. Rep. 10, 18542. 61. Ringbauer, H., Novembre, J., and Steinru¨ cken, M. (2020). Human parental relatedness through time - detecting runs of homozygosity in ancient DNA. bioRxiv. https://doi.org/10.1101/2020.05.31.126912. 62. The 1000 Genomes Project Consortium (2015). A global reference for hu man genetic variation. Nature 526, 68–74. 63. MacAskill, M.R. (2012). DataGraph 3.0. J. Statist. Softw. Softw. Rev. 47, 1–9. 64. Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S.A., Harney, E., Stewardson, K., Fernandes, D., Novak, M., et al. (2015). Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503. 65. Damgaard, P.B., Marchi, N., Rasmussen, S., Peyrot, M., Renaud, G., Korneliussen, T., Moreno-Mayar, J.V., Pedersen, M.W., Goldberg, A., Usmanova, E., et al. (2018). 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374. 66. Zhang, F.-R., Huang, W., Chen, S.-M., Sun, L.-D., Liu, H., Li, Y., Cui, Y., Yan, X.-X., Yang, H.-T., Yang, R.-D., et al. (2009). Genomewide associa tion study of leprosy. N. Engl. J. Med. 361, 2609–2618. 67. Johnson, C.M., Lyle, E.A., Omueti, K.O., Stepensky, V.A., Yegin, O., Alpsoy, E., Hamann, L., Schumann, R.R., and Tapping, R.I. (2007). Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J. Immunol. 178, 7520–7524. 68. Qi, H., Sun, L., Wu, X., Jin, Y., Xiao, J., Wang, S., Shen, C., Chu, P., Qi, Z., Xu, F., et al. (2015). Toll-like receptor 1(TLR1) gene SNP rs5743618 is associated with increased risk for tuberculosis in Han Chinese children. Tuberculosis (Edinb.) 95, 197–203. 69. Ko¨ hler, K., Marcsik, A., Za´ dori, P., Biro, G., Szeniczey, T., Fa´ bia´ n, S., Serlegi, G., Marton, T., Donoghue, H.D., and Hajdu, T. (2017). Possible cases of leprosy from the Late Copper Age (3780-3650 cal BC) in Hungary. PLoS ONE 12, e0185966. 70. Donoghue, H.D., Marcsik, A., Matheson, C., Vernon, K., Nuorala, E., Molto, J.E., Greenblatt, C.L., and Spigelman, M. (2005). Co-infection of Mycobacterium tuberculosis and Mycobacterium leprae in human archaeological samples: a possible explanation for the historical decline of leprosy. Proc. Biol. Sci. 272, 389–394. 71. Behar, D.M., van Oven, M., Rosset, S., Metspalu, M., Loogvali, E.-L., € Silva, N.M., Kivisild, T., Torroni, A., and Villems, R. (2012). A ‘‘Copernican’’ reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684. 72. McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A.R., Teumer, A., Kang, H.M., Fuchsberger, C., Danecek, P., Sharp, K., et al.; Haplotype Reference Consortium (2016). A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283. 73. Meyer, M., and Kircher, M. (2010). Illumina sequencing library prepara tion for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448. 74. Martin, M. (2011). Cutadapt removes adapter sequences from high throughput sequencing reads. EMBnet. J. 17, 10–12. 75. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. 76. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Subgroup (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. 77. DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework for variation discovery and genotyping using next generation DNA sequencing data. Nat. Genet. 43, 491–498. 78. Jo´ nsson, H., Ginolhac, A., Schubert, M., Johnson, P.L.F., and Orlando, L. (2013). mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684. l9. Jones, E.R., Zarina, G., Moiseyev, V., Lightfoot, E., Nigst, P.R., Manica, A., Pinhasi, R., and Bradley, D.G. (2017). The Neolithic transition in the Baltic was not driven by admixture with Early European farmers. Curr. Biol. 27, 576–582. 80. Korneliussen, T.S., Albrechtsen, A., and Nielsen, R. (2014). ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 356. 81. Skoglund, P., Stora˚ , J., Go¨ therstro¨ m, A., and Jakobsson, M. (2013). Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482. 82. Weissensteiner, H., Pacher, D., Kloss-Brandstatter, A., Forer, L., Specht, € G., Bandelt, H.-J., Kronenberg, F., Salas, A., and Scho¨ nherr, S. (2016). HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63. 83. Quinlan, A.R. (2014). BEDTools: the Swiss-Army tool for genome feature analysis. Curr. Protoc. Bioinformatics 47, 11.12.1–11.12.34. 84. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J., and Sham, P.C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. 85. Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al.; 1000 Genomes Project Analysis Group (2011). The variant call format and VCFtools. Bioinformatics 27, 2156–2158. 86. Browning, B.L., and Browning, S.R. (2016). Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126. 87. R Development Core Team (2013). R: A language and environment for statistical computing (R Foundation for Statistical Computing). 88. Link, V., Kousathanas, A., Veeramah, K., Sell, C., Scheu, A., and Wegmann, D. (2017). ATLAS: analysis tools for low-depth and ancient samples. bioRxiv. https://doi.org/10.1101/105346 9. Chaitanya, L., Breslin, K., Zun˜ iga, S., Wirken, L., Po spiech, E., Kukla Bartoszek, M., Sijen, T., Knijff, P., Liu, F., Branicki, W., et al. (2018). The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: introduction and forensic developmental validation. Forensic Sci. Int. Genet. 35, 123–135. 90. Walsh, S., Liu, F., Wollstein, A., Kovatsi, L., Ralf, A., Kosiniak-Kamysz, A., Branicki, W., and Kayser, M. (2013). The HIrisPlex system for simulta neous prediction of hair and eye colour from DNA. Forensic Sci. Int. Genet. 7, 98–115. 91. Fedele, F. (2013). I Covoloni del Broion (colli Berici, VI). In L’eta` del Rame. La pianura Padana e le Alpi al tempo di O¨ tzi., R. De Marinis, ed. (Compagnia della Stampa), pp. 450–456. 92. Alessandri, L., and Rolfo, M.F. (2016). L’utilizzo delle cavita` naturali nella media eta` del Bronzo: nuovi dati dal Lazio meridionale.CVII (Bollettino della Unione Storia ed Arte), pp. 109–126. 93. Anzidei, A.P., and Carboni, G. (2013). L’eneolitico recente e finale nel Lazio centro-meridionale: una puntualizzazione sullo sviluppo e la durata di alcuni aspetti culturali sulla base delle piu` recenti datazioni radiome triche. In Cronologia Assoluta e Relativa Dell’eta` Del Rame in Italia, C. Genick, ed. (QuiEdit), pp. 98–118. 94. Alessandri, L. (2019). The early and Middle Bronze Age (1/2) in South and central Tyrrhenian Italy and their connections with the Avellino eruption: An overview. Quat. Int. 499, 161–185. 95. Alessandri, L., Baiocchi, V., Del Pizzo, S., Rolfo, M.F., and Troisi, S. (2019). Photogrammetric survey with fisheye lens for the characterization of the La Sassa cave. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 42-2/W9, 25–32. 96. Anzidei, A.P., and Carboni, G. (2006). Rinaldone e Gaudo in un territorio di confine: il Lazio centro-meridionale. In Atti Del VII Incontro Di Studi Preistoria e Protostoria in Etruria. Pastori e Guerrieri Nell’Etruria Del IV e III Millennio a.C. La Civilta´ Di Rinaldone a 100 Anni Dalle Prime Scoperte, N. Catacchio, ed. (Centro Studi di Preistoria e Archeologia), pp. 174–192. 97. Lovejoy, C.O. (1985). Dental wear in the Libben population: its functional pattern and role in the determination of adult skeletal age at death. Am. J. Phys. Anthropol. 68, 47–56. 98. Rogers, T.L. (2005). Determining the sex of human remains through cra nial morphology. J. Forensic Sci. 50, 493–500. 99. Talamo, S., and Richards, M. (2011). A comparison of bone pretreatment methods for AMS dating of samples > 30,000 BP. Radiocarbon 53, 443–449. 100. Longin, R. (1971). New method of collagen extraction for radiocarbon dating. Nature 230, 241–242. 101. Brown, T., Nelson, D., Vogel, J., and Southon, J. (1988). Improved collagen extraction by modified Longin method. Radiocarbon 30, 171–177. 102. Brock, F., Ramsey, C., and Higham, T. (2007). Quality assurance of ultra filtered bone dating. Radiocarbon 49, 187–192. 103. van Klinken, G.J. (1999). Bone collagen quality indicators for palaeodiet ary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695. 104. Kromer, B., Lindauer, S., Synal, H.-A., and Wacker, L. (2013). MAMS – a new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nucl. Instrum. Methods Phys. Res. B 294, 11–13. 105. Korlevic, P., Talamo, S., and Meyer, M. (2018). A combined method for DNA analysis and radiocarbon dating from a single sample. Sci. Rep. 8, 4127. 106. Angle, M., Catracchia, F., Cavazzuti, C., Celletti, P., Malorgio, M., and Mancini, D. (2010). La grotta Regina Margherita a Collepardo (Frosinone). In Lazio e Sabina. Atti del Convegno: Sesto incontro di studi sul Lazio e la Sabina, G. Ghini, ed. (Atti del Convegno. Sesto Incontro di Studi sul La-zio e la Sabina), pp. 381–396. 107. Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M., Cappellini, E., Petersen, B., Moltke, I., et al. (2013). Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78. 108. Malaspinas, A.-S., Lao, O., Schroeder, H., Rasmussen, M., Raghavan, M., Moltke, I., Campos, P.F., Sagredo, F.S., Rasmussen, S., Gonc¸ alves, V.F., et al. (2014). Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil. Curr. Biol. 24, R1035–R1037. 109. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and DePristo, M.A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303. 110. van Oven, M., and Kayser, M. (2009). Updated comprehensive phyloge netic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394. 111. Hallast, P., Batini, C., Zadik, D., Maisano Delser, P., Wetton, J.H., Arroyo Pardo, E., Cavalleri, G.L., de Knijff, P., Destro Bisol, G., Dupuy, B.M., et al. (2015). The Y-chromosome tree bursts into leaf: 13,000 high-confidence SNPs covering the majority of known clades. Mol. Biol. Evol. 32, 661–673. 112. Karmin, M., Saag, L., Vicente, M., Wilson Sayres, M.A., Jarve, M., Talas, € U.G., Rootsi, S., Ilumae, A.-M., M € agi, R., Mitt, M., et al. (2015). A recent € bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res. 25, 459–466. 113. Poznik, G.D., Xue, Y., Mendez, F.L., Willems, T.F., Massaia, A., Wilson Sayres, M.A., Ayub, Q., McCarthy, S.A., Narechania, A., Kashin, S., et al.; 1000 Genomes Project Consortium (2016). Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences. Nat. Genet. 48, 593–599. 114. Broushaki, F., Thomas, M.G., Link, V., Lo´ pez, S., van Dorp, L., Kirsanow, K., Hofmanova´ , Z., Diekmann, Y., Cassidy, L.M., Dı´ez-Del-Molino, D., et al. (2016). Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503. 115. Harney, E´ ., May, H., Shalem, D., Rohland, N., Mallick, S., Lazaridis, I., Sarig, R., Stewardson, K., Nordenfelt, S., Patterson, N., et al. (2018). Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nat. Commun. 9, 3336. 116. Gu¨ nther, T., Malmstro¨ m, H., Svensson, E.M., Omrak, A., Sa´ nchez Quinto, F., Kılınc¸ , G.M., Krzewinska, M., Eriksson, G., Fraser, M., Edlund, H., et al. (2018). Population genomics of Mesolithic Scandinavia: Investigating early postglacial migration routes and high latitude adaptation. PLoS Biol. 16, e2003703. 117. Mittnik, A., Wang, C.-C., Pfrengle, S., Daubaras, M., Zarin‚a, G., Hallgren, F., Allmae, R., Khartanovich, V., Moiseyev, V., To € ˜ rv, M., et al. (2018). The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442. 118. van den Brink, E.C.M., Beeri, R., Kirzner, D., Bron, E., Cohen Weinberger, A., Kamaisky, E., Gonen, T., Gershuny, L., Nagar, Y., Ben Tor, D., et al. (2017). A Late Bronze Age II clay coffin from Tel Shaddud in the Central Jezreel Valley, Israel: context and historical implications. Levant 49, 105–135. 119. Valdiosera, C., Gu¨ nther, T., Vera-Rodrı´guez, J.C., Uren˜ a, I., Iriarte, E., Rodrı´guez-Varela, R., Simo˜ es, L.G., Martı´nez-Sa´ nchez, R.M., Svensson, E.M., Malmstro¨ m, H., et al. (2018). Four millennia of Iberian biomolecular prehistory illustrate the impact of prehistoric migrations at the far end of Eurasia. Proc. Natl. Acad. Sci. USA 115, 3428–3433. 120. Fregel, R., Mendez, F.L., Bokbot, Y., Martı ´n-Socas, D., Camalich Massieu, M.D., Santana, J., Morales, J., A´ vila-Arcos, M.C., Underhill, P.A., Shapiro, B., et al. (2018). Ancient genomes from North Africa evi dence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc. Natl. Acad. Sci. USA 115, 6774–6779. 121. Jones, E.R., Gonzalez-Fortes, G., Connell, S., Siska, V., Eriksson, A., Martiniano, R., et al. (2015). Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6. 122. Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T., and Reich, D. (2012). Ancient admixture in human history. Genetics 192, 1065–1093. 23. Busby, G.B.J., Hellenthal, G., Montinaro, F., Tofanelli, S., Bulayeva, K., Rudan, I., et al. (2015). The role of recent admixture in forming the contemporary West Eurasian genomic landscape. Curr. Biol. 25, 2878– 2526. 124. Browning, S.R., Browning, B.L., Zhou, Y., Tucci, S., and Akey, J.M. (2018). Analysis of human sequence data reveals two pulses of archaic Denisovan admixture. Cell 173, 53–61.e9. 125. Gamba, C., Jones, E.R., Teasdale, M.D., McLaughlin, R.L., Gonzalez Fortes, G., Mattiangeli, V., Domboro´ czki, L., Kova } ´ri, I., Pap, I., Anders, A., et al. (2014). Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257. 126. Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., and Durbin, R. (2016). BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data Bioinformatics 32 1749 - 1751
-
6Academic Journal
المؤلفون: Skeates, Robin, Beckett, Jessica, Mancini, Daniela, Cavazzuti, Claudio, Silvestri, Letizia, Hamilton, W. Derek, Sayle, Kerry L., Crowder, Kayla D., Rolfo, Mario, Angle, Micaela
المصدر: Journal of Field Archaeology, 2021, Vol.46(6), pp.382-398 [Peer Reviewed Journal]
وصف الملف: application/pdf
Relation: dro:33127; http://dro.dur.ac.uk/33127/; https://doi.org/10.1080/00934690.2021.1917137; http://dro.dur.ac.uk/33127/1/33127.pdf
-
7Academic Journal
المؤلفون: Gattaa, Maurizio, Kotsakis, Tassos, Pandolfi, Luca, Petronio, Carmelo, Salari, Leonardo, Achino, Katia Francesca, Silvestri, Letizia, Rolfo, Mario Federico, Institute of Archaeology (Eslovènia)
مصطلحات موضوعية: Large mammals, Small vertebrates, Palaeoecology, Environmental reconstruction, Crocuta crocuta, Mediterranean, Grands mammifères, Petits vertébrés, Paléoécologie, Reconstitution environnementale, Méditerranée
وصف الملف: application/pdf
Relation: European Commission HU-TAF-5477; Comptes Rendus Palevol; Vol. 18 Núm. 1 (janvier 2019), p. 51-71; https://ddd.uab.cat/record/223785; urn:10.1016/j.crpv.2018.04.006; urn:oai:ddd.uab.cat:223785; urn:scopus_id:85056004482; urn:articleid:1777571Xv18n1p51
الاتاحة: https://ddd.uab.cat/record/223785
-
8Academic Journal
-
9Academic Journal
المؤلفون: Gioia, Patrizia, Silvestri, Letizia, Zanzi, Gian Luca
المصدر: Journal of Mediterranean Earth Sciences; Vol. 15 (2023): Special Issue: "Conference Proceedings - 40 Years of Casal de’ Pazzi in the framework of Pleistocene archeo-paleontological sites (400,000-40,000 BP): current knowledge and new research perspectives" ; Journal of Mediterranean Earth Sciences; V. 15 (2023): Special Issue: "Conference Proceedings - 40 Years of Casal de’ Pazzi in the framework of Pleistocene archeo-paleontological sites (400,000-40,000 BP): current knowledge and new research perspectives" ; 2280-6148 ; 2037-2272
وصف الملف: application/pdf
-
10Academic Journal
المؤلفون: Gioia, Patrizia, Silvestri, Letizia, Zanzi, Gian Luca
المصدر: Journal of Mediterranean Earth Sciences; Vol. 15 (2023): Special Issue: "Conference Proceedings - 40 Years of Casal de’ Pazzi in the framework of Pleistocene archeo-paleontological sites (400,000-40,000 BP): current knowledge and new research perspectives" ; Journal of Mediterranean Earth Sciences; V. 15 (2023): Special Issue: "Conference Proceedings - 40 Years of Casal de’ Pazzi in the framework of Pleistocene archeo-paleontological sites (400,000-40,000 BP): current knowledge and new research perspectives" ; 2280-6148 ; 2037-2272
وصف الملف: application/pdf
-
11Electronic Resource
Additional Titles: Rituali in grotta sotto la lente d’ingrandimento: risorse metodologiche per rilevare l’unicità nel sito della media età del Bronzo di Grotta di Pastena
المؤلفون: Rolfo, Mario Federico, Cortese, Francesca, Achino, Katia Francesca, Gatta, Maurizio, Salari, Leonardo, Silvestri, Letizia
المصدر: IpoTESI di Preistoria; V. 14 (2021); 1-14; IpoTesi di Preistoria; Vol. 14 (2021); 1-14; 1974-7985
مصطلحات الفهرس: Central Italy, Cave archaeology, Italian Protohistory, Cave stratigraphy, Archaeology of ritual, Italia centrale, Archeologia delle grotte, Protostoria italiana, Stratigrafia delle grotte, Archeologia del rituale, info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion, Articolo peer-reviewed
-
12Academic Journal
المساهمون: Generalitat de Catalunya
المصدر: Journal of Archaeological Science: Reports ; volume 36, page 102831 ; ISSN 2352-409X
-
13Conference
المساهمون: Università del Salento - Coordinamento SIBA
المصدر: Atti dell'8° Convegno Nazionale di Archeozoologia; Atti dell'8° Convegno Nazionale di Archeozoologia; 101-108
مصطلحات موضوعية: Media età del Bronzo, Archeologia di grotta, Pratiche rituali, Archeozoologia sociale, Reperti faunistici, Middle Bronze Age, Cave archaeology, Ritual practices, Social zooarchaeology, Faunal remains
Time: Lecce, Italy
وصف الملف: application/pdf
-
14Conference
المؤلفون: Salari, Leonardo, Rolfo, Mario F., Silvestri, Letizia
المساهمون: Università del Salento - Coordinamento SIBA
المصدر: Atti dell'8° Convegno Nazionale di Archeozoologia; Atti dell'8° Convegno Nazionale di Archeozoologia; 37-44
مصطلحات موضوعية: Micromammiferi, Ecologia, Biogeografia, Cronologia, Attività umane, Micromammals, Ecology, Biogeography, Chronology, Human activities
Time: Lecce, Italy
وصف الملف: application/pdf
-
15Academic Journal
المؤلفون: Salari, Leonardo, Masseti, Marco, Silvestri, Letizia
المصدر: Mammalia, 2020, Vol.84(3), pp.259-277 [Peer Reviewed Journal]
وصف الملف: application/pdf
Relation: dro:29265; http://dro.dur.ac.uk/29265/; https://doi.org/10.1515/mammalia-2018-0159; http://dro.dur.ac.uk/29265/1/29265.pdf; http://dro.dur.ac.uk/29265/2/29265.pdf
-
16Book
المؤلفون: Silvestri, Letizia, Achino, Katia Francesca, Angle, Micaela, Gatta, Maurizio, Rolfo, Mario Federico
المصدر: Between Worlds ; page 87-112 ; ISBN 9783319990217 9783319990224
-
17Book
المؤلفون: Rolfo, Mario F., Achino, Katia F., Silvestri, Letizia
المصدر: Current Approaches to Collective Burials in the Late European Prehistory ; page 33-40 ; ISBN 9781784917227
-
18Book
المصدر: The Bioarchaeology of Ritual and Religion ; page 129-147
-
19Academic Journal
المؤلفون: Salari, Leonardo, Achino, Katia F., Gatta, Maurizio, Petronio, Carmelo, Rolfo, Mario F., Silvestri, Letizia, Pandolfi, Luca
المصدر: Palaeogeography, Palaeoclimatology, Palaeoecology ; volume 476, page 90-105 ; ISSN 0031-0182
-
20Academic Journal
المصدر: Journal of Archaeological Science: Reports ; volume 7, page 358-367 ; ISSN 2352-409X