يعرض 1 - 20 نتائج من 461 نتيجة بحث عن '"Semiclassics"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Conference
  2. 2
    Academic Journal

    المصدر: Seiringer , R & Solovej , J P 2023 , ' A simple approach to Lieb–Thirring type inequalities ' , Journal of Functional Analysis , vol. 285 , no. 10 , 110129 . https://doi.org/10.1016/j.jfa.2023.110129

    وصف الملف: application/pdf

  3. 3
    Academic Journal
  4. 4
    Dissertation/ Thesis
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Book

    المؤلفون: Sandro Wimberger

    المساهمون: Wimberger, Sandro

    وصف الملف: STAMPA

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-3-031-01248-8; info:eu-repo/semantics/altIdentifier/isbn/978-3-031-01249-5; numberofpages:259; serie:GRADUATE TEXTS IN PHYSICS; https://hdl.handle.net/11381/2938096; https://link.springer.com/book/10.1007/978-3-031-01249-5

  16. 16
    Academic Journal

    المؤلفون: Sevilla Moreno, Jose Mauricio

    المساهمون: Viviescas Ramírez, Carlos Leonardo, Caos y Complejidad

    وصف الملف: application/pdf

    Relation: Andrea Bon glioli, R. F. a. (2012). Topics in Noncommutative Algebra: The Theorem of Campbell, Baker, Hausdor and Dynkin. Lecture Notes in Mathematics 2034. Springer-Verlag Berlin Heidelberg, 1 edition.; Arnold, V., Vogtmann, K., and Weinstein, A. (2013). Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics. Springer New York.; Berry, M. V. and Mount, K. E. (1972). Semiclassical approximations in wave mechanics. Reports on Progress in Physics, 35(1):315-397.; Ballentine, L. (1998). Quantum Mechanics: A Modern Development. World Scientific.; Burden, R. and Faires, J. (2010). Numerical Analysis. Cengage Learning.; Cabrera, R., Bondar, D. I., Jacobs, K., and Rabitz, H. A. (2015). Efficient method to generate time evolution of the Wigner function for open quantum systems. Phys. Rev. A, 92:042122.; Dahl, J. P. and Springborg, M. (1988). The morse oscillator in position space, momentum space, and phase space. The Journal of Chemical Physics, 88(7):4535-4547.; Daniela, D. (2005). Applications of the wigner distribution function in signal processing. EURASIP Journal on Advances in Signal Processing, 10.; Dirac, P. A. M. and Fowler, R. H. (1927). The physical interpretation of the quantum dynamics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 113(765):621-641.; Dittrich, T., Gomez, E., and Pachon, L. (2010). Semiclassical propagation of wigner functions. The Journal of chemical physics, 132:214102; Dittrich, T., Viviescas, C., and Sandoval, L. (2006). Semiclassical propagator of the wigner function. Phys. Rev. Lett., 96:070403; Domitrz, W., Manoel, M., and de M. Rios, P. (2013). The wigner caustic on shell and singularities of odd functions. Journal of Geometry and Physics, 71:58 - 72.; Domitrz, W. and Zwierzynski, M. (2020). Singular points of the wigner caustic and affine equidistants of planar curves. Bulletin of the Brazilian Mathematical Society, New Series, 51:11 - 26.; Feynman, R. (1966). The Feynman Lectures on Physics: Quantum mechanics. Number v. 3.; Feynman, R. P. (1948). Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys., 20:367-387; Forest, E. (2006). Geometric integration for particle accelerators. Journal of Physics A: Mathematical and General, 39(19):5321; Frank, A., Rivera, A. L., and Wolf, K. B. (2000). Wigner function of morse potential eigenstates. Phys. Rev. A, 61:054102; Glauber, R. J. (1963). Coherent and incoherent states of the radiation field. Phys. Rev., 131:2766-2788; Goldstein, H., Poole, C., and Safko, J. (2002). Classical Mechanics. Addison Wesley.; Gómez, E. A. (2010). Aplicaciones al propagador semiclásico de la función de wigner / applications to the semiclassical propagator of the wigner function. Tesis Doctorado en física.; Gray, S. K., Noid, D. W., and Sumpter, B. G. (1994). Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods. The Journal of Chemical Physics, 101(5):4062{4072.; Gutzwiller, M. C. (1967). Phase-integral approximation in momentum space and the bound states of an atom. Journal of Mathematical Physics, 8(10):1979-2000; Gutzwiller, M. C. (1969). Phase-integral approximation in momentum space and the bound states of an atom. ii. Journal of Mathematical Physics, 10(6):1004-1020.; Gutzwiller, M. C. (1970). Energy spectrum according to classical mechanics. Journal of Mathematical Physics, 11(6):1791-1806; Gutzwiller, M. C. (1971). Periodic orbits and classical quantization conditions. Journal of Mathematical Physics, 12(3):343-358; Gutzwiller, M. C. (1992). Chaos in Classical and Quantum Mechanics. Springer-Verlag New York.; Hairer, E., Norsett, S., and Wanner, G. (2008). Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics. Springer Berlin Heidelberg.; Heller, E. (1981). Frozen gaussians: A very simple semiclassical approximation. The Journal of Chemical Physics, 75(6):2923-2931.; Herman, M. F. and Kluk, E. (1984). A semiclassical justifi cation for the use of non-spreading wavepackets in dynamics calculations. Chemical Physics, 91(1):27 - 34.; Hillery, M., O'Connell, R. F., Scully, M. O., and Wigner, E. P. (1997). Distribution Functions in Physics: Fundamentals, pages 273{317. Springer Berlin Heidelberg, Berlin, Heidelberg.; Hudson, R. (1974). When is the wigner quasi-probability density non-negative? Reports on Mathematical Physics, 6(2):249 { 252; Husimi, K. (1940). Some formal properties of the density matrix. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 22(4):264-314; Jaubert, L. D. C. and de Aguiar, M. A. M. (2007). Semiclassical tunnelling of wavepackets with real trajectories. Physica Scripta, 75(3):363{373; Kay, K. G. (2013). Time-dependent semiclassical tunneling through barriers. Phys. Rev. A, 88:012122.; Keller, J. B. (1985). Semiclassical mechanics. SIAM Review, 27(4):485-504.; Koda, S.-i. (2015). Initial-value semiclassical propagators for the wigner phase space representation: Formulation based on the interpretation of the moyal equation as a schr odinger equation. The Journal of Chemical Physics, 143(24):244110.; Landau, L. and E.M., L. (1977). Quantum Mechanics: Non-relativistic Theory. Butterworth-Heinemann. Butterworth-Heinemann; Leonhardt, U., Knight, P., and Miller, A. (1997). Measuring the Quantum State of Light. Cambridge Studies in Modern Optics. Cambridge University Press.; Littlejohn, R. G. (1992). The van vleck formula, maslov theory, and phase space geometry. Journal of Statistical Physics, 68(1-2):7-50.; Maslov, V. and Fedoriuk, M. (1981). Semi-Classical Approximation in Quantum Mechanics. Mathematical Physics and Applied Mathematics. Dordrecht; McLachlan, R. I. and Atela, P. (1992). The accuracy of symplectic integrators. Nonlinearity, 5(2):541; Morse, P. M. (1929). Diatomic molecules according to the wave mechanics. ii. vibrational levels. Phys. Rev., 34:57{64; Moyal, J. E. (1949). Quantum mechanics as a statistical theory. Mathematical Proceedings of the Cambridge Philosophical Society, 45(1):99-124.; O'Connell, R. and Wigner, E. (1981a). Quantum-mechanical distribution functions: Conditions for uniqueness. Physics Letters A, 83(4):145 -148.; O'Connell, R. and Wigner, E. (1981b). Some properties of a non-negative quantum-mechanical distribution function. Physics Letters A, 85(3):121-126.; Ozorio de Almeida, A. (2009). Entanglement in Phase Space, pages 157-219. Springer Berlin Heidelberg, Berlin, Heidelberg; Ozorio de Almeida, A., Vallejos, R., and Zambrano, E. (2013). Initial or fi nal values for semiclassical evolutions in the weyl-wigner representation. Journal of Physics A: Mathematical and Theoretical, 46:135304; Ozorio de Almeida, A. M. (1989). Hamiltonian Systems: Chaos and Quantization. Cambridge Monographs on Mathematical Physics. Cambridge University Press.; Ozorio de Almeida, A. M. (1998). The weyl representation in classical and quantum mechanics. Physics Reports, 295(6):265 { 342.; Ozorio de Almeida, A. M. and Brodier, O. (2006). Phase space propagators for quantum operators. Annals of Physics, 321(8):1790-1813; Ozorio de Almeida, A. M., Lando, G. M., Vallejos, R. O., and Ingold, G.-L. (2019). Quantum revival patterns from classical phase-space trajectories. Phys. Rev. A, 99:042125.; P. Schleich, W. (2001). Quantum optics in phase space. Quantum Optics in Phase Space, by Wolfgang P. Schleich, pp. 716. ISBN 3-527-29435-X. Wiley-VCH , April 2001.; Pachón, L. A. (2010). Coherencia y decoherencia en la propagación semiclásica de la función de wigner / Coherence and decoherence in the semiclassical propagation of the wigner function. Tesis Doctor en ciencias-física.; Press, W. (2007). Numerical Recipes 3rd Edition: The Art of Scientifi c Computing.Cambridge University Press; Sakurai, J. and Napolitano, J. (2011). Modern Quantum Mechanics. Addison-Wesley.; Van Vleck, J. (1928). The correspondence principle in the statistical interpretation of quantum mechanics. Proceedings of the National Academy of Sciences of the United States of America, 14(2):178{188.; Villalba, O. E. R. (2017). Semiclassical approximation to the propagator of the wigner function for particles in con ned spaces. Magíster en Ciencias - Física; Weinbub, J. and Ferry, D. K. (2018). Recent advances in wigner function approaches. Applied Physics Reviews, 5(4):041104.; Weyl, H. (1927). Quantenmechanik und gruppentheorie. Zeitschrift f ur Physik, 46(1):1{46.; Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749{759; Yoshida, H. (1990). Construction of higher order symplectic integrators. Physics Letters A, 150(5):262 { 268; Zachos, C., Fairlie, D., and Curtright, T. (2005). Quantum Mechanics in Phase Space: An Overview with Selected Papers. World Scienti fic series in 20th century physics. World Scienti fic; Sevilla Moreno, J. M. (2020). Semiclassical propagators of wigner function: a comparative study [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional; https://repositorio.unal.edu.co/handle/unal/79213

  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal