يعرض 1 - 11 نتائج من 11 نتيجة بحث عن '"Shikeh, Abbas Hussain"', وقت الاستعلام: 0.36s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Siddeeque, Mohammad Aslam1 (AUTHOR) aslamsiddeeque@gmail.com, Shikeh, Abbas Hussain1 (AUTHOR) abbasnabi94@gmail.com

    المصدر: Journal of Algebra & Its Applications. Dec2024, Vol. 23 Issue 14, p1-16. 16p.

    مصطلحات موضوعية: *OPERATOR algebras, *CHAR, *COMBUSTION, *ADDITIVES

  2. 2
    Academic Journal
  3. 3
    Periodical

    المصدر: Iranian Journal of Science; October 2024, Vol. 48 Issue: 5 p1307-1312, 6p

  4. 4
    Academic Journal

    المصدر: Czechoslovak Mathematical Journal; Jul2024, Vol. 74 Issue 2, p549-565, 17p

  5. 5
    Academic Journal

    المصدر: Contributions to Algebra & Geometry; Jun2024, Vol. 65 Issue 2, p367-379, 13p

  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: reference:[1] Abbasi, A., Abdioglu, C., Ali, S., Mozumder, M. R.: A characterization of Jordan left *-centralizers via skew Lie and Jordan products.Bull. Iran. Math. Soc. 48 (2022), 2765-2778. Zbl 1517.16034, MR 4487734, 10.1007/s41980-021-00665-w; reference:[2] Beidar, K. I., III, W. S. Martindale: On functional identities in prime rings with involution.J. Algebra 203 (1998), 491-532. Zbl 0904.16012, MR 1622795, 10.1006/jabr.1997.7285; reference:[3] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities.Pure and Applied Mathematics 196. Marcel Dekker, New York (1996). Zbl 0847.16001, MR 1368853; reference:[4] Bennis, D., Dhara, B., Fahid, B.: More on the generalized $(m,n)$-Jordan derivations and centralizers on certain semiprime rings.Bull. Iran. Math. Soc. 47 (2021), 217-224. Zbl 1467.16021, MR 4215874, 10.1007/s41980-020-00377-7; reference:[5] Brešar, M.: Functional identities and rings of quotients.Algebr. Represent. Theory 19 (2016), 1437-1450. Zbl 1361.16014, MR 3574001, 10.1007/s10468-016-9625-4; reference:[6] Brešar, M., Chebotar, M. A., III, W. S. Martindale: Functional Identities.Frontiers in Mathematics. Birkhäuser, Basel (2007). Zbl 1132.16001, MR 2332350, 10.1007/978-3-7643-7796-0; reference:[7] Fošner, A.: A note on generalized $(m,n)$-Jordan centralizers.Demonstr. Math. 46 (2013), 254-262. Zbl 1293.16033, MR 3089114, 10.1515/dema-2013-0456; reference:[8] Herstein, I. N.: Jordan derivations of prime rings.Proc. Am. Math. Soc. 8 (1957), 1104-1110. Zbl 0216.07202, MR 0095864, 10.1090/S0002-9939-1957-0095864-2; reference:[9] Herstein, I. N.: Topics in Ring Theory.University of Chicago Press, Chicago (1969). Zbl 0232.16001, MR 0271135; reference:[10] Kosi-Ulbl, I., Vukman, J.: On $(m,n)$-Jordan centralizers of semiprime rings.Publ. Math. Debr. 89 (2016), 223-231. Zbl 1389.16079, MR 3529272, 10.5486/PMD.2016.7490; reference:[11] Lanning, S.: The maximal symmetric ring of quotients.J. Algebra 179 (1996), 47-91. Zbl 0839.16020, MR 1367841, 10.1006/jabr.1996.0003; reference:[12] Lee, T.-K., Lin, J.-H.: Jordan derivations of prime rings with characteristic two.Linear Algebra Appl. 462 (2014), 1-15. Zbl 1300.16044, MR 3255518, 10.1016/j.laa.2014.08.006; reference:[13] Lee, T.-K., Lin, J.-H.: Jordan $\tau$-derivations of prime rings.Commun. Algebra 43 (2015), 5195-5204. Zbl 1327.16033, MR 3395699, 10.1080/00927872.2014.974103; reference:[14] Lee, T.-K., Wong, T.-L.: Right centralizers of semiprime rings.Commun. Algebra 42 (2014), 2923-2927. Zbl 1293.16034, MR 3178052, 10.1080/00927872.2012.761711; reference:[15] Lee, T.-K., Wong, T.-L., Zhou, Y.: The structure of Jordan *-derivations of prime rings.Linear Multilinear Algebra 63 (2015), 411-422. Zbl 1312.16046, MR 3273764, 10.1080/03081087.2013.869593; reference:[16] Lee, T.-K., Zhou, Y.: Jordan *-derivations of prime rings.J. Algebra Appl. 13 (2014), Article ID 1350126, 9 pages. Zbl 1292.16037, MR 3153861, 10.1142/S0219498813501260; reference:[17] Lin, J.-H.: Jordan $\tau$-derivations of prime GPI-rings.Taiwanese J. Math. 24 (2020), 1091-1105. Zbl 1467.16043, MR 4152657, 10.11650/tjm/191105; reference:[18] Qi, X., Zhang, Y.: $k$-skew Lie products on prime rings with involution.Commun. Algebra 46 (2018), 1001-1010. Zbl 1441.16047, MR 3780213, 10.1080/00927872.2017.1335744; reference:[19] Rowen, L.: Some results on the center of a ring with polynomial identity.Bull. Am. Math. Soc. 79 (1973), 219-223. Zbl 0252.16007, MR 0309996, 10.1090/S0002-9904-1973-13162-3; reference:[20] Šemrl, P.: Quadratic functionals and Jordan *-derivations.Stud. Math. 97 (1991), 157-165. Zbl 0761.46047, MR 1100685, 10.4064/sm-97-3-157-165; reference:[21] Šemrl, P.: Jordan *-derivations on standard operator algebras.Proc. Am. Math. Soc. 120 (1994), 515-518. Zbl 0816.47040, MR 1186136, 10.1090/S0002-9939-1994-1186136-6; reference:[22] Siddeeque, M. A., Khan, N., Abdullah, A. A.: Weak Jordan *-derivations of prime rings.J. Algebra Appl. 22 (2023), Article ID 2350105, 34 pages. Zbl 07667259, MR 4556321, 10.1142/S0219498823501050; reference:[23] Siddeeque, M. A., Shikeh, A. H.: On the characterization of generalized $(m,n)$-Jordan *-derivations in prime rings.Georgian Math. J. 31 (2024), 139-148. Zbl 07803155, MR 4698476, 10.1515/gmj-2023-2060; reference:[24] Siddeeque, M. A., Shikeh, A. H.: A note on certain additive maps in prime rings with involution.(to appear) in Beitr. Algebra Geom. MR 4740676, 10.1007/s13366-023-00694-y; reference:[25] Vukman, J.: An identity related to centralizers in semiprime rings.Commentat. Math. Univ. Carol. 40 (1999), 447-456. Zbl 1014.16021, MR 1732490; reference:[26] Vukman, J.: Centralizers on semiprime rings.Commentat. Math. Univ. Carol. 42 (2001), 237-245. Zbl 1057.16029, MR 1832143; reference:[27] Vukman, J.: On $(m,n)$-Jordan centralizers in rings and algebras.Glas. Math., III. Ser. 45 (2010), 43-53. Zbl 1200.16051, MR 2646436, 10.3336/gm.45.1.04; reference:[28] Vukman, J., Fošner, M.: A characterization of two-sided centralizers on prime rings.Taiwanese J. Math. 11 (2007), 1431-1441. Zbl 1148.16033, MR 2368661, 10.11650/twjm/1500404876; reference:[29] Vukman, J., Kosi-Ulbl, I.: On centralizers of semiprime rings.Aequationes Math. 66 (2003), 277-283. Zbl 1073.16018, MR 2028564, 10.1007/s00010-003-2681-y; reference:[30] Zalar, B.: On centralizers of semiprime rings.Commentat. Math. Univ. Carol. 32 (1991), 609-614. Zbl 0746.16011, MR 1159807

  7. 7
    Academic Journal

    المؤلفون: Siddeeque, Mohammad Aslam1 (AUTHOR) aslamsiddeeque@gmail.com, Shikeh, Abbas Hussain1 (AUTHOR) abbasnabi94@gmail.com

    المصدر: Georgian Mathematical Journal. Feb2024, Vol. 31 Issue 1, p139-148. 10p.

    مصطلحات موضوعية: *QUOTIENT rings, *MATRICES (Mathematics), *INTEGERS

    مصطلحات جغرافية: JORDAN

  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Periodical

    المصدر: Iranian Journal of Science; December 2023, Vol. 47 Issue: 5-6 p1605-1611, 7p

  11. 11
    Academic Journal

    المؤلفون: Siddeeque, Mohammad Aslam1 (AUTHOR) aslamsiddeeque@gmail.com, Bhat, Raof Ahmad1 (AUTHOR), Shikeh, Abbas Hussain1 (AUTHOR)

    المصدر: Communications in Algebra. Dec2024, p1-9. 9p.

    مصطلحات موضوعية: *ISOMORPHISM (Mathematics), *VON Neumann algebras