يعرض 1 - 20 نتائج من 325 نتيجة بحث عن '"Semicrystalline polymers"', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
  3. 3
    Academic Journal
  4. 4
  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    وصف الملف: 15 pages

    Relation: Wiley; https://doi.org/10.1002/aenm.202202797; Advanced Energy Materials, Vol. 13, Iss. 9; Faculty/ Researcher Works; C. Chen, I. E. Jacobs, K. Kang, Y. Lin, C. Jellett, B. Kang, S. B. Lee, Y. Huang, M. BaloochQarai, R. Ghosh, M. Statz, W. Wood, X. Ren, D. Tjhe, Y. Sun, X. She, Y. Hu, L. Jiang, F. C. Spano, I. McCulloch, H. Sirringhaus, Observation of Weak Counterion Size Dependence of Thermoelectric Transport in Ion Exchange Doped Conducting Polymers Across a Wide Range of Conductivities. Adv. Energy Mater. 2023, 13, 2202797. https://doi.org/10.1002/aenm.202202797; http://hdl.handle.net/20.500.12613/10836

  9. 9
    Academic Journal

    وصف الملف: 22 páginas; application/pdf

    Relation: 22; The Journal of Reinforced Plastics and Composites; 1. Farahani S, Khade V, Basu S, et al. A data-driven predictive maintenance framework for injection molding process. J Manuf Process 2022; 80: 887–897. 2. Catoen B and Rees H. 5-Factors affecting the design of an injection mold. In: Catoen B, Rees H and BT-IMDH (eds) Munich, Germany: Hanser, 2021, pp. 151–169. 3. Lerma V, JR. Chapter 2 - thermodynamic behavior of plastics: PVT graphs. In: Lerma V, JR and BT-PIM (eds). Munich, Germany: Hanser, 2020, pp. 25–34. 4. Catoen B and Rees H. 15-selection of mold materials. In: Catoen B, Rees H and BT-IMDH (eds) Munich, Germany: Hanser, 2014, pp. 549–563. 5. Annicchiarico D and Alcock JR. Review of factors that affect shrinkage of molded part in injection molding. Mater Manuf Process 2014; 29: 662–682. 6. Kuram E, Timur G, Ozcelik B, et al. Influences of injection conditions on strength properties of recycled and virgin PBT/ PC/ABS. Mater Manuf Process 2014; 29: 1260–1268. 7. Chen S-C, Chang Y, Chang Y-P, et al. Effect of cavity surface coating on mold temperature variation and the quality of injection molded parts. Int Commun Heat Mass Tran 2009; 36: 1030–1035. 8. Feldmann M. The effects of the injection moulding temperature on the mechanical properties and morphology of polypropylene man-made cellulose fibre composites. Compos Part A Appl Sci Manuf 2016; 87: 146–152. 9. Chen S-C, Lin Y-W, Chien R-D, et al. Variable mold temperature to improve surface quality of microcellular injection molded parts using induction heating technology. Adv Polym Technol 2008; 27: 224–232. 10. Berger GR, Pacher GA, Pichler A, et al. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding. In Proceedings of PPS 2013 - 29th International Conference of the Polymer Processing Society, Conference Papers. Vol. 1593. American Institute of Physics Inc. 2014. p. 189-194 11. Karagoz¨ ˙I. An effect of mold surface temperature on final product properties in the injection molding of high-density polyethylene materials. Polym Bull 2021; 78: 2627–2644. 12. Liparoti S, Speranza V, Sorrentino A, et al. Mechanical properties distribution within polypropylene injection molded samples: effect of mold temperature under uneven thermal conditions. Polymers 2017; 9. Epub ahead of print 2017. DOI:10.3390/polym9110585. 13. Lucchetta G, Fiorotto M and Bariani PF. Influence of rapid mold temperature variation on surface topography replication and appearance of injection-molded parts. CIRPAnn 2012; 61: 539–542. 14. Guilong W, Guoqun Z, Huiping L, et al. Analysis of thermal cycling efficiency and optimal design of heating/cooling systems for rapid heat cycle injection molding process. Mater Des 2010; 31: 3426–3441. 15. Gurunathan T, Mohanty S and Nayak SK. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Appl Sci Manuf 2015; 77: 1–25. 16. Hidalgo-Salazar MA and Salinas E. Mechanical, thermal, viscoelastic performance and product application of PP-rice husk Colombian biocomposites. Compos Part B Eng 2019; 176: 107135. 17. Hidalgo-Salazar MA, Correa-Aguirre JP, Garc´ıa-Navarro S, et al. Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and threedimensional microscopy study. Polymers 2020; 12: 1507. 18. Burgstaller C. A comparison of processing and performance for lignocellulosic reinforced polypropylene for injection moulding applications. Compos Part B Eng 2014; 67: 192–198. 19. Gigante V, Cinelli P, Sandroni M, et al. On the use of paper sludge as filler in biocomposites for injection moulding. Materials 2021; 14: 2688. 20. Chaitanya S, Singh I and Song JI. Recyclability analysis of PLA/sisal fiber biocomposites. Compos Part B Eng 2019; 173: 106895. 21. Chaitanya S and Singh I. Processing of PLA/sisal fiber biocomposites using direct- and extrusion-injection molding. Mater Manuf Process 2017; 32: 468–474. 22. Pawłowska A, Stepczynska M and Walczak M. Flax ´ fibres modified with a natural plant agent used as a reinforcement for the polylactide-based biocomposites. Ind Crops Prod 2022; 184: 115061. 23. Correa JP, Montalvo-Navarrete JM and Hidalgo-Salazar MA. Carbon footprint considerations for biocomposite materials for sustainable products: a review. J Clean Prod 2019; 208: 785–794. Epub ahead of print 12 October 2018. DOI: 10. 1016/J.JCLEPRO.2018.10.099. 24. Lewis R, Weldekidan H, Rodriguez AU, et al. Design and engineering of sustainable biocomposites from ocean-recycled polypropylene-based polyolefins reinforced with almond shell and hull. Compos Part C Open Access 2023; 12: 100373. Epub ahead of print 2023. DOI:10.1016/j.jcomc.2023.100373. 25. Root KP, Pal AK, Pesaranhajiabbas E, et al. Injection moulded composites from high biomass filled biodegradable plastic: properties and performance evaluation for single-use applications. Compos Part C Open Access 2023; 11: 100358. Epub ahead of print 2023. DOI:10.1016/j. jcomc.2023.100358. 26. Ben Hamou K, Kaddami H, Elisabete F, et al. Synergistic association of wood/hemp fibers reinforcements on mechanical, physical and thermal properties of polypropylene-based hybrid composites. Ind Crops Prod 2023; 192: 116052. Epub ahead of print 2023. DOI:10.1016/j.indcrop.2022.116052. 27. Hidalgo-Salazar MA and Correa JP. Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene. Results Phys 2018; 8: 461–467. 28. Montalvo Navarrete JI, Hidalgo-Salazar MA, Escobar Nunez E, et al. Thermal and mechanical behavior of biocomposites using additive manufacturing. Int J Interact Des Manuf 2018; 12: 449–458. 29. Centeno-Mesa N, Lombana-Toro O, Correa-Aguirre JP, et al. Effect of fique fibers and its processing by-products on morphology, thermal and mechanical properties of epoxy based biocomposites. Sci Rep 2022; 12: 1–11. 30. Ramesh M, Palanikumar K and Reddy KH. Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev 2017; 79: 558–584. 31. Mochane MJ, Mokhena TC, Mokhothu TH, et al. Recent progress on natural fiber hybrid composites for advanced applications: a review. Express Polym Lett 2019; 13: 159–198. 32. Vais ¨ anen T, Das O and Tomppo L. A review on new bio-based ¨ constituents for natural fiber-polymer composites. J Clean Prod 2017; 149: 582–596. 33. Andrzejewski J, Barczewski M and Szostak M. Injection molding of highly filled polypropylene-based biocomposites. Buckwheat husk and wood flour filler: a comparison of agricultural and wood industry waste utilization. Polymers 2019; 11: 1881. 34. Correa-Aguirre JP, Luna-Vera F, Caicedo C, et al. The effects of reprocessing and fiber treatments on the properties of polypropylene-sugarcane bagasse biocomposites. Polymers 2020; 12: 1440. 35. ASTM D5857-17. standard specification for polypropylene injection and extrusion materials using ISO protocol and methodology. ASTM, 2017. 36. Keyence. Wide-area 3D measurement system VR-3000 series features. Osaka, Japan: Keyence, 2023. https://www.keyence. eu/ss/products/microscope/vr/feature/ 37. ASTM D638-14 standard test method for tensile properties of plastics, ASTM 2014. 38. ASTM D790 -17.standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM, 2017. 39. ASTM. D648-18 standard test method for deflection temperature of plastics under flexural load in the edgewise position. ASTM. 2018. 40. ASTM. D5023-15 standard test method for plastics: dynamic mechanical properties: in flexure (three-point bending). ASTM. 2015. 41. Franciszczak P, Wojnowski J, Kalnin¸s K, et al. The in ˇ fluence of matrix crystallinity on the mechanical performance of short-fibre composites – based on homo-polypropylene and a random polypropylene copolymer reinforced with man-made cellulose and glass fibres. Compos Part B Eng 2019; 166: 516–526. 42. Lascano D, Aljaro C, Fages E, et al. Study of the mechanical properties of polylactide composites with jute reinforcements. Green Mater 2023; 11: 69–78. Epub ahead of print 2022. DOI:10.1680/jgrma.21.00060. 43. Xu H, Liu CY, Chen C, et al. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites. Biopolymers 2012; 97: 825–839. 44. Neto JSS, de Queiroz HFM, Aguiar RAA, et al. A review on the thermal characterisation of natural and hybrid fiber composites. Polymers 2021; 13. Epub ahead of print 2021. DOI:10.3390/polym13244425. 45. TA Instruments. Using the DMA Q800 for ASTM international D 648 deflection temperature under load. New Castle, DE: TA Instruments. https://www.tainstruments.com/pdf/literature/RH086 _Using_Q800_for_ASTM_D468.pdf 46. Stevens M. Polymer chemistry: an introduction. New York, NY: Oxford University Press, 1999. 47. Saba N, Jawaid M, Alothman OY, et al. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 2016; 106: 149–159.; https://hdl.handle.net/10614/15887; https://doi.org/10.1177/07316844231210404; Universidad Autónoma de Occidente; Respositorio Educativo Digital UAO; https://red.uao.edu.co/

  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المساهمون: Atiq O., Ricci E., Giacinti Baschetti M., De Angelis M.G.

    وصف الملف: ELETTRONICO

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000959448400001; volume:570; firstpage:1; lastpage:11; numberofpages:11; journal:FLUID PHASE EQUILIBRIA; https://hdl.handle.net/11585/949694; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85150282558; https://www.sciencedirect.com/science/article/pii/S0378381223000791?via=ihub

  15. 15
    Academic Journal

    المصدر: Proceedings of the National Academy of Sciences of the United States of America, 120 (27), Art.Nr.: e2217363120 ; ISSN: 0027-8424, 1091-6490

    Relation: info:eu-repo/semantics/altIdentifier/wos/001038063600003; info:eu-repo/semantics/altIdentifier/issn/0027-8424; info:eu-repo/semantics/altIdentifier/issn/1091-6490; https://publikationen.bibliothek.kit.edu/1000161289

  16. 16
    Academic Journal
  17. 17
    Conference

    المساهمون: Laboratoire de Mécanique Gabriel Lamé (LaMé), Université d'Orléans (UO)-Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Caractérisation et Modélisation Multi-échelle, Multi-physique (C3M), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université d'Orléans (UO)-Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), académique, Bruker

    المصدر: Nanobrücken ; https://hal.science/hal-04520245 ; Nanobrücken, Bruker, Mar 2024, Lyon, France

    جغرافية الموضوع: Lyon, France

    Relation: hal-04520245; https://hal.science/hal-04520245

  18. 18
    Academic Journal

    المساهمون: Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)

    المصدر: ISSN: 1056-7895.

  19. 19
  20. 20
    Academic Journal