-
1Dissertation/ Thesis
المؤلفون: Güell Martí, Raquel
المساهمون: University/Department: Universitat de Girona. Departament de Química
Thesis Advisors: Anticó i Daró, Ma. Enriqueta, Fontàs Rigau, Clàudia
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Chemical pollution, Contaminació química, Contaminación química, Membrane ability, Sistemes de membranes, Sistemas de membranas, Chemical sensors, Sensors químics, Sensores químicos, Arsenic, Arsénico, Chromium (VI), Crom (VI), Cromo (VI), Heavy metals, Metalls pesants, Metales pesados, Polluted water, Aigües contaminades, Aguas contaminadas
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/51663
-
2
المؤلفون: Ramos, Nuna Liliana Pereira
المساهمون: Raposo, M. Manuela M., Oliveira, Rui Pedro Soares de, Universidade do Minho
مصطلحات موضوعية: Atividade antibacteriana, Imidazole, Sensores químicos óticos, Síntese, Staphylococcus aureus, Antibacterial activity, Optical chemosensors, Synthesis, Ciências Naturais::Outras Ciências Naturais
وصف الملف: application/pdf
Relation: 203052803
الاتاحة: https://hdl.handle.net/1822/81273
-
3Academic Journal
المؤلفون: García Heras, Manuel
المساهمون: Ministerio de Ciencia e Innovación (España), García Heras, Manuel
مصطلحات موضوعية: Conservación preventiva, HERICARE, Medición, Museos, pH ambiental, Sensores químicos, Sostenibilidad, Técnicas no invasivas
Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104220RB-I00/ES/SISTEMATIZACION DE METODOS Y PROTOCOLOS DE CONSERVACION INTEGRAL DE MATERIALES Y COLECCIONES DEL PATRIMONIO CULTURAL, SU CARACTERIZACION ARQUEOMETRICA Y VALORIZACION SOCIAL/; Publisher's version; https://doi.org/10.33349/2023.110.5418; Sí; Revista PH 110: 9-12 (2023); http://hdl.handle.net/10261/352002
-
4Dissertation/ Thesis
المؤلفون: Descalzo Lopez, Ana Belen
المساهمون: University/Department: Universitat Politècnica de València. Departamento de Química - Departament de Química
Thesis Advisors: Martínez Mañez, Ramón, Soto Camino, Juan
المصدر: Riunet
مصطلحات موضوعية: Sensores químicos moleculares, Espectroscopía de absorción uv/vis, Espectroscopía de fluorescencia uv/vis, Síntesis de cromo-/fluoroionóforos, Fenoxazinonas, Antraceno, Constantes de estabilidad de complejos, Constantes de adsorción, Reconocimiento de especies iónicas, Detección de vapores, Síntesis de materiales híbridos orgánico-inorgánico, Sílices mesoporosas de elevada superficie, Mcm-41, Uvm-7, Dosímetro químico, QUIMICA INORGANICA, 2303 07, 2306 08, 2301 01, 2301 05
URL الوصول: http://hdl.handle.net/10251/1851
-
5Dissertation/ Thesis
المساهمون: University/Department: Universitat Politècnica de València. Departamento de Química - Departament de Química
Thesis Advisors: Martínez Mañez, Ramón, Soto Camino, Juan
المصدر: Riunet
مصطلحات موضوعية: Sensores químicos moleculares, Espectroscopía de absorción uv/vis, Espectroscopía de fluorescencia uv/vis, Síntesis de cromo-/fluoroionóforos, Fenoxazinonas, Antraceno, Constantes de estabilidad de complejos, Constantes de adsorción, Reconocimiento de especies iónicas, Detección de vapores, Síntesis de materiales híbridos orgánico-inorgánico, Sílices mesoporosas de elevada superficie, Mcm-41, Uvm-7, Dosímetro químico, QUIMICA INORGANICA, 230307 - Compuestos de coordinación, 230608 - Química de los colorantes, 230101 - Espectroscopía de absorción, 230105 - Espectroscopía de emisión
URL الوصول: http://hdl.handle.net/10251/1851
-
6Dissertation/ Thesis
المؤلفون: Chulvi Iborra, Katherine
Thesis Advisors: Gaviña Costero, Pablo, Ochando Gómez, Luis E., Facultat de Química
مصطلحات موضوعية: sensores químicos, cromogénico, fluorogénico, difracción de rayos x, estudio estructural, UNESCO::QUÍMICA
URL الوصول: http://hdl.handle.net/10550/54170
-
7Dissertation/ Thesis
المؤلفون: Chulvi Iborra, Katherine
Thesis Advisors: Gaviña Costero, Pablo, Ochando Gómez, Luis E., Facultat de Química
مصطلحات موضوعية: sensores químicos, cromogénico, fluorogénico, difracción de rayos x, estudio estructural, UNESCO::QUÍMICA
URL الوصول: http://hdl.handle.net/10803/571019
-
8Dissertation/ Thesis
المؤلفون: Chulvi Iborra, Katherine
Thesis Advisors: Gaviña Costero, Pablo, Ochando Gómez, Luis E., Facultat de Química
مصطلحات موضوعية: sensores químicos, cromogénico, fluorogénico, difracción de rayos x, estudio estructural, UNESCO::QUÍMICA
URL الوصول: http://hdl.handle.net/10550/54170
-
9Academic Journal
المؤلفون: Mantilla Ramírez, Naren Arley, Ruiz Jimenez, Luisa Fernanda, Ortega Boada, Homero, Sepúlveda Sepúlveda, Alexander
مصطلحات موضوعية: Identificación de madera, Nariz electrónica, Matriz de sensores químicos, Aplicaciones de aprendizaje automático, Clasificación de Vectores de Soporte (SVM), Aumento de datos, Wood identification, Electronic Nose (E-Nose), Chemical sensor arrays, Machine learning applications, Support Vector Classification (SVM), Data augmentation
وصف الملف: 13 páginas; application/pdf
Relation: INGE CUC; [1] E. A. Wheeler & P. Baas, “Wood identification-a review,” IAWA J, vol. 19, no. 3, pp. 241–264, 1998. Available: https://brill.com/view/journals/iawa/19/3/article-p241_2.xml?language=en; [2] F. Hanssen, N. Wischnewski, U. Moreth & E. A. Magel, “Molecular identification of Fitzroya cupressoides, Sequoia sempervirens, and Thuja plicata wood using taxon-specific rDNA-ITS primers,” IAWA J, vol. 32, no. 2, pp. 273–283, 2011. https://doi.org/10.1163/22941932-90000057; [3] M. Yu, K. Liu, L. Zhou, L. Zhao & S. Liu, “Testing three proposed DNA barcodes for the wood identification of Dalbergia odorifera T. Chen and Dalbergia tonkinensis Prain,” Holzforschung, vol. 70, no. 2, pp. 127–136, 2016. https://doi.org/10.1515/hf-2014-0234; [4] E. C. Cabral, R. C. Simas, V. G. Santos, C. L. Queiroga, V. S. da Cunha, G. F. de Sá, R. J. Daroda & M. N. Eberlin, “Wood typification by Venturi easy ambient sonic spray ionization mass spectrometry: The case of the endangered Mahogany tree,” J. Mass Spectrom, vol. 47, no. 1, pp. 1–6, 2012. https://doi. org/10.1002/jms.2016; [5] R. Rana, G. Müller, A. Naumann & A. Polle, “FTIR spectroscopy in combination with principal component analysis or cluster analysis as a tool to distinguish beech (Fagus sylvatica L.) trees grown at different sites,” Holzforschung, vol. 62, no. 5, pp. 530–538, 2008. https://doi.org/10.1515/HF.2008.104; [6] A. Dickson, B. Nanayakkara, D. Sellier, D. Meason, L. Donaldson & R. Brownlie, “Fluorescence imaging of cambial zones to study wood formation in Pinus radiata D. Don,” Trees - Struct Funct, vol. 31, no. 2, pp. 479–490, 2017. https://doi.org/10.1007/s00468-016-1469-3; [7] J. M. Kalaw & F. B. Sevilla, “Discrimination of wood species based on a carbon nanotube/polymer composite chemiresistor array,” Holzforschung, vol. 72, no. 3, pp. 215–223, 2018. https://doi.org/10.1515/ hf-2017-0097; [8] R. Fedele, I. E. Galbally, N. Porter, and I. A. Weeks, “Biogenic VOC emissions from fresh leaf mulch and wood chips of Grevillea robusta (Australian Silky Oak),” Atmos Environ, vol. 41, no. 38, pp. 8736– 8746. Dec. 2007. https://doi.org/10.1016/j.atmosenv.2007.07.037; [9] K. Müller, S. Haferkorna, W. Grabmer, A. Wisthaler, A. Hansel, J. Kreuzwieser, C. Cojocariu, H. Rennenberg & H. Herrmanna, “Biogenic carbonyl compounds within and above a coniferous forest in Germany,” Atmos Environ, vol. 40, No. 1, pp. 81–91, 2006. https://doi.org/10.1016/j.atmosenv.2005.10.070; [10] H. J. I. Rinne, A. B. Guenther, J. P. Greenberg & P. C. Harley, “Isoprene and monoterpene fluxes measured above Amazonian rainforest and their dependence on light and temperature,” Atmos Environ, vol. 36, no. 14, pp. 2421–2426, May. 2002. https://doi.org/10.1016/S1352-2310(01)00523-4; [11] A. D. Wilson, D. G. Lester & C. S. Oberle, “Application of conductive polymer analysis for wood and woody plant identifications,” For Ecol Manage, vol. 209, no. 3, pp. 207–224, May. 2005. https://doi. org/10.1016/j.foreco.2005.01.030; [12] H. Shi, M. Zhang & B. Adhikari, “Advances of electronic nose and its application in fresh foods: A review,” Crit Rev Food Sci Nutr, vol. 58, no. 16, pp. 1–11, 2017. https://doi.org/10.1080/10408398.2017.1 327419; [13] L. Capelli, S. Sironi & R. Del Rosso, “Electronic Noses for Environmental Monitoring Applications,” Sensors, vol. 14, no. 11, pp. 19979–20007, 2014. https://doi.org/10.3390/s141119979; [14] L. Guo, Z. Yang & X. Dou, “Artificial Olfactory System for Trace Identification of Explosive Vapors Realized by Optoelectronic Schottky Sensing,” Adv Mater, vol. 29, no. 5, pp. 1–8, 2017. https://doi. org/10.1002/adma.201604528; [15] J. P. Santos & J. Lozano, “Real time detection of beer defects with a hand held electronic nose ,” presented at 10th Spanish Conference on Electron Devices, CDE, MD, ES, pp. 1–4, 11-13 Feb. 20015. https://doi.org/10.1109/CDE.2015.7087492; [16] J. R. Cordeiro, R. W. C. Li, É. S. Takahashi, G. P. Rehder, G. Ceccantini & J. Gruber, “Wood identification by a portable low-cost polymer-based electronic nose,” RSC Adv, vol. 6, no. 111, pp. 109945– 109949, 2016. https://doi.org/10.1039/c6ra22246c; [17] A. D. Wilson, “Application of a Conductive Polymer Electronic-Nose Device to Identify Aged Woody Samples,” 3 IARIA, Xpert Publishing, RO, IT, pp. 77–82, 2012. Available: https://www.fs.usda.gov/ treesearch/pubs/45153; [18] F. X. Garneau, B. Riedl, S. Hobbs, A. Pichette & H. Gagnon, “The use of sensor array technology for rapid differentiation of the sapwood and heartwood of Eastern Canadian spruce, fir and pine,” Holz als Roh- und Werkst, vol. 62, no. 6, pp. 470–473, 2003. https://doi.org/10.1007/s00107-004-0508-8; [19] L. F. Ruiz, “Detección de los insectos de la subfamilia Triatominae basado en narices electrónicas,” tesis maestría, UIS, BGA, CO, 2018.; [20] Figaro Engineering Inc, “Operating principle,” figaro Engineering, 2018. Available: https://www.figarosensor.com/technicalinfo/principle/mos-type.html; [21] Jia Yan, X. Guo, S. Duan, P. Jia, L. Wang, C Peng & S. Zhang, “Electronic Nose Feature Extraction Methods: A Review,” Sensors, vol. 15, no. 11, pp. 27804 –27831, Nov. 2015. https://doi.org/10.3390/ s151127804; [22] I. Rodriguez-Lujan, J. Fonollosa, A. Vergara, M. Homer & R. Huerta, “On the calibration of sensor arrays for pattern recognition using the minimal number of experiments,” Chemom Intell Lab Syst, vol. 130, pp. 123–134, Jan. 2014. https://doi.org/10.1016/j.chemolab.2013.10.012; [23] L. Carmel, S. Levy, D. Lancet & D. Harel, “A feature extraction method for chemical sensors in electronic noses,” Sens Actuators B:Chem, vol. 93, no. 1-3, pp. 67–76, Aug. 2003. https://doi.org/10.1016/ S0925-4005(03)00247-8; [24] J. Van Hulse, T. M. Khoshgoftaar & A. Napolitano, “Experimental perspectives on learning from imbalanced data,” presented at Proceedings of the 24th international conference on Machine learnin, ICML, NY, USA., pp. 935–942, Jun. 20, 2007. https://doi.org/10.1145/1273496.1273614; [25] D. A. Cieslak, N. V Chawla & A. Striegel, “Combating imbalance in network intrusion datasets,” IEEE International Conference on Granular Computing, GRC, ATL, USA, pp. 732–737, 2006. https://doi. org/10.1109/GRC.2006.1635905; [26] R. Blagus & L. Lusa, “Class prediction for high-dimensional class-imbalanced data,” BMC Bioinf, vol. 11, no. 1, pp. 1–17, 2010. https://doi.org/10.1186/1471-2105-11-523; [27] N. V Chawla, K. W. Bowyer, L. O. Hall & W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,” J Artif Intell Res, vol. 16, pp. 321–357, 2002. https://doi.org/10.1613/jair.953; [28] M. A. Akbar, A. Ait Si Ali, A. Amira, F. Bensaali, M. Benammar, M. Hassan & A. Bermak, “An Empirical Study for PCA and LDA-Based Feature Reduction for Gas Identification,” IEEE Sens J, vol. 16, no. 14, pp. 5734–5746, 2016. https://doi.org/10.1109/JSEN.2016.2565721; [29] I. Goodfellow, Y. Bengio & A. Courville, Deep Learning, CBG: MIT Press, 2016.; [30] J. Friedman, T. Hastie & R. Tibshirani, The elements of statistical learning, NY, USA: Springer, 2001.; [31] G. James, D. Witten, T. Hastie & R. Tibshirani, An introduction to statistical learning. NY, USA: Springer, 2013.; 200; 188; 17; N. Mantilla Ramírez, L. Ruiz Jiménez, H. Ortega Boada & A. Sepúlveda Sepúlveda, “Identificación de especies de maderas locales mediante el uso de nariz electrónica y aprendizaje automático: un experimento preliminar”, INGECUC, vol. 17. no. 1, pp. 188–205. DOI: http://doi.org/10.17981/ingecuc.17.1.2021.15; https://hdl.handle.net/11323/10310; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
10Academic Journal
المؤلفون: Mantilla Ramírez, Naren Arley, Ruiz Jiménez, Luisa Fernanda, Ortega Boada, Homero, Sepúlveda Sepúlveda, Alexander
المصدر: INGE CUC; Vol. 17 No. 1 (2021): (Enero - Junio); 188-200 ; INGE CUC; Vol. 17 Núm. 1 (2021): (Enero - Junio); 188-200 ; 2382-4700 ; 0122-6517
مصطلحات موضوعية: Wood Identification, Electronic Nose (E-Nose), Chemical Sensor Arrays, Machine Learning Applications, Support Vector Classification (SVM), Data Augmentation, Identificación de Madera, Nariz Electrónica, Matriz de Sensores Químicos, Aplicaciones de Aprendizaje Automático, Clasificación de Vectores de Soporte (SVM), Aumento de datos
وصف الملف: application/pdf; text/html; application/xml
-
11Dissertation/ Thesis
المؤلفون: Carrillo Martínez, Stephanya
المساهمون: Osorio Martínez, Carlos Alberto
مصطلحات موضوعية: Amino acids, Metal complexes, Curcumins, Fluorescence, Glyphosate, Herbicides, Chemical sensors, Productos químicos, Análsis de compuestos químicos, Productos químicos orgánicos, Aminoácido, Complejos metálicos, Curcuminas, Fluorescencia, Glifosato, Herbicidas, Sensores químicos
جغرافية الموضوع: CRAI-USTA Bucaramanga
وصف الملف: application/pdf
Relation: Arvand, M., Mirroshandel, A.A. (2019). An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: application in a photoluminescence aptasensing probe for the sensitive detection of diazinon, Food Chem. 280, 115–122, https://doi.org/10.1016/J.FOODCHEM.2018.12.069.; Azcarate, M.P., Montoya, J.C., Koskinen, W.C. (2015) Sorption, desorption and leaching potential of sulfonylurea herbicides in Argentinean soils, Journal of Environmental Science and Health, Part B, 50, 4, 229-237, https://doi.org/10.1080/03601234.2015.999583; Bolzonella, C.; Lucchetta, M.; Teo, G.; Boatto, V.; Zanella, A. (2019). Is there a way to rate insecticides that is less detrimental to human and environmental health? Glob. Ecol. Conserv. 20, e00699. https://doi.org/10.1016/j.gecco.2019.e00699; Bresciani, G., Busto, N., Ceccherini, V., Bortoluzzi, M., Pampaloni, G., Garcia, B., Marchetti, F. (2022). Screening the biological properties of transition metal carbamates reveals gold(I) and silver(I) complexes as potent cytotoxic and antimicrobial agents, J. Inorg. Biochem. 227 (2022), 111667, https://doi.org/10.1016/J.JINORGBIO.2021.111667.; Cai, Y., He, X., Cui, P.L., Yuan, W.Z., Wang, J.P., Liu, J. (2020). Molecularly imprinted microspheres based multiplexed fluorescence method for simultaneous detection of benzimidazoles and pyrethroids in meat samples, Food Chem. 319. https://doi.org/10.1016/J.FOODCHEM.2020.126539.; Cao, J., Wang, M., Yu, H., She, Y., Cao, Z., Ye, J., Abd El-Aty, A.M., Hacımüftüoğlu, A., Wang, J., Lao, S. (2020). An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. Journal of Agricultural and Food Chemistry 68 (28), 7298-7315. https://doi.org/10.1021/acs.jafc.0c01962; Castillo, G. (2004). Ensayos toxicológicos y métodos de evaluación de calidad de aguas. Estandarización, intercalibración, resultados y aplicaciones. Canadá: IDRC, IMTA; Chaudhry, H., Rangra, N.K. (2023). Development and validation of a stability indicating green analytical method for the simultaneous estimation of L-glutathione, N-acetyl L-cysteine and Vitamin C in marketed formulation using UV–visible spectroscopy. Future Journal of Pharmaceutical Sciences. 9(74). 1-18. https://doi.org/10.1186/s43094-023-00523-y; Chavoshani, A., Hashemi, M., Amin, M.M., Ameta, S.C. (2020). Risks and challenges of pesticides in aquatic environments, Micropollutants and Challenges: Emerging in the Aquatic Environments and Treatment Processes. 179–213. https://doi.org/10.1016/B978–0-12–818612-1.00005–2; Chawla, P., Kaushik, R., Shiva Swaraj, V.J., Kumar, N. (2018). Organophosphorus pesticides residues in food and their colorimetric detection, Environ. Nanotechnol. Monit. Manag. 10, 292–307, https://doi.org/10.1016/J.ENMM.2018.07.013.; Chen, F., Li, G., Liu, H., Leung, C.H., Ma, D.L. (2020). G-quadruplex-based detection of glyphosate in complex biological systems by a time-resolved luminescent assay, Sens. Actuators B: Chem. 320. https://doi.org/10.1016/J.SNB.2020.128393.; Chen, H., Hu, O., Fan, Y., Xu, L., Zhang, L., Lan, W., Hu, Y., Xie, X., Ma, L., She, Y., Fu, H. (2020). Fluorescence paper-based sensor for visual detection of carbamate pesticides in food based on CdTe quantum dot and nano ZnTPyP, Food Chem. 327, https://doi.org/10.1016/J.FOODCHEM.2020.127075.; Chen, Q., Sun, Y., Liu, S., Zhang, J., Zhang, C., Jiang, H., Han, X., He, L., Wang, S., Zhang, K. (2021). Colorimetric and fluorescent sensors for detection of nerve agents and organophosphorus pesticides. Sensors Actuators, B Chem., 2021, 344, 130278. https://doi.org/10.1016/j.snb.2021.130278; Chirayil, C., Abraham, J., Mishra, R., George, S., & Thomas, S. (2017). Instrumental Techniques for the Characterization of Nanoparticles. In C. Chirayil, J. Abraham, R. Mishra, S. George, & S. Thomas, Thermal and Rheological Measurement Techniques for Nanomaterials Characterization (pp. 1-36). Micro and Nano Technologies. https://doi.org/10.1016/B978-0-323-46139-9.00001-3; Dar, M.A., Kaushik, G., V- Chiu, J.F. (2019). Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: A review. Journal of Environmental Management. 239. 124-136. https://doi.org/10.1016/j.jenvman.2019.03.048; Das Mahapatra, A., Shaik, A., Thiruvenkatam, V., Datta, B. (2021). Supramolecular architecture in sulfonylurea, sulfonyldiurea and sulfonyltriurea drugs: synthesis, X-ray structure and Hirshfeld surface analysis, J. Mol. Struct. 1233, 130158, https://doi.org/10.1016/J.MOLSTRUC.2021.130158.; Dong, J., Yang, H., Li, Y., Liu, A., Wei, W., Liu, S. (2020). Fluorescence sensor for organophosphorus pesticide detection based on the alkaline phosphatasetriggered reaction, Anal. Chim. Acta 1131, 102–108, https://doi.org/10.1016/J.ACA.2020.07.048.; Dos Reis, A., Cunha, E.O., Valle, M.T.C., Machado, M.S., Dallegrave, E. (2022). Effects of subchronic inhalation exposure to an organophosphorus insecticide compound containing dichlorvos on wistar rats’ otoacoustic emissions, Braz. J. Otorhinolaryngol. 88, 28–35, https://doi.org/10.1016/J.BJORL.2020.04.005.; Dhull, V., Gahlaut, A., Hooda, V. (2021). Nanomaterials based biosensors for the detection of organophosphate compounds: a review. International Journal of Environmental Analytical Chemistry: 1-25. https://eurekamag.com/research/085/851/085851036.php; EPA. (2023). Información básica sobre pesticidas. Agencia De Protección Ambiental De Estados Unidos. https://espanol.epa.gov/espanol/informacion-basica-sobre-pesticidas; EPA. (2024). El impacto de los compuestos orgánicos volátiles en la calidad del aire interior. Agencia De Protección Ambiental De Estados Unidos. https://espanol.epa.gov/cai/el-impacto-de-los-compuestos-organicos-volatiles-en-la-calidad-del-aire-interior; FAO; Food and Agriculture Organization of the United Nations. (2023). Pest and Pesticide Management. https://www.fao.org/pest-and-pesticide-management/about/understanding-the-context/en/; FAO. (2018). La contaminación de los suelos está contaminando nuestro futuro. Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/newsroom/story/Polluting-our-soils-is-polluting-our-future/es; Fan, L., Wang, F., Zhao, D., Sun, X., Chen, H., Wang, H., Zhang, X. (2020). Two cadmium(II) coordination polymers as multi-functional luminescent sensors for the detection of Cr(VI) anions, dichloronitroaniline pesticide, and nitrofuran antibiotic in aqueous media, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 239, 118467, https://doi.org/10.1016/J.SAA.2020.118467; Figueruelo, V. (2014). La curcumina y sus funciones. https://uvadoc.uva.es/bitstream/handle/10324/7305/TFM-M163.pdf?sequence=1; Fini, M.N., Zhu, J., Van der Bruggen, B., Madsen, H.T., Muff, J. (2020). Preparation, characterization and scaling propensity study of a dopamine incorporated RO/FO TFC membrane for pesticide removal. J. Membr. Sci. 612, 118458. https://doi.org/10.1016/j.memsci.2020.118458; Gbadebo, O., K. Fox, G. Sutton, P.V. Murphy, D. Smith, P. O’Leary, Novel versatile synthesis method for amides, carbamates and ureas employing a Grignard base, an amine and an ester, Results Chem. 4 (2022), 100253, https://doi.org/10.1016/J.RECHEM.2021.100253.; Gillezeau, C.; Van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppard, L.; Taioli, E. (2019). The evidence of human exposure to glyphosate: A review. Environ. Health A Glob. Access Sci. Source. 18, 2. https://doi.org/10.1186/s12940-018-0435-5; González, J., Sanz, D., Claramunt, R., Lavandera, J., Alkorta, I & Elguero, J. (2015). Curcumin and curcuminoids: chemistry, structural studies and biological properties. An Real Acad Farm Vol. 81, Nº 4. https://analesranf.com/wp-content/uploads/2015/81_04/8104_02.pdf; González, P. (2019). Efecto de los plaguicidas sobre la salud humana. Biblioteca del Congreso Nacional de Chile / BCN. https://obtienearchivo.bcn.cl/obtienearchivo?id=repositorio/10221/26823/2/Efecto_de_los_plaguicidas_en_la_Salud.pdf; González Ortega, E., & Fuentes Ponce, M. H. (2022). Dinámica del glifosato en el suelo y sus efectos en la microbiota. Revista Internacional De Contaminación Ambiental, 38, 127–144. https://doi.org/10.20937/RICA.54197; Gui, M., Jiang, J., Wang, X., Yan, Y., Li, S., Xiao, X., Liu, T., Liu, T., Feng, Y. (2017). Copper ion-mediated glyphosate detection with N-heterocycle based polyacetylene as a sensing platform. Sensors and Actuators B. 243, 696–703. https://doi.org/10.1016/j.snb.2016.12.037; Gupta, P.K. (2018). Toxicity of Herbicides. In Veterinary Toxicology: Basic and Clinical Principles, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands. pp. 553–567. ISBN 9780128114100.; Han, T., Kang, H., Yuan, Y., Zhang, Y., Dong, L. (2020). Highly sensitive and ultrafast film sensor based on polyethyleneimine-capped quantum dots for trinitrophenol visual detection, AcSpA 234, 118243, https://doi.org/10.1016/J.SAA.2020.118243; Holden, N., Wolfe, M., Arogo, J. & Cummins, E. (2022). Sensores espectroscópicos ópticos visibles y de infrarrojo cercano para ingeniería de biosistemas. University College Dublin and Virginia Tech. LibreTexts.; Hossain, M. (2016). Recent perspective of herbicide: Review of demand and adoption in world agriculture. J. Bangladesh Agric. Univ.13, 19–30. https://www.banglajol.info/index.php/JBAU/article/view/28707; Hou, Y., Li, Y., Huang, W., Tsunoda, M., Zhang, Y., Xie, X., Wang, R., Li, L., Hu, W., Song, Y., Luo, S. (2020). Synthesis of sheet-like polypyrrole nanowires for the microextraction of trace residues of pyrethroid pesticides in human plasma and molecular dynamics-aided study of adsorption mechanism, J. Chromatogr. A 1632, https://doi.org/10.1016/J.CHROMA.2020.461609.; Hung, S.H., Lee, J.Y., Hu, C.C., Chiu, T.C. (2018). Gold-nanoparticle-based fluorescent “turn-on” sensor for selective and sensitive detection of dimethoate, Food Chem. 260, 61–65, https://doi.org/10.1016/J.FOODCHEM.2018.03.149.; Idowu, G.A., Aiyesanmi, A.F., Oyegoke, F.O. (2022). Organochlorine pesticide residues in pods and beans of cocoa (Theobroma cacao L.) from Ondo State Central District, Nigeria, Environ. Adv. 7, 100162. https://doi.org/10.1016/J.ENVADV.2021.100162.; Indian Pesticides Market: Industry Trends, Share, Size, Growth, (2022). Opportunity and Forecast 2021–2026 - GII, https://www.imarcgroup.com/indian-pesticides-market; Instituto Nacional de Salud. (2010). Protocolo de vigilancia y control de intoxicaciones por plaguicidas.https://www.minsalud.gov.co/comunicadosPrensa/Documents/INTOXICACION_POR_PLAGUICIDAS.pdf; Issaka, E., Wariboko, M.A., Johnson, N.A.N., Aniagyei, O.N-d. (2023). Advanced visual sensing techniques for on-site detection of pesticide residue in water environments. Heliyon. 9., 3. e13986. 229-237. https://doi.org/10.1016/j.heliyon.2023.e13986; Jagessar RC. (2023). Metal Ions, Ligands and Complexes in Medicinal Chemistry. Mod Appro Drug Des. 4, 1. 000580. https://crimsonpublishers.com/madd/pdf/MADD.000580.pdf; Kalyani, N., Goel, S. & Jaiswal, S. (2021). On‑site sensing of pesticides using point‑of‑care biosensors: a review. Environ Chem Lett 19, 345–354. https://doi.org/10.1007/s10311-020-01070-1; Karuppaiah, S., Krishnan, M. (2022). UV-Visible Spectroscopy for Colorimetric Applications. IntechOpen. Colorimetry Book. Chapter 2. 220. ISBN 978-1-83962-941-9 https://www.intechopen.com/chapters/79505; Kaur, J., Singh, P.K. (2020). Enzyme-based optical biosensors for organophosphate class of pesticide detection. Phys. Chem. Chem. Phys. 27, 22, 15105-15119. https://doi.org/10.1039/D0CP01647K; Kirschning, A. (2022). On the Evolutionary History of the Twenty Encoded Amino Acids. Chemistry A European Journal. 28(55), 1419; https://doi.org/10.1002/chem.202201419; Kościelniak, P. (2022). Calibration methods in qualitative analysis. TrAC Trends in Analytical Chemistry. 150. 116587. https://doi.org/10.1016/j.trac.2022.116587; Kumar, J., Melo, J.S. (2017). Overview on Biosensors for Detection of Organophosphate Pesticides. Curr. Trends Biomed. Eng. Biosci, 5, 3, 555. https://juniperpublishers.com/ctbeb/CTBEB.MS.ID.555663.php; Kumar, P., Kim, K.H., Deep, A. (2015). Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosens. Bioelectron.70, 469-481. https://doi.org/10.1016/j.bios.2015.03.066; Lehmler, H.J., Simonsen, D., Liu, B., Bao, W. (2020). Environmental exposure to pyrethroid pesticides in a nationally representative sample of U.S. adults and children: The National Health and Nutrition Examination Survey 2007–2012, Environ. Pollut. 267. https://doi.org/10.1016/J.ENVPOL.2020.115489.; Leino, L., Tall, T., Helander, M., Saloniemi, I., Saikkonen, K., Ruuskanen, S., Puigb`o, P. (2021). Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide, J. Hazard. Mater. 408, https://doi.org/10.1016/J.JHAZMAT.2020.124556.; Leyva-Soto, L.A.; Balderrama-Carmona, A.P.; Moran-Palacio, E.F.; Diaz-Tenorio, L.M.; Gortares-Moroyoqui, P. Glyphosate and aminomethylphosphonic acid in population of agricultural fields: Health risk assessment overview. Appl. Ecol. Environ. Res. 2018, 16, 5127–5140. http://dx.doi.org/10.15666/aeer/1604_51275140; Liang, N., Hu, X., Li, W., Mwakosya, A.W., Guo, Z., Xu, Y., Huang, X., Li, Z., Zhang, X., Zou, X., Shi, J. (2021). Fluorescence and colorimetric dual-mode sensor for visual detection of malathion in cabbage based on carbon quantum dots and gold nanoparticles, Food Chem. 343. https://doi.org/10.1016/J.FOODCHEM.2020.128494.; Li, H., Wang, Y., Li, Y., Zhang, J., Qiao, Y., Wang, Q., Che, G. (2020). Fabrication of pollutant resistance SERS imprinted sensors based on SiO2@TiO2@Ag composites for selective detection of pyrethroids in water, J. Phys. Chem. Solids. 138. https://doi.org/10.1016/J.JPCS.2019.109254.; Liu, Q., Li, S., Wang, Y.,Yang, L., Yue, M., Liu, Y.,Ye, F., Fu, Y. (2023). Sensitive fluorescence assay for the detection of glyphosate with NAC single bond Cu2+ complex. Science of The Total Environment. 882, 163548. https://doi.org/10.1016/j.scitotenv.2023.163548; Liu, Z., Jia, R., Chen, F., Yan, G., Tian, W., Zhang, J., Zhang, J. (2022). Electrochemical process of early-stage corrosion detection based on N-doped carbon dots with superior Fe3+ responsiveness, J. Colloid Interface Sci. 606. 567–576, https://doi.org/10.1016/J.JCIS.2021.08.058.; Machado, J. C. (2019). Síntesis y caracterización de análogos de curcumina y sus complejos metálicos de cobre. [Trabajo de grado, Química]. Universidad Nacional Autónoma de México. Repositorio Institucional de la UNAM. http://132.248.9.195/ptd2019/agosto/0793894/0793894.pdf; Maity, A., Shyamal, M., Mudi, N., Giri, P.K., Samanta, S.S., Hazra, P., Beg, H., Misra, A. (2020). An efficient fluorescent aggregates for selective recognition of 4-nitrophenol based on 9,10-dihydrobenzo[a]pyrene-7(8 H)-one, J. Photochem. Photobiol. A: Chem. 400, https://doi.org/10.1016/J.JPHOTOCHEM.2020.112692.; Ministério De Ambiente y Desarrollo Sostenible. (s.f). Contaminación atmosférica. https://www.minambiente.gov.co/asuntos-ambientales-sectorial-y-urbana/contaminacion-atmosferica/; Ministério De Ambiente y Desarrollo Sostenible. (s.f). Contaminantes orgânicos persistentes. https://www.minambiente.gov.co/asuntos-ambientales-sectorial-y-urbana/contaminantes-organicos-persistentes/#tabs-1; Mishra A., Kumar J., Melo J.S., Sandaka B.P. (2021). Progressive development in biosensors for detection of dichlorvos pesticide: A review. Journal of Environmental Chemical Engineering, 9, 2, 105067. https://doi.org/10.1016/j.jece.2021.105067; Mohy-Ud-Din, W., Bashir, S., Akhtar, M.J.,Asghar, H.M.N., Ghafoor, U., Hussain, M.M., Niazi, N.K., Chen, F., Ali. O. (2023) Glyphosate in the environment: interactions and fate in complex soil and water settings, and (phyto) remediation strategies, International Journal of Phytoremediation, https://doi.org/10.1080/15226514.2023.2282720; Moosavi, M.S., Ghassabian, S. (2018). Calibration and Validation of Analytical Methods - A Sampling of Current Approaches (Edited by Mark Stauffer). Chapter 6 Linearity of Calibration Curves for Analytical Methods: A Review of Criteria for Assessment of Method Reliability. IntechOpen, 1-174; ISBN 978-1-78923-085-7 https://www.intechopen.com/chapters/58596; Myers, J.P., Antoniou, M.N., Blumberg, B. (2016). Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health 15, 19. https://doi.org/10.1186/s12940-016-0117-0; Muthaiah, S., Bhatia, A., Kannan, M. (2020). Stability of Metal Complexes. IntechOpen. Stability and Applications of Coordination Compounds Book. Chapter 2. 176. ISBN 978-1-83880-058-1, https://www.intechopen.com/chapters/71326; Nsibande, S.A., Forbes, P.B.C. (2016). Fluorescence detection of pesticides using quantum dot materials – A review. Anal. Chim. Acta, 945, 16, 9–22. https://doi.org/10.1016/j.aca.2016.10.002; Ni, Y., Yang, H., Zhang, H., He, Q., S. Huang, Qin, M., Chai, S. Gao, H., Ma, Y. (2018). Analysis of four sulfonylurea herbicides in cereals using modified quick, easy, cheap, effective, rugged, and Safe sample preparation method coupled with liquid chromatography–tandem mass spectrometry, J. Chromatogr. A 1537. 27–34, https://doi.org/10.1016/J.CHROMA.2018.01.017.; Oaya, C.S.; Malgwi, A.M.; Degri, M.M.; Samaila, A.E. (2019). Impact of synthetic pesticides utilization on humans and the environment: an overview. J. Agric. Sci. Technol. 11, 4,279-286. https://agriscitech.eu/wp-content/uploads/2019/12/1_AST_4_December_2019.pdf; Otto S. Wolfbeis and Bernhard M. Weidgans, 2006, “Fiber optic chemical sensors and biosensors. A view back”, en Optical Chemical sensors, springer, Chap. 2.; Ogunbiyi, O.D., Olayinka A., Oluwasanmi, E.E., Adebanjo, J., Adefolaju, B., Ogunbiyi, T.J., Alli, J.A., Ayodele D.T., Olusakin, P. (2023). Glyphosate-based herbicide: Impacts, detection, and removal strategies in environmental simples. Groundwater for Sustainable Development. 22, 100961. https://doi.org/10.1016/j.gsd.2023.100961; Pang, J., Song, X., Huang, X., Yuan, D. (2020). Porous monolith-based magnetism reinforced in-tube solid phase microextraction of sulfonylurea herbicides in wáter and soil samples, J. Chromatogr. A. 1613, 460672, https://doi.org/10.1016/J.CHROMA.2019.460672.; Rajasekar M, Vijayanand R, Rajasekar K. (2023). Recent advances in Fluorescent-based cation sensors for biomedical Applications., Results in Chemistry., 5, 100850, 1-30. ISSN 2211-7156, https://doi.org/10.1016/j.rechem.2023.100850.; Rao, T.N. (2018). Chapter 7 Validation of Analytical Methods. Book: Calibration and Validation of Analytical Methods - A Sampling of Current Approaches. Edited by Mark Stauffer. ISBN 978-1-78923-085-7. https://www.intechopen.com/books/6379; Ravula, A.R.; Yenugu, S. (2021). Pyrethroid based pesticides – chemical and biological aspects. Critical Reviews In Toxicology. 1-26. https://doi.org/10.1080/10408444.2021.1879007; Richmond, M.E. (2018). Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. J Environ Stud Sci 8, 416–434. https://doi.org/10.1007/s13412-018-0517-2; Rong, Y., Li, H., Ouyang, Q., Ali, S., Chen, Q. (2020). Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide, Spectrochim. Acta Part A, Mol. Biomol. Spectrosc. 239, https://doi.org/10.1016/J.SAA.2020.118500.; Sabzkoohi, H.A., Dodier, V., Kolliopoulos, G. (2023). A validated analytical method to measure metals dissolved in deep eutectic solvents. RSC Adv., 13, 14887. https://pubs.rsc.org/en/content/articlepdf/2023/ra/d3ra02372a; Sánchez, S. (2017). Síntesis, caracterización y evaluación de sensores fluorescentes del tipo “turn on”, para su posible uso como biosensores de Zn(II). Pontificia Universidad Católica Del Perú.; Shahdost-fard, F., Fahimi-Kashani, F., Hormozi-nezhad, M.R. (2021). A ratiometric fluorescence nanoprobe using CdTe QDs for fast detection of carbaryl insecticide in apple, Talanta. 221. https://doi.org/10.1016/J.TALANTA.2020.121467.; Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G.P.S., Handa, N., Kohli, S.K., Yadav, P., Bali, A.S., Parihar, R.D., Dar, O.I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., Thukral, A.K. (2019). Worldwide pesticide usage and its impacts on ecosystem, SN Appl. Sci. 1. 1–16, https://doi.org/10.1007/S42452-019-1485-1/TABLES/4.; Sharma, D., Wangoo, N., Sharma, R.K. (2021). Sensing platform for pico-molar level detection of ethyl parathion using Au-Ag nanoclusters based enzymatic strategy, Talanta 221, https://doi.org/10.1016/J.TALANTA.2020.121267.; Sidhu, G.K., Singh, S., Kumar, V., Dhanjal, D.S., Datta, S. (2019). Toxicity, monitoring and biodegradation of organophosphate pesticides: A review, Critical Reviews in Environmental Science and Technology. 49, 1, 1-55. https://doi.org/10.1080/10643389.2019.1565554; Siraj, J. (2021). Organochlorine pesticide residues in tea and their potential risks to consumers in Ethiopia, Heliyon. 7. https://doi.org/10.1016/J.HELIYON.2021.E07667.; Sousa, S. Pestana, D., Faria, G., Vasconcelos, F., Delerue-Matos, C., Calhau, C., Domingues, V.F. (2020). Method development for the determination of synthetic musks and organophosphorus pesticides in human adipose tissue, J. Pharm. Biomed. Anal. 191, https://doi.org/10.1016/J.JPBA.2020.113598.; Stavra, E., Petrou, P.S., Koukouvinos, G., Economou, A., Goustouridis, D., Misiakos, K., Raptis, I., Kakabakos, S.E. (2020). Fast, sensitive and selective determination of herbicide glyphosate in water samples with a White Light Reflectance Spectroscopy immunosensor, Talanta. 214. https://doi.org/10.1016/J.TALANTA.2020.120854.; Su, D., Li, H.,Yan, X., Lin, Y., Lu, G. (2021). Biosensors based on fluorescence carbon nanomaterials for detection of pesticides Review of optical sensors. TrAC Trends in Analytical Chemistry. 134, 116126. https://doi.org/10.1016/j.trac.2020.116126; Sulaiman, I.S.C., Chieng, B.W., Osman, M.J., Ong, K.K., Rashid, J.I.A., Yunus, W. M. Z. W., Noor, S.A.M., Kasim, N.M.A., Halim, N., Mohamad A.A. (2020). Review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Microchim Acta 187, 131. https://doi.org/10.1007/s00604-019-3893-8; Talari, F.F., Bozorg, A., Faridbod, F., Vossoughi, M. (2021). A novel sensitive aptamerbased nanosensor using rGQDs and MWCNTs for rapid detection of diazinon pesticide, J. Environ. Chem. Eng. 9, https://doi.org/10.1016/J.JECE.2020.104878.; Tan, J., Peng, B., Tang, L., Feng, C., Wang, J., Yu, J., Ouyang, X., Zhu, X. (2019). Enhanced photoelectric conversion efficiency: A novel h-BN based self-powered photoelectrochemical aptasensor for ultrasensitive detection of diazinon, Biosens. Bioelectrons. 142, 111546, https://doi.org/10.1016/j.bios.2019.111546.; Tang, T., Wu, R., Zhang, L., Wang, Y., Ling, J., Du, W., Shen, G., Chen, Y., Zhao, M. (2021). Distribution and partitioning of pyrethroid insecticides in agricultural lands: critical influencing factors, Environ. Int. 156, 106736, https://doi.org/10.1016/J.ENVINT.2021.106736.; Triantafyllidis, V., Mavroeidis, A., Kosma, C. (2023). Herbicide Use in the Era of Farm to Fork: Strengths, Weaknesses, and Future Implications. Water Air Soil Pollut 234, 94. https://doi.org/10.1007/s11270-023-06125-x; Vargas-Chaves, I. (2018). De la proactividad a la prevención ambiental: análisis del impacto del uso del glifosato en la erradicación de cultivos de uso ilícito. En G. A. Rodríguez, & I. Vargas-Chaves, La prevención en materia ambiental: Tendencias actuales (págs. 1-34). Bogotá: Universidad del Rosario.; Waure C, Bertola C, Baccarini G, Chiavarini M, Mancuso C. (2023). Exploring the Contribution of Curcumin to Cancer Therapy: A Systematic Review of Randomized Controlled Trials. Pharmaceutics. 15, 4. 1275. https://doi.org/10.3390/pharmaceutics15041275; Weisenburger, D.D. (2021). A review and update with perspective of evidence that the herbicide glyphosate (Roundup) is a cause of non-hodgkin lymphoma, Clin. Lymphoma Myeloma Leuk. 21. 621–630, https://doi.org/10.1016/J.CLML.2021.04.009.; Xiaa, J., Xiongb, Y., Minb, S., Li, J. (2022). A review of recent infrared spectroscopy research for paper. Applied Spectroscopy Reviews. https://doi.org/10.1080/05704928.2022.2142939; Xiong, S., Deng, Y., Zhou, Y., Gong, D., Xu, Y. (2018). Current progress in biosensors for organophosphorus pesticides based on enzyme functionalized nanostructures: a review Analytical Methods. 10, 5468. https://doi.org/10.1039/C8AY01851K; Xu, F., Li, F., Ndikuryayo, F., Yang, W., H.-M. Wang, H.M. (2018). Cholinesterases and Engineered Mutants for the Detection of Organophosphorus Pesticide Residues. Sensors Rev, 18, 12, 4281, 1–15. https://doi.org/10.3390/s18124281; Yi, Y., Zeng, W., Zhu, G. (2021). β-Cyclodextrin functionalized molybdenum disulfide quantum dots as nanoprobe for sensitive fluorescent detection of parathionmethyl, Talanta. 222, https://doi.org/10.1016/J.TALANTA.2020.121703.; Yue, Ch., Zhao, Ch., Mao, S., Wang, S., Shi, B., Xinfeng, X., Liang, J. (2023). Determination of 10 carbamate pesticide residues in liquid milk by ultra performance liquid chromatography-tandem mass spectrometry with pass-through solid-phase extraction purification. Chinese Journal of Chromatography. 41, 9, 807-813. https://doi.org/10.3724/SP.J.1123.2023.03017; Zúñiga, K., Rebollar, G., Avelar, M.; Campos-Terán, J., Torres, E. (2022). Nanomaterial-Based Sensors for the Detection of Glyphosate. Water. 14, 2436. https://doi.org/10.3390/w14152436; Carrillo Martínez, S. (2024). Diseño de Sensores Moleculares Basados en Análogos de Curcuminas para la Detección del Herbicida Glifosato. [Trabajo de pregrado], Universidad Santo Tomás, Bucaramanga, Colombia; http://hdl.handle.net/11634/56016; reponame:Repositorio Institucional Universidad Santo Tomás; instname:Universidad Santo Tomás; repourl:https://repository.usta.edu.co
الاتاحة: http://hdl.handle.net/11634/56016
-
12Conference
المؤلفون: González-Monroy, Javier, Ruiz-Sarmiento, José Raúl, Moreno-Dueñas, Francisco Ángel, Galindo-Andrades, Cipriano, González-Jiménez, Antonio Javier
مصطلحات موضوعية: Robótica, Sensores químicos, Redes semánticas (Teoría de la información), Aprendizaje automático (Inteligencia artificial), Congresos y conferencias, Robotics, Chemical sensor, Object recognition, Semantic networks, Machine learning
Relation: Jornadas Nacionales de Robótica; Alicante; 13-14 Junio 2019; https://hdl.handle.net/10630/17757
الاتاحة: https://hdl.handle.net/10630/17757
-
13Conference
مصطلحات موضوعية: Congresos y conferencias, Gases, Sensores químicos, Robótica, Mobile robot, Robotic olfaction, Chemical sensor, Gas source localization
Relation: 18th International Symposium on Olfaction and Electronic Nose (ISOEN); Fukuoka, Japan; May, 2019; https://hdl.handle.net/10630/17764
الاتاحة: https://hdl.handle.net/10630/17764
-
14
المؤلفون: Sousa, Diogo Ramadas da Silva Costa e
المساهمون: Semedo, Ana Pimenta da Gama da Silveira Viana, 1972-, Cascalheira, António Carlos Henriques, 1972-, Repositório da Universidade de Lisboa
مصطلحات موضوعية: Luminescência, Biossensores, Sensores químicos, Qualidade alimentar, Monitorização, Teses de doutoramento - 2016, Domínio/Área Científica::Ciências Naturais::Ciências Químicas
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10451/26313
-
15
المؤلفون: Costa, Joana Isabel Torrão da
مصطلحات موضوعية: Química, Porfirinas, Fulerenos, Pirróis, Reacções de substituição, Sensores químicos
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10773/16049
-
16Síntese de sensores, funcionalização de nanopartículas e fibras óticas para reconhecimento de aniões
المؤلفون: Rodrigues, João Manuel Marques
مصطلحات موضوعية: Química, Porfirinas, Ftalocianinas, Tetrapirroles, Sensores químicos, Aniões, Nanopartículas, Fibras ópticas
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10773/16039
-
17
المؤلفون: Ademar Wong, Elsa María Materón, Tayane A. Freitas, Ronaldo C. Faria, Débora Gonçalves, Maria Del Pilar Taboada Sotomayor
المصدر: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USPمصطلحات موضوعية: General Chemical Engineering, Materials Chemistry, Electrochemistry, SENSORES QUÍMICOS
-
18
المؤلفون: Muteto, Paulino Vicente
مصطلحات موضوعية: Química, Aniões, Tetrapirroles, Sensores químicos, Microbalanças de cristais de quartzo
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10773/15687
-
19
المؤلفون: Figueira, Flávio Alberto da Silva
مصطلحات موضوعية: Química, Porfirinas, Sensores químicos, Aniões
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10773/13247
-
20Wearable soft electrochemical microfluidic device integrated with iontophoresis for sweat biosensing
المؤلفون: Gulcin Bolat, Ernesto De la Paz, Nathalia F. Azeredo, Michael Kartolo, Jayoung Kim, Andre Neirdert de Loyola e Silva, Ricardo Rueda, Christopher Brown, Lúcio Angnes, Joseph Wang, Juliane R. Sempionatto
المصدر: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USPمصطلحات موضوعية: Wearable Electronic Devices, Glucose, integumentary system, Lab-On-A-Chip Devices, Pilocarpine, Humans, Biosensing Techniques, Iontophoresis, Sweat, Biochemistry, Biomarkers, SENSORES QUÍMICOS, Analytical Chemistry
وصف الملف: application/pdf