-
1
المؤلفون: Zarei, Maryam, Wallsten, Elin, Grefve, Josefine, Söderkvist, Karin, Gunnlaugsson, Adalsteinn, Sandgren, Kristina, Jonsson, Joakim, Lindberg, Angsana Keeratijarut, Nilsson, Erik, Bergh, Anders, Zackrisson, Björn, Moreau, Mathieu, Karlsson, Camilla Thellenberg, Olsson, Lars E., Widmark, Anders, Riklund, Katrine, Blomqvist, Lennart, Loegager, Vibeke Berg, Axelsson, Jan, Strandberg, Sara N., Nyholm, Tufve
المصدر: Acta Oncologica. 63:503-510
مصطلحات موضوعية: histopathology, Prostate cancer, PSMA-PET, semi-automatic segmentation, Medicin och hälsovetenskap, Klinisk medicin, Radiologi och bildbehandling, Medical and Health Sciences, Clinical Medicine, Radiology, Nuclear Medicine and Medical Imaging
-
2Academic Journal
المؤلفون: Romina Nespeca, Chiara Mariotti, Leonardo Petetta, Angela Mandriota
المساهمون: Nespeca, Romina, Mariotti, Chiara, Petetta, Leonardo, Mandriota, Angela
مصطلحات موضوعية: Architectural Heritage, Preservation, Point Cloud Processing, Semi-Automatic Segmentation, Data Mining
وصف الملف: ELETTRONICO
Relation: volume:48; issue:2; firstpage:325; lastpage:332; numberofpages:8; journal:THE INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES; https://hdl.handle.net/11566/326932; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85186953595; https://isprs-archives.copernicus.org/articles/XLVIII-2-W4-2024/325/2024/
-
3Academic Journal
المؤلفون: Kim, Sewon, Bae, Won C, Masuda, Koichi, Chung, Christine B, Hwang, Dosik
المصدر: Applied sciences (Basel, Switzerland). 8(9)
مصطلحات موضوعية: MR spine image, correlation, graph-based segmentation, semi-automatic segmentation, vertebral body, Bioengineering
وصف الملف: application/pdf
URL الوصول: https://escholarship.org/uc/item/8cn057wt
-
4Academic Journal
المؤلفون: Decaux, Nathan, Conze, Pierre-Henri, Ropars, Juliette, He, Xinyan, Sheehan, Frances, T, Pons, Christelle, Salem, Ben, Brochard, Sylvain, Rousseau, François
المساهمون: Laboratoire de Traitement de l'Information Medicale (LaTIM), Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Institut Brestois Santé Agro Matière (IBSAM), Université de Brest (UBO), Département lmage et Traitement Information (IMT Atlantique - ITI), IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT), Centre Hospitalier Régional Universitaire de Brest (CHRU Brest), Institut Mines-Télécom Paris (IMT), National Institutes of Health Bethesda, MD, USA (NIH), Fondation ILDYS (ILDYS), ANR-19-CHIA-0015,AI-4-CHILD,IA au service de la neuroréhabilitation pédiatrique(2019)
المصدر: ISSN: 0031-3203 ; Pattern Recognition ; https://hal.science/hal-03945559 ; Pattern Recognition, 2023, 140 (August 2023), pp.109529. ⟨10.1016/j.patcog.2023.109529⟩.
مصطلحات موضوعية: semi-automatic segmentation, musculoskeletal system, deep registration, label propagation, [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
-
5Academic Journal
المؤلفون: I. A. Blokhin, A. V. Solovev, A. V. Vladzymyrskyy, M. R. Kodenko, Yu. F. Shumskaya, A. P. Gonchar, V. A. Gombolevskiy, И. А. Блохин, А. В. Соловьев, A. B. Владзимирский, М. Р. Коденко, Ю. Ф. Шумская, А. П. Гончар, В. А. Гомболевский
المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 37, № 4 (2022); 114-123 ; Сибирский журнал клинической и экспериментальной медицины; Том 37, № 4 (2022); 114-123 ; 2713-265X ; 2713-2927
مصطلحات موضوعية: низкодозная компьютерная томография, COVID-19, thorax, semi-automatic segmentation, low-dose computed tomography, грудная клетка, полуавтоматическая сегментация
وصف الملف: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/1625/763; Lai C.-C., Shih T.-P., Ko W.-C., Tang H.-J., Hsueh P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents. 2020;55(3):105924. DOI:10.1016/j.ijantimicag.2020.105924.; Вe Jaegere T.M.H., Krdzalic J., Fasen B.A.C.M., Kwee R.M.; COVID-19 CT Investigators South-East Netherlands (CISEN) study group. Radiological society of north america chest ct classification system for reporting COVID-19 pneumonia: Interobserver variability and correlation with reverse-transcription polymerase hain reaction. Radiol. Cardiothorac. Imaging. 2020;2(3):e200213. DOI:10.1148/ryct.2020200213.; Samir A., El-Husseiny R.M., Sweed R.A., El-Maaboud N.A.E.-M.A., Masoud M. Ultra-low-dose chest CT protocol during the second wave of COVID-19 pandemic: A double-observer prospective study on 250 patients to evaluate its detection accuracy. Egypt. J. Radiol. Nucl. Med. 2021;52(1):136. DOI:10.1186/s43055-021-00512-2.; Prokop M., van Everdingen W., van Rees Vellinga T., Quarles van Ufford H., Stöger L., Beenen L. et al. CO-RADS: A categorical СТ assessment scheme for patients suspected of having COVID-19-definition and evaluation. Radiol. 2020;296(2):E97–E104. DOI:10.1148/radiol.2020201473.; Yang R., Li X., Liu H., Zhen Y., Zhang X., Xiong Q. et al. Chest ct severity score: An imaging tool for assessing severe covid-19. Radiol. Cardiothorac. Imaging. 2020;2(2):e200047. DOI:10.1148/ryct.2020200047.; Colombi D., Bodini F.C., Petrini M., Maffi G., Morelli N., Milanese G. et al. Well-aerated lung on admitting chest CN to predict adverse outcome in COVID-19 pneumonia. Radiol. 2020;296(2):E86–E96. DOI:10.1148/radiol.2020201433.; Priority medical devices list for the COVID-19 response and associated technical specifications: Interim guidance. URL: https://apps.who.int/iris/bitstream/handle/10665/336745/WHO-2019-nCoV-MedDev-TS-O2T.V2-eng.pdf (22.11.2022).; Lee E.Y.P, Ng M.Y., Khong P.L. COVID-19 pneumonia: what has CT taught us? Lancet Infect. Dis. 2020;20(4):384–385. DOI:10.1016/S1473-3099(20)30134-1.; Xia T., Li J., Gao J., Xu X. Small solitary ground-glass nodule on СТ as an initial manifestation of coronavirus disease 2019 (COVID-19) pneumonia. Korean. J. Radiol. 2020;21(5):545. DOI:10.3348/kjr.2020.0240.; Li B., Li X., Wang Y., Han Y., Wang Y., Wang C. et al. Diagnostic value and key features of computed tomography in Coronavirus Disease 2019. Emerg. Microbes Infec. 2020;9(1):787–793. DOI:10.1080/22221751.2020.1750307.; Parekh M., Donuru A., Balasubramanya R., Kapur S. Review of the chest CT differential diagnosis of ground-glass opacities in the COVID era. Radiol. 2020;297(3):E289–E302. DOI:10.1148/radiol.2020202504.; Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов; 2 изд. URL: https://tele-med.ai/biblioteka-dokumentov/luchevaya-diagnostika-koronavirusnoj-bolezni-covid-19-organizaciya-metodologiya-interpretaciya-rezultatov2 (22.11.2022); Huang L., Han R., Ai T., Yu P., Kang H., Tao Q. et al. Serial quantitative chest CT assessment of COVID -19: A deep learning approach. Radiol: Cardiothorac. Imaging. 2020;2(2):e200075. DOI:10.1148/ ryct.2020200075.; Морозов С.П., Кузьмина Е.С., Ледихова Н.В., Владзимирский А.В., Трофименко И.А., Мокиенко О.А. и др. Мобилизация научно-практического потенциала службы лучевой диагностики г. Москвы в пандемию COVID-19. Digital Diagnostics. 2020;1(1):5−12. DOI:10.17816/DD51043.; Prasad K.N., Cole W.C., Haase G.M. Radiation protection in humans: Extending the concept of as low as reasonably achievable (Alara) from dose to biological damage. BJR. 2004;77(914):97–99. DOI:10.1259/bjr/88081058.; Preface, executive summary and glossary. Ann. ICRP. 2007;37(2–4):9– 34. DOI:10.1016/j.icrp.2007.10.003.; Sakane H., Ishida M., Shi L., Fukumoto W., Sakai C., Miyata Y. et al. Biological effects of low-dose chest CT on chromosomal DNA. Radiology. 2020;295(2):439–445. DOI:10.1148/radiol.2020190389.; Tofighi S., Najafi S., Johnston S.K., Gholamrezanezhad A. Low-dose CT in COVID-19 outbreak: Radiation safety, image wisely, and image gently pledge. Emerg. Radiol. 2020;27(6):601–605. DOI:10.1007/s10140-02001784-3.; Tabatabaei S.M.H, Talari H., Gholamrezanezhad A., Farhood B., Rahimi H., Razzaghi R. et al. A low-dose chest CT protocol for the diagnosis of COVID-19 pneumonia: A prospective study. Emerg. Radiol. 2020;27(6):607–615. DOI:10.1007/s10140-020-01838-6.; Schulze-Hagen M., Hübel C., Meier-Schroers M., Yüksel C., Sander A. et al. Low-dose chest CT for the diagnosis of COVID-19. Deutsches Ärzteblatt International. 2020;117(22–23):389–395. DOI:10.3238/arztebl.2020.0389.; Aslan S., Bekçi T., Çakır İ.M., Ekiz M., Yavuz İ., Şahin A.M. Diagnostic performance of low-dose chest CT to detect COVID-19: A Turkish population study. Diagn. Interv. Radiol. 2021;27(2):181–187. DOI:10.5152/dir.2020.20350.; Blokhin I., Gombolevskiy V., Chernina V., Gusev M., Gelezhe P., Aleshina O. et al. Inter-observer agreement between low-dose and standard-dose СТ with soft and sharp convolution kernels in СOVID-19 pneumonia. J. Clin. Med. 2022;11(3):669. DOI:10.3390/jcm11030669.; Усанов М.С., Кульберг Н.С., Морозов С.П. Разработка алгоритма анизотропной нелинейной фильтрации данных компьютерной томографии с применением динамического порога. Компьютерные исследования и моделирование. 2019;11(2):233–248. DOI:10.20537/2076-7633-2019-11-2-233-248.; Schilham A.M.R, van Ginneken B., Gietema H., Prokop M. Local noise weighted filtering for emphysema scoring of low-dose CT images. IEEE Trans. Med. Imaging. 2006;25(4):451–463. DOI:10.1109/TMI.2006.871545.; Николаев А.Е., Чернина В.Ю., Блохин И.А., Шапиев А.Н., Гончар А.П., Гомболевский В.А. и др. Перспективы использования комплексной компьютер-ассистированной диагностики в оценке структур грудной клетки. Хирургия. Журнал им. Н.И. Пирогова. 2019;(12):91–99. DOI:10.17116/hirurgia201912191.; Bai T., Wang B., Nguyen D., Jiang S. Probabilistic self‐learning framework for low‐dose CT denoising. Med. Phys. 2021;48(5):2258–2270. DOI:10.1002/mp.14796.; Tang C., Li J., Wang L., Li Z., Jiang L., Cai A. et al. Unpaired low-dose CT denoising network based on cycle-consistent generative adversarial network with prior image information. Comput. Math. Methods Med. 2019;2019:1–11. DOI:10.1155/2019/8639825.; Gombolevskiy V., Morozov S., Chernina V., Blokhin I., Vassileva J. A phantom study to optimise the automatic tube current modulation for chest CT in COVID-19. Eur. Radiol. Exp. 2021;5(1):21. DOI:10.1186/ s41747-021-00218-0.; Maldjian P.D., Goldman A.R. Reducing radiation dose in body СТ: primer on dose metrics and key CT technical parameters. Am. Jour. of Rent. 2013;200(4):741–747. DOI:10.2214/AJR.12.9768.; Gierada D.S., Bierhals A.J., Choong C.K., Bartel S.T., Ritter J.H., Das N.A. et al. Effects of CT section thickness and reconstruction kernel on emphysema quantification. Acad. Radiol. 2010;17(2):146–156. DOI:10.1016/j.acra.2009.08.007.; Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J.-C., Pujol S. et al. 3D slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging. 2012;30(9):1323–1341. DOI:10.1016/j.mri.2012.05.001.; Kikinis R., Pieper S.D., Vosburgh K.G. 3D slicer: F platform for subject-specific image analysis, visualization, and clinical support. In: F.A. Jolesz by ed. Intraoperative imaging andiImage-guided therapy. New York: Springer; 2014:277–289. DOI:10.1007/978-1-4614-76573_19.; Bumm R., Lasso A., Kawel-Böhm N., Wäckerlin A., Ludwig P., Furrer M. First results of spatial reconstruction and quantification of COVID-19 chest CT infiltrates using lung CT analyzer and 3D slicer. Brit. J. Surg. 2021;108(4):znab202.077. DOI:10.1093/bjs/znab202.077.; Kaza E., Dunlop A., Panek R., Collins D.J., Orton M., Symonds-Tayler R. et al. Lung volume reproducibility under ABC control and self-sustained breath-holding. J. Appl. Clin. Med. Phys. 2017;18(2):154–162. DOI:10.1002/acm2.12034.; Lanza E., Muglia R., Bolengo I., Santonocito O.G., Lisi C., Angelotti G. et al. Quantitative chest CT analysis in COVID-19 to predict the need for oxygenation support and intubation. Eur. Radiol. 2020;30(12):6770– 6778. DOI:10.1007/s00330-020-07013-2.; Berta L., Rizzetto F., De Mattia C., Lizio D., Felisi M., Colombo P.E. et al. Automatic lung segmentation in COVID-19 patients: Impact on quantitative computed tomography analysis. Phys. Medica. 2021;87:115–122. DOI:10.1016/j.ejmp.2021.06.001.; Ozsahin I., Sekeroglu B., Musa M.S., Mustapha M.T., Uzun Ozsahin D. Review on diagnosis of covid-19 from chest CT images using artificial intelligence. Comput. Math. Methods Med. 2020;2020:1–10. DOI:10.1155/2020/9756518.; Shi F., Wang J., Shi J., Wu Z., Wang Q., Tang Z. et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. 2021;14:4–15. DOI:10.1109/RBME.2020.2987975.; Кульберг Н.С., Решетников Р.В., Новик В.П., Елизаров А.Б., Гусев М.А., Гомболевский В.А. и др. Вариабельность заключений при интерпретации КТ-снимков: один за всех и все за одного. Digital Diagnostics. 2021;2(2):105–118. DOI:10.17816/DD60622.; Boufarasse Y.B., Ettahir A., Bekkali D., Bennani J. Teleradiology and AI as solution to overcome the COVID-19 pandemic impact during the lockdowns in Africa. Health Sci. J. 2020;14(6):771. DOI:10.36648/1791809X.14.6.771.; Tan B.S., Dunnick N.R., Gangi A., Goergen S., Jin Z.Y., Neri E. et al. RSNA International Trends: A global perspective on the COVID-19 pandemic and radiology in late 2020. Radiol. 2021;299(1):E193–E203. DOI:10.1148/radiol.2020204267.; Martín-Noguerol T., Lopez-Ortega R., Ros P.R., Luna A. Teleworking beyond teleradiology: Managing radiology departments during the COVID-19 outbreak. Eur. Radiol. 2021;31(2):601–604. DOI:10.1007/s00330-020-07205-w.; https://www.sibjcem.ru/jour/article/view/1625
-
6Academic Journal
المؤلفون: Yaojiang Ye, Zixin Luo, Zhengxuan Qiu, Kangyang Cao, Bingsheng Huang, Lei Deng, Weijing Zhang, Guoqing Liu, Yujian Zou, Jian Zhang, Jianpeng Li
المصدر: Bioengineering, Vol 10, Iss 12, p 1355 (2023)
مصطلحات موضوعية: magnetic resonance imaging, urinary bladder neoplasms, radiomics, muscles, semi-automatic segmentation, Technology, Biology (General), QH301-705.5
Relation: https://www.mdpi.com/2306-5354/10/12/1355; https://doaj.org/toc/2306-5354; https://doaj.org/article/6cbe03f1620c412ca07cd38a8441b8c4
-
7Academic Journal
المصدر: Frontiers in Immunology, Vol 13 (2022)
مصطلحات موضوعية: immunotherapy response, RECIST1.1, intracranial malignancy, magnetic resonance imaging, semi-automatic segmentation, Immunologic diseases. Allergy, RC581-607
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: Virginia Liberini, Bruno De Santi, Osvaldo Rampado, Elena Gallio, Beatrice Dionisi, Francesco Ceci, Giulia Polverari, Philippe Thuillier, Filippo Molinari, Désirée Deandreis
المصدر: EJNMMI Physics, Vol 8, Iss 1, Pp 1-21 (2021)
مصطلحات موضوعية: Texture analysis, Radiomics, Neuroendocrine tumor, Robustness, 68Ga-DOTATOC PET/CT, Semi-automatic segmentation, Medical physics. Medical radiology. Nuclear medicine, R895-920
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2197-7364
-
9Conference
المؤلفون: Valeria Cerina, Chiara B. Rui, Elisabetta De Bernardi, Rosa M. Moresco, Carlo G. Giussani, Gianpaolo Basso, Andrea Di Cristofori
المساهمون: Cerina, V, Rui, C, DE BERNARDI, E, Moresco, R, Giussani, C, Basso, G, DI CRISTOFORI, A
مصطلحات موضوعية: Glioblastoma (GBM), Semi-automatic segmentation, GBM surgery planning, Segmentation quality assessment, BraTS Toolkit
Relation: 19th European Molecular Imaging Meeting - EMIM (European Society of Molecular Imaging - ESMI) - 12-15 March; firstpage:76; lastpage:76; numberofpages:1; https://hdl.handle.net/10281/468482; https://e-smi.eu/meetings/emim/past-meetings/2024-porto/
-
10Academic Journal
المؤلفون: Zarina Ramli, Muhammad Khalis Abdul Karim, Nuraidayani Effendy, Mohd Amiruddin Abd Rahman, Mohd Mustafa Awang Kechik, Mohamad Johari Ibahim, Nurin Syazwina Mohd Haniff
المصدر: Diagnostics; Volume 12; Issue 12; Pages: 3125
مصطلحات موضوعية: DWI-MRI, MRI, radiomics, cervical cancer, manual segmentation, semi-automatic segmentation
وصف الملف: application/pdf
Relation: Medical Imaging and Theranostics; https://dx.doi.org/10.3390/diagnostics12123125
-
11Academic Journal
المؤلفون: Camilla Risoli, Marco Nicolò, Davide Colombi, Marco Moia, Fausto Rapacioli, Pietro Anselmi, Emanuele Michieletti, Roberta Ambrosini, Marco Di Terlizzi, Luigi Grazioli, Cristian Colmo, Angelo Di Naro, Matteo Pio Natale, Alessandro Tombolesi, Altin Adraman, Domenico Tuttolomondo, Cosimo Costantino, Elisa Vetti, Chiara Martini
المصدر: Diagnostics; Volume 12; Issue 6; Pages: 1501
مصطلحات موضوعية: chest CT, lung segmentation, semi-automatic segmentation software, COVID-19 pneumonia, post-processing tools
وصف الملف: application/pdf
Relation: Medical Imaging and Theranostics; https://dx.doi.org/10.3390/diagnostics12061501
-
12Academic Journal
المؤلفون: Jones, Cory, Liu, Ting, Cohan, Nathaniel Wood, Ellisman, Mark, Tasdizen, Tolga
مصطلحات موضوعية: Bioengineering, Animals, Connectome, Imaging, Three-Dimensional, Microscopy, Electron, Scanning, Models, Neurological, Neurons, Pattern Recognition, Automated, Semi-automatic segmentation, Image segmentation, Electron microscopy, Neuron reconstruction, 3D segmentation, Connectomics, Neurosciences, Psychology, Cognitive Sciences, Neurology & Neurosurgery
وصف الملف: application/pdf
URL الوصول: https://escholarship.org/uc/item/8mn5z5p8
-
13Academic Journal
المؤلفون: Sílvia D. Almeida, João Santinha, Francisco P. M. Oliveira, Joana Ip, Maria Lisitskaya, João Lourenço, Aycan Uysal, Celso Matos, Cristina João, Nikolaos Papanikolaou
المصدر: Cancer Imaging, Vol 20, Iss 1, Pp 1-10 (2020)
مصطلحات موضوعية: Diffusion weighted imaging, Semi-automatic segmentation, Atlas-based segmentation, Total lesion burden, Multiple myeloma, Medical physics. Medical radiology. Nuclear medicine, R895-920, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
وصف الملف: electronic resource
Relation: https://doaj.org/toc/1470-7330
-
14Academic Journal
المؤلفون: Ranran Sun, Keqiang Wang, Lu Guo, Chengwen Yang, Jie Chen, Yalin Ti, Yu Sa
المصدر: BMC Medical Imaging, Vol 19, Iss 1, Pp 1-9 (2019)
مصطلحات موضوعية: Brain tumor, Functional magnetic resonance imaging, Fusion, Semi-automatic segmentation, Medical technology, R855-855.5
وصف الملف: electronic resource
-
15
المؤلفون: Almeida, Sílvia Alexandra Dias
المساهمون: Papanikolaou, Nikolaos, João, Cristina, RUN
مصطلحات موضوعية: Diffusion Weighted Imaging, Semi-Automatic Segmentation, Atlas-based Segmentation, Tumor Burden, Image Processing, Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10362/56381
-
16Academic Journal
المؤلفون: Charlotte Theresa Trebing, Sinan Sen, Stefan Rues, Christopher Herpel, Maria Schöllhorn, Christopher J. Lux, Peter Rammelsberg, Franz Sebastian Schwindling
المصدر: Heliyon, Vol 7, Iss 4, Pp e06645- (2021)
مصطلحات موضوعية: Oral epithelium, Semi-automatic segmentation, Optical coherence tomography, Thickness measurement, Science (General), Q1-390, Social sciences (General), H1-99
وصف الملف: electronic resource
-
17Academic Journal
المؤلفون: Poornima, D.1, 1, Karegowda, Asha Gowda2
المصدر: International Journal of Data Mining And Emerging Technologies 8(1):78-94. 2018
-
18Academic Journal
المؤلفون: Nurin Syazwina Mohd Haniff, Muhammad Khalis Abdul Karim, Nurul Huda Osman, M Iqbal Saripan, Iza Nurzawani Che Isa, Mohammad Johari Ibahim
المصدر: Diagnostics; Volume 11; Issue 9; Pages: 1573
مصطلحات موضوعية: HCC, MRI, radiomics, manual segmentation, semi-automatic segmentation
وصف الملف: application/pdf
Relation: Medical Imaging and Theranostics; https://dx.doi.org/10.3390/diagnostics11091573
-
19Dissertation/ Thesis
المؤلفون: Blomlöf, Alexander
مصطلحات موضوعية: Deep learning, DL, Self-Supervised Learning, SSL, Transfer Learning, TL, semi-automatic segmentation, segmentation, Medical Image Processing, Medicinsk bildbehandling
وصف الملف: application/pdf
Relation: UPTEC X; 24023
-
20Academic Journal
المؤلفون: Julien Frandon, Stéphanie Bricq, Zakarya Bentatou, Laetitia Marcadet, Pierre Antoine Barral, Mathieu Finas, Daniel Fagret, Frank Kober, Gilbert Habib, Monique Bernard, Alain Lalande, Lucile Miquerol, Alexis Jacquier
المصدر: Journal of Cardiovascular Magnetic Resonance, Vol 20, Iss 1, Pp 1-11 (2018)
مصطلحات موضوعية: Left ventricular non-compaction, Semi-automatic segmentation, CMR, Genetic mouse model, Diseases of the circulatory (Cardiovascular) system, RC666-701
وصف الملف: electronic resource