يعرض 1 - 20 نتائج من 68 نتيجة بحث عن '"Secuenciación de alto rendimiento"', وقت الاستعلام: 1.04s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: González Ruiz, Mercedes

    المساهمون: University/Department: Universitat de Girona. Departament de Biologia

    Thesis Advisors: Garcia-Gil, L. J., Adserias Garriga, Maria José, Gomis, Ramon

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    Dissertation/ Thesis

    المؤلفون: Willis, Jesse

    المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Ciències Experimentals i de la Salut

    Thesis Advisors: Gabaldón Estevan, Juan Antonio

    المصدر: TDX (Tesis Doctorals en Xarxa)

    Time: 616.3

    وصف الملف: application/pdf

  3. 3
    Dissertation/ Thesis

    المؤلفون: Althammer, Sonja Daniela

    المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Ciències Experimentals i de la Salut

    Thesis Advisors: Eyras Jiménez, Eduardo

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  4. 4
    Dissertation/ Thesis

    المؤلفون: Pantano Rubiño, Lorena

    المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Ciències Experimentals i de la Salut

    Thesis Advisors: Martí Puig, Eulàlia, Estivill, Xavier

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  5. 5
    Book

    جغرافية الموضوع: Noreste de España

    وصف الملف: application/pdf

    Relation: González, V., Isla, R., Julián, C. & Mirás, J. (2024). Metagenome of soils from fruit tree orchards in NE Spain as a predictive tool of phytosanitary status in perennial agroecosystems. 20th International Plant Protection Congress. Abstract Book, 2024, 287-287.; http://hdl.handle.net/10532/7142

  6. 6
    Periodical

    المصدر: Manuel Sánchez-Marañón, Raúl Ortega, Manuel Pulido-Fernández, Jesús Barrena-González, Francisco Lavado-Contador, Isabel Miralles, José A. García-Salcedo, Miguel Soriano, Compositional and functional analysis of the bacterial community of Mediterranean Leptosols under livestock grazing, Science of The Total Environment, Volume 925, 2024, 171811, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2024.171811.

  7. 7
    Academic Journal

    المصدر: Frontiers in Insect Science 3 : 1175760 (31 August 2023)

    وصف الملف: application/pdf

    Relation: info:eu-repograntAgreement/INTA/2019-PD-E4-I079-001, Genética, genómica y ecología de insectos de importancia agronómica como insumo para el desarrollo de estrategias sustentables de control plagas; info:eu-repograntAgreement/INTA/2019-PE-E1-I017-001, DESARROLLO DEL SECTOR APÍCOLA ORGANIZADO, SUSTENTABLE Y COMPETITIVO; http://hdl.handle.net/20.500.12123/15070; https://www.frontiersin.org/articles/10.3389/finsc.2023.1175760/full; https://doi.org/10.3389/finsc.2023.1175760

  8. 8
    Academic Journal
  9. 9
    Conference

    المساهمون: Universidad Politécnica de Cartagena

    وصف الملف: application/pdf

    Relation: CUARTERO MOÑINO, Jessica et al. Estudio en profundidad a través de redes de coocurrencia de los cambios ocurridos en la estructura bacteriana en suelos de diferentes sistemas de cultivo. En: Proceedings of the 10th Workshop on Agri-Food Research for young researchers. WIA.2021. Cartagena: Universidad Politécnica de Cartagena, 2022. Pp. 87-90. ISBN: 978-84-17853-47-1; http://hdl.handle.net/10317/10763

  10. 10
    Report

    وصف الملف: 26 p.; application/pdf

    Relation: Leiva Sandoval, A.M.; Gil Ordoñez, A.; Bartolini, I.; Olortegui, J.A.; Velasquez, R.; Cuellar, W.J. (2022) Evaluación del sistema flongle (Oxford Nanopore) de bajo costo para secuenciación de patógenos. 26 p.; https://hdl.handle.net/10568/128183

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
  14. 14
    Dissertation/ Thesis
  15. 15
    Academic Journal
  16. 16
    Book

    المؤلفون: Avila-Mendez, Kelly Johanna

    المساهمون: Romero-Angulo, Hernan Mauricio, Fisiología y Bioquímica de Especies Perennes

    وصف الملف: application/pdf

    Relation: Acevedo-Garcia, J., Gruner, K., Reinstädler, A., Kemen, A., Kemen, E., Cao, L., … Panstruga, R. (2017). The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Scientific Reports, 7(1), 1–15. https://doi.org/10.1038/s41598-017-07188-7 Adam, H., Jouannic, S., Escoute, J., Duval, Y., Verdeil, J. L., & Tregear, J. W. (2005). Reproductive developmental complexity in the African oil palm (Elaeis guineensis, Arecaceae). American Journal of Botany, 92(11), 1836–1852. https://doi.org/10.3732/ajb.92.11.1836 Ajengui, A., Bertolini, E., Ligorio, A., Chebil, S., Ippolito, A., & Sanzani, S. M. (2018). Comparative transcriptome analysis of two citrus germplasms with contrasting susceptibility to Phytophthora nicotianae provides new insights into tolerance mechanisms. Plant Cell Reports, 37(3), 483–499. https://doi.org/10.1007/s00299-017-2244-7 Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., … Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212–213(March), 29–37. https://doi.org/10.1016/j.micres.2018.04.008 Ali, S. S., Shao, J., Lary, D. J., Kronmiller, B. A., Shen, D., Strem, M. D., … Bailey, B. A. (2017). Phytophthora megakarya and Phytophthora palmivora, Closely Related Causal Agents of Cacao Black Pod Rot, Underwent Increases in Genome Sizes and Gene Numbers by Different Mechanisms. Genome Biology and Evolution, 9(3), 536–557. https://doi.org/10.1093/gbe/evx021 Alves, M., Dadalto, S., Gonçalves, A., de Souza, G., Barros, V., & Fietto, L. (2014). Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses. Proteomes, 2(1), 85–106. https://doi.org/10.3390/proteomes2010085 Amaro, T. M. M. M., Thilliez, G. J. A., Mcleod, R. A., & Huitema, E. (2018). Random mutagenesis screen shows that Phytophthora capsici CRN83_152-mediated cell death is not required for its virulence function(s). Molecular Plant Pathology, 19(5), 1114–1126. https://doi.org/10.1111/mpp.12590 Asai, S., & Shirasu, K. (2015). Plant cells under siege: Plant immune system versus pathogen effectors. Current Opinion in Plant Biology, 28, 1–8. https://doi.org/10.1016/j.pbi.2015.08.008 Baggs, E., Dagdas, G., & Krasileva, K. V. (2017). NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. Current Opinion in Plant Biology, 38(Figure 1), 59–67. https://doi.org/10.1016/j.pbi.2017.04.012 Bahia, R. de C., Aguilar-Vildoso, C. I., Luz, E. D. M. N., Lopes, U. V., Machado, R. C. R., & Corrêa, R. X. (2015). Resistance to Black Pod Disease in a Segregating Cacao Tree Population. Tropical Plant Pathology, 40(1), 13–18. https://doi.org/10.1007/s40858-014-0003-7 Barcelos, E., Rios, S. de A., Cunha, R. N. V., Lopes, R., Motoike, S. Y., Babiychuk, E., … Kushnir, S. (2015). Oil palm natural diversity and the potential for yield improvement. Frontiers in Plant Science, 6(March), 1–16. https://doi.org/10.3389/fpls.2015.00190 Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229–1240. https://doi.org/10.1093/jxb/ert375 Bellincampi, D., Cervone, F., & Lionetti, V. (2014). Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Frontiers in Plant Science, 5(May), 228. https://doi.org/10.3389/fpls.2014.00228 Benítez, É., & García, C. (2015). The history of research on oil palm bud rot (Elaeis guineensis Jacq.) in Colombia. Agronomía Colombiana, 32(3), 390–398. https://doi.org/10.15446/agron.colomb.v32n3.46240 Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T., & Tsuda, K. (2017). Evolution of Hormone Signaling Networks in Plant Defense. Annual Review of Phytopathology, 55(1), annurev-phyto-080516-035544. https://doi.org/10.1146/annurev-phyto-080516-035544 Bevan, M. W., Uauy, C., Wulff, B. B. H., Zhou, J., Krasileva, K., & Clark, M. D. (2017). Genomic innovation for crop improvement. Nature, 543(7645), 346–354. https://doi.org/10.1038/nature22011 Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., & Wei, Y. (2013). Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryotic Cell, 12(1), 2–11. https://doi.org/10.1128/EC.00192-12 Bigeard, J., Colcombet, J., & Hirt, H. (2015a). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/j.molp.2014.12.022 Bigeard, J., Colcombet, J., & Hirt, H. (2015b). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/j.molp.2014.12.022 Bolger, A. M., Poorter, H., Dumschott, K., Bolger, M. E., Arend, D., Osorio, S., … Usadel, B. (2019). Computational aspects underlying genome to phenome analysis in plants. Plant Journal, 97(1), 182–198. https://doi.org/10.1111/tpj.14179 Bolouri Moghaddam, M. R., Vilcinskas, A., & Rahnamaeian, M. (2016). Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants. Molecular Plant Pathology, 17(3), 464–471. https://doi.org/10.1111/mpp.12299 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 Breen, S., Williams, S. J., Outram, M., Kobe, B., & Solomon, P. S. (2017). Emerging Insights into the Functions of Pathogenesis-Related Protein 1. Trends in Plant Science, 22(10), 871–879. https://doi.org/10.1016/j.tplants.2017.06.013 Cao, Z., & Deng, Z. (2017). De novo assembly, annotation, and characterization of root transcriptomes of three caladium cultivars with a focus on necrotrophic pathogen resistance/defense-related genes. International Journal of Molecular Sciences, 18(4). https://doi.org/10.3390/ijms18040712 Chan, P. L., Rose, R. J., Abdul Murad, A. M., Zainal, Z., Leslie Low, E. T., Ooi, L. C. L., … Singh, R. (2014). Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099774 Chang, Y. H., Yan, H. Z., & Liou, R. F. (2015). A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Molecular Plant Pathology, 16(2), 123–136. https://doi.org/10.1111/mpp.12166 Chawade, A., van Ham, J., Blomquist, H., Bagge, O., Alexandersson, E., & Ortiz, R. (2019). High-Throughput Field-Phenotyping Tools for Plant Breeding and Precision Agriculture. Agronomy, 9(5), 258. https://doi.org/10.3390/agronomy9050258 Chen, X. R., Huang, S. X., Zhang, Y., Sheng, G. L., Li, Y. P., & Zhu, F. (2018). Identification and functional analysis of the NLP-encoding genes from the phytopathogenic oomycete Phytophthora capsici. Molecular Genetics and Genomics, 0(0), 1–13. https://doi.org/10.1007/s00438-018-1432-7 Cochard, B., Amblard, P., & Durand-Gasselin, T. (2005). Oil palm genetic improvement and sustainable development. Oléagineux, Corps Gras, Lipides, 12(2), 141–147. https://doi.org/10.1051/ocl.2005.0141 Comer, J. R., Zomlefer, W. B., Barrett, C. F., Stevenson, D. W., Heyduk, K., & Leebens-Mack, J. H. (2016). Nuclear phylogenomics of the palm subfamily Arecoideae (Arecaceae). Molecular Phylogenetics and Evolution, 97, 32–42. https://doi.org/10.1016/j.ympev.2015.12.015 Cros, D., Denis, M., Sánchez, L., Cochard, B., Flori, A., Durand‑gasselin, T., … Bouvet, J. (2015). Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet, 128, 397–410. https://doi.org/10.1007/s00122-014-2439-z Dalio, R. J. D., Herlihy, J., Oliveira, T. S., McDowell, J. M., & Machado, M. (2017). Effector Biology in Focus: A Primer for Computational Prediction and Functional Characterization. Molecular Plant-Microbe Interactions, 31(1), 22–33. https://doi.org/10.1094/mpmi-07-17-0174-fi Daudi, A., Cheng, Z., O’Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., & Bolwell, G. P. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. The Plant Cell, 24(1), 275–287. https://doi.org/10.1105/tpc.111.093039 De Assis Costa, O. Y., Tupinambá, D. D., Bergmann, J. C., Barreto, C. C., & Quirino, B. F. (2018). Fungal diversity in oil palm leaves showing symptoms of Fatal Yellowing disease. PLoS ONE, 13(1), 1–17. https://doi.org/10.1371/journal.pone.0191884 Derevnina, L., Petre, B., Kellner, R., Dagdas, Y. F., Sarowar, M. N., Giannakopoulou, A., … Kamoun, S. (2016). Emerging oomycete threats to plants and animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1709), 20150459. https://doi.org/10.1098/rstb.2015.0459 Efombagn, M. I. B., Bieysse, D., Nyassé, S., & Eskes, A. B. (2011). Selection for resistance to Phytophthora pod rot of cocoa (Theobroma cacao L.) in Cameroon: Repeatability and reliability of screening tests and field observations. Crop Protection, 30(2), 105–110. https://doi.org/10.1016/j.cropro.2010.10.012 El-Komy, M. H. (2014). Comparative analysis of defense responses in chocolate spot-resistant and-susceptible faba bean (Vicia faba) cultivars following infection by the necrotrophic fungus Botrytis fabae. Plant Pathology Journal, 30(4), 355–366. https://doi.org/10.5423/PPJ.OA.06.2014.0050 Evangelisti, E., Gogleva, A., Hainaux, T., Doumane, M., Tulin, F., Quan, C., … Schornack, S. (2017). Time-resolved dual root-microbe transcriptomics reveals early induced Nicotiana benthamiana genes and conserved infection-promoting Phytophthora palmivora effectors. BioRxiv, 1–24. https://doi.org/10.1186/s12915-017-0379-1 Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors, 5(3), 537–561. https://doi.org/10.3390/bios5030537 Fawke, S., Doumane, M., & Schornack, S. (2015a). Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiology and Molecular Biology Reviews, 79(3), 263–280. https://doi.org/10.1128/mmbr.00010-15 Fawke, S., Doumane, M., & Schornack, S. (2015b). Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiology and Molecular Biology Reviews, 79(3), 263–280. https://doi.org/10.1128/MMBR.00010-15 Fedepalma. (2016). Guía de bolsillo para el reconocimiento y manejo de las principales enfermedades e insectos plaga en el cultivo de la palma de aceite. Retrieved from http://web.fedepalma.org/sites/default/files/files/Fedepalma/Semanario Palmero/12 - 13 abril/Guía de bolsillo plagas.pdf Fedepalma. (2018). Anuario Estadistico 2018. Figueiró, A. de A., Reese, N., Gonzalez Hernandez, J. L., Pacheco, M. T., Martinelli, J. A., Federizzi, L. C., & Delatorre, C. A. (2015). Reactive Oxygen Species are not Increased in Resistant Oat Genotypes Challenged by Crown Rust Isolates. Journal of Phytopathology, 163(10), 795–806. https://doi.org/10.1111/jph.12377 Fouché, S., Plissonneau, C., & Croll, D. (2018). The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Current Opinion in Microbiology, 46, 34–42. https://doi.org/10.1016/j.mib.2018.01.020 Franceschetti, M., Maqbool, A., Jiménez-Dalmaroni, M. J., Pennington, H. G., Kamoun, S., & Banfield, M. J. (2017). Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiology and Molecular Biology Reviews, 81(2), e00066-16. https://doi.org/10.1128/MMBR.00066-16 Galindo-González, L., & Deyholos, M. K. (2016). RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. Frontiers in Plant Science, 7(November), 1–22. https://doi.org/10.3389/fpls.2016.01766 Gayoso, C., Pomar, F., Novo-Uzal, E., Merino, F., & Martínez de Ilárduya, Ó. (2010). The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biology, 10. https://doi.org/10.1186/1471-2229-10-232 Guo, N., Zhao, J., Yan, Q., Huang, J., Ma, H., Rajput, N. A., … Dou, D. (2018). Resistance to Phytophthora pathogens is dependent on gene silencing pathways in plants. Journal of Phytopathology, (April 2017), 379–385. https://doi.org/10.1111/jph.12695 Gupta, S. M., Arora, S., Mirza, N., Pande, A., Lata, C., Puranik, S., … Kumar, A. (2017). Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments. Frontiers in Plant Science, 8(April), 1–11. https://doi.org/10.3389/fpls.2017.00643 Huang, G., Liu, Z., Gu, B., Zhao, H., Jia, J., Fan, G., … Shan, W. (2019). An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. Molecular Plant Pathology, 20(3), 356–371. https://doi.org/10.1111/mpp.12760 Huang, S., Van Aken, O., Schwarzländer, M., Belt, K., & Millar, A. H. (2016). The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. Plant Physiology, 171(3), 1551–1559. https://doi.org/10.1104/pp.16.00166 Imam, J., Singh, P. K., & Shukla, P. (2016). Plant microbe interactions in post genomic era: Perspectives and applications. Frontiers in Microbiology, 7(SEP), 1–15. https://doi.org/10.3389/fmicb.2016.01488 Islam, M. T., Hussain, H. I., Rookes, J. E., & Cahill, D. M. (2018). Transcriptome analysis, using RNA-Seq of Lomandra longifolia roots infected with Phytophthora cinnamomi reveals the complexity of the resistance response. Plant Biology, 20(1), 130–142. https://doi.org/10.1111/plb.12624 Jiang, Z., He, F., & Zhang, Z. (2017). Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens. Plant Molecular Biology, 94(4–5), 453–467. https://doi.org/10.1007/s11103-017-0617-5 Jindřichová, B., Fodor, J., Šindelářová, M., Burketová, L., & Valentová, O. (2011). Role of hydrogen peroxide and antioxidant enzymes in the interaction between a hemibiotrophic fungal pathogen, Leptosphaeria maculans, and oilseed rape. Environmental and Experimental Botany, 72(2), 149–156. https://doi.org/10.1016/j.envexpbot.2011.02.018 Jones, J. D. G., & Dangl, L. (2006). The plant immune system. Nature, 444(November), 323–329. https://doi.org/10.1038/nature05286 Judelson, H. S. (2017). Metabolic Diversity and Novelties in the Oomycetes. Annual Review of Microbiology, 71(1), annurev-micro-090816-093609. https://doi.org/10.1146/annurev-micro-090816-093609 Judelson, H. S., & Ah-Fong, A. M. V. (2019). Exchanges at the Plant-Oomycete Interface That Influence Disease. Plant Physiology, 179(4), 1198–1211. https://doi.org/10.1104/pp.18.00979 Kamoun, S. (2006). A Catalogue of the Effector Secretome of Plant Pathogenic Oomycetes. Annual Review of Phytopathology, 44(1), 41–60. https://doi.org/10.1146/annurev.phyto.44.070505.143436 Kamoun, S., Furzer, O., Jones, J. D. G., Judelson, H. S., Ali, G. S., Dalio, R. J. D., … Govers, F. (2015). The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 16(4), 413–434. https://doi.org/10.1111/mpp.12190 Kanwar, P., & Jha, G. (2019). Alterations in plant sugar metabolism: signatory of pathogen attack. Planta, 249(2), 305–318. https://doi.org/10.1007/s00425-018-3018-3 Kanyuka, K., & Rudd, J. J. (2019). Cell surface immune receptors: the guardians of the plant’s extracellular spaces. Current Opinion in Plant Biology, 50, 1–8. https://doi.org/10.1016/j.pbi.2019.02.005 Kapoor, D., Singh, S., Kumar, V., Romero, R., Prasad, R., & Singh, J. (2019). Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene, 19(April), 100182. https://doi.org/10.1016/j.plgene.2019.100182 Kebdani, N., Pieuchot, L., Deleury, E., Panabières, F., Le Berre, J. Y., & Gourgues, M. (2010). Cellular and molecular characterization of Phytophthora parasitica appressorium-mediated penetration. New Phytologist, 185(1), 248–257. https://doi.org/10.1111/j.1469-8137.2009.03048.x Khan, M., Seto, D., Subramaniam, R., & Desveaux, D. (2018). Oh, the places they’ll go! A survey of phytopathogen effectors and their host targets. Plant Journal, 93(4), 651–663. https://doi.org/10.1111/tpj.13780 Kissoudis, C., van de Wiel, C., Visser, R. G. F., & van der Linden, G. (2016). Future-proof crops: challenges and strategies for climate resilience improvement. Current Opinion in Plant Biology, 30, 47–56. https://doi.org/10.1016/j.pbi.2016.01.005 Koç, E., & Sülün ÜSTÜN, A. (2012). Infl uence of Phytophthora capsici L. inoculation on disease severity, necrosis length, peroxidase and catalase activity, and phenolic content of resistant and susceptible pepper (Capsicum annuum L.) plants. Turk J Biol, 36, 357–371. https://doi.org/10.3906/biy-1109-12 Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(1), 1–18. https://doi.org/10.1007/s13205-016-0389-7 Latifah, M., Zainal Abidin, M. A., Kamaruzaman, S., & Nusaibah, S. A. (2017). Cross-infectivity of oil palm by Phytophthora spp. isolated from perennial crops in Malaysia. Forest Pathology, 47(6), 1–6. https://doi.org/10.1111/efp.12374 Lee, H. A., & Yeom, S. I. (2015). Plant NB-LRR proteins: Tightly regulated sensors in a complex manner. Briefings in Functional Genomics, 14(4), 233–242. https://doi.org/10.1093/bfgp/elv012 Lehmann, S., Serrano, M., L’Haridon, F., Tjamos, S. E., & Metraux, J. P. (2015). Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry, 112(1), 54–62. https://doi.org/10.1016/j.phytochem.2014.08.027 Lenzoni, G., Liu, J., & Knight, M. R. (2018). Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures. New Phytologist, 217(4), 1598–1609. https://doi.org/10.1111/nph.14924 Li, B., Meng, X., Shan, L., & He, P. (2016). Transcriptional Regulation of Pattern-Triggered Immunity in Plants. Cell Host and Microbe, 19(5), 641–650. https://doi.org/10.1016/j.chom.2016.04.011 Li, Q., Zhang, M., Shen, D., Liu, T., Chen, Y., Zhou, J. M., & Dou, D. (2016). A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner. Scientific Reports, 6(March), 1–13. https://doi.org/10.1038/srep26951 Liu, Y., & He, C. (2017). A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biology, 11(October 2016), 192–204. https://doi.org/10.1016/j.redox.2016.12.009 Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262 Lo Presti, L., & Kahmann, R. (2017a). How filamentous plant pathogen effectors are translocated to host cells. Current Opinion in Plant Biology, 38, 19–24. https://doi.org/10.1016/j.pbi.2017.04.005 Lo Presti, L., & Kahmann, R. (2017b). How filamentous plant pathogen effectors are translocated to host cells. Current Opinion in Plant Biology, 38, 19–24. https://doi.org/10.1016/j.pbi.2017.04.005 Louise, C. (2016). Resistencia a la Pudrición del cogollo en el material Guineensis. Revista Palmas, 37(Especial), 183–189. Ma, X., Xu, G., He, P., & Shan, L. (2016). SERKing Coreceptors for Receptors. Trends in Plant Science, 21(12), 1017–1033. https://doi.org/10.1016/j.tplants.2016.08.014 Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., … Wang, Y. (2015). A Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. The Plant Cell (Vol. 27). https://doi.org/10.1105/tpc.15.00390 Macho, A. P., & Zipfel, C. (2014). Plant PRRs and the activation of innate immune signaling. Molecular Cell, 54(2), 263–272. https://doi.org/10.1016/j.molcel.2014.03.028 Maliogka, V. I., Minafra, A., Saldarelli, P., Ruiz-García, A. B., Glasa, M., Katis, N., & Olmos, A. (2018). Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies. Viruses, 10(8), 1–23. https://doi.org/10.3390/v10080436 Martínez, G., Arango, M., Sarria, G., Velez, D., Rodriguez, J., Mestizo, Y., … Guest, D. (2013). Avances en la investigación sobre las dos enfermedades más importantes en la palma de aceite en Colombia la Pudrición del cogollo y la Marchitez letal. Palmas, 34(1), 39–48. Martínez, G., & Sarria, G. (2013). Estado del arte de la investigación y control de la Pudrición del cogollo (PC). Revista Palmas, 34(2), 47–57. Martínez, G., Sarria, G. A., Torres, G. A., & Varón, F. (2010). Phytophthora palmivora es el agente causal de la pudrición del cogollo de la palma de aceite Palabras clAve. Palmas, 31(No. especial Tomo I), 334–344. Martínez, G., Sarria, G., Torres, G., & Varon, F. (2010). Avances en la investigación de Phytophthora palmivora , el agente causal de la pudrición del cogollo de la palma de aceite en Colombia. Palmas, 31(1), 55–63. Martínez, G., Sarria, G., Torres, G., Varón, F., Drenth, A., & Guest, D. (2014a). Nuevos hallazgos sobre la Pudrici{ó}n del cogollo de la palma de aceite en Colombia: biolog{í}a, detecci{ó}n y estrategias de manejo. Palmas, 35(1), 11–17. Martínez, G., Sarria, G., Torres, G., Varón, F., Drenth, A., & Guest, D. (2014b). Nuevos hallazgos sobre la Pudrición del cogollo de la palma de aceite en Colombia: biología, detección y estrategias de manejo. Palmas, 35(1), 11–17. Martínez, G., & Torres, G. A. (2007). Presencia de la pudrición de cogollo de la palma de aceite (PC) en plantas de vivero. Palmas, 28(4), 13–20. Mcgowan, J., & Fitzpatrick, D. A. (2017). Genomic, network and phylogenetic analysis of the oomycete effector arsenal. MSphere, 2(6), 1–22. https://doi.org/https://doi.org/10.1128/mSphere .00408-17. Editor Meijaard, E., Garcia-Ulloa, Sheil, J., Carlson, S. A., Juffe-Bignoli, & Brooks. (2018). Oil palm and biodiversity: A situation analysis by the IUCN Oil Palm Task Force. INTERNATIONAL UNION FOR CONSERVATION OF NATURE. Retrieved from https://www.iucn-optf.org/ Meyer, F. E., Shuey, L. S., Naidoo, S., Mamni, T., Berger, D. K., Myburg, A. A., … Naidoo, S. (2016). Dual RNA-Sequencing of Eucalyptus nitens during Phytophthora cinnamomi Challenge Reveals Pathogen and Host Factors Influencing Compatibility. Frontiers in Plant Science, 7(March), 1–15. https://doi.org/10.3389/fpls.2016.00191 Mhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376. https://doi.org/10.1242/dev.164376 Ml, C. C. (2007). Red ring and other diseases of the oil palm in Central and South America The red ring / little leaf disease, 1–13. Monteiro, F., & Nishimura, M. T. (2018). Structural, Functional, and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. Annual Review of Phytopathology, 56(1), 243–267. https://doi.org/10.1146/annurev-phyto-080417-045817 Naidoo, S., Visser, E. A., Zwart, L., Toit, Y., Bhadauria, V., & Shuey, L. S. (2014). Dual RNA-seq to Elucidate the Plant – Pathogen Duel. Nejat, N., Rookes, J., Mantri, N. L., & Cahill, D. M. (2017). Plant–pathogen interactions: toward development of next-generation disease-resistant plants. Critical Reviews in Biotechnology, 37(2), 229–237. https://doi.org/10.3109/07388551.2015.1134437 Nobori, T., & Tsuda, K. (2019). The plant immune system in heterogeneous environments. Current Opinion in Plant Biology, 50, 58–66. https://doi.org/10.1016/j.pbi.2019.02.003 Nocker, S. Van, & Gardiner, S. E. (2014). Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Horticulture Research, 1(March), 1–8. https://doi.org/10.1038/hortres.2014.22 Nugroho, Y. A., Sumertajaya, I. M., Wiendi, N. M. A., & Toruan-Mathius, N. (2014). Estimation of genetic parameters for in vitro culture traits and selection best progenies for tenera oil palm tissue culture. Energy Procedia, 47, 316–322. https://doi.org/10.1016/j.egypro.2014.01.231 Nyadanu, D., Assuah, M. K., Adomako, B., & Opoku, I. Y. (2009). EFFICACY OF SCREENING METHODS USED IN BREEDING FOR BLACK POD DISEASE RESISTANCE VARIETIES IN COCOA. African Crop Science Journal, 17(4), 175–186. Ochoa, J. C., Herrera, M., Navia, M., & Romero, H. M. (2019). Visualization of phytophthora palmivora infection in oil palm leaflets with fluorescent proteins and cell viability markers. Plant Pathology Journal, 35(1), 19–31. https://doi.org/10.5423/PPJ.OA.02.2018.0034 Orłowska, E., Llorente, B., & Cvitanich, C. (2013). An important factor in plant-pathogen interactions Plant integrity © 2013 Landes Bioscience . Do not distribute © 2013 Landes Bioscience . Do not distribute. Plant Signaling & Behavior, e225-13–131. https://doi.org/10.4161/psb.22513 Osuna-Cruz, C. M., Paytuvi-Gallart, A., Di Donato, A., Sundesha, V., Andolfo, G., Cigliano, R. A., … Ercolano, M. R. (2018). PRGdb 3.0: A comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Research, 46(D1), D1197–D1201. https://doi.org/10.1093/nar/gkx1119 Panstruga, R., & Peter Dodds. (2009). Terrific Protein Traffic : The Mystery. Science, 1575(2008), 2008–2010. https://doi.org/10.1126/science.1171652 Peng, Y., van Wersch, R., & Zhang, Y. (2017). Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Molecular Plant-Microbe Interactions, 31(4), 403–409. https://doi.org/10.1094/mpmi-06-17-0145-cr Petitot, A. S., Dereeper, A., Agbessi, M., Da Silva, C., Guy, J., Ardisson, M., & Fernandez, D. (2016). Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants. Molecular Plant Pathology, 17(6), 860–874. https://doi.org/10.1111/mpp.12334 Phukan, U. J., Jeena, G. S., & Shukla, R. K. (2016). WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Frontiers in Plant Science, 7(June), 1–14. https://doi.org/10.3389/fpls.2016.00760 Pilet-Nayel, M.-L., Moury, B., Caffier, V., Montarry, J., Kerlan, M.-C., Fournet, S., … Delourme, R. (2017). Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. Frontiers in Plant Science, 8(October), 1–9. https://doi.org/10.3389/fpls.2017.01838 Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P., & Dhawan, A. K. (2011). Developing stress tolerant plants through in vitro selection-An overview of the recent progress. Environmental and Experimental Botany, 71(1), 89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021 Rival, A. (2017). Breeding the oil palm ( Elaeis guineensis Jacq.) for climate change. Ocl, 24(1), D107. https://doi.org/10.1051/ocl/2017001 Rodriguez-Moreno, L., Song, Y., & Thomma, B. P. (2017). Transfer and engineering of immune receptors to improve recognition capacities in crops. Current Opinion in Plant Biology, 38, 42–49. https://doi.org/10.1016/j.pbi.2017.04.010 Saijo, Y., Loo, E. P. iian, & Yasuda, S. (2018). Pattern recognition receptors and signaling in plant–microbe interactions. Plant Journal, 93(4), 592–613. https://doi.org/10.1111/tpj.13808 Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1–13. https://doi.org/10.1016/j.compag.2010.02.007 Santos, C., Duarte, S., Tedesco, S., Fevereiro, P., & Costa, R. L. (2017). Expression Profiling of Castanea Genes during Resistant and Susceptible Interactions with the Oomycete Pathogen Phytophthora cinnamomi Reveal Possible Mechanisms of Immunity. Frontiers in Plant Science, 8(April), 1–12. https://doi.org/10.3389/fpls.2017.00515 Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016). Histopathological studies of the process of Phytophthora palmivora infection in oil palm. European Journal of Plant Pathology, 145(1), 39–51. https://doi.org/10.1007/s10658-015-0810-9 Sarria, G. a, Torres, G. a, Aya, H., Ariza, J., Rodriguez, J., Velez, D., … Martinez, G. (2008a). Phytophthora sp . es el responsable de las lesiones iniciales de la Pudrici{ó}n del cogollo ( PC ) de la Palma de aceite en Colombia. Palmas, 29, 31–41. Sarria, G. a, Torres, G. a, Aya, H., Ariza, J., Rodriguez, J., Velez, D., … Martinez, G. (2008b). Phytophthora sp . es el responsable de las lesiones iniciales de la Pudrición del cogollo ( PC ) de la Palma de aceite en Colombia. Palmas, 29, 31–41. Sarria, G., Martinez, G., Varon, F., Drenth, A., & Guest, D. (2016). Histopathological studies of the process of Phytophthora palmivora infection in oil palm. European Journal of Plant Pathology, 145(1), 39–51. https://doi.org/10.1007/s10658-015-0810-9 Sarria, Greicy Andrea, Mestizo, Y., Betancourt, W., & Garcia, A. (2016). Pudrición del cogollo: avances, retos y oportunidades en el manejo integrado de esta enfermedad. Palmas, 37(4), 91–107. Sarria, Greicy Andrea, Varón, F. H., Martínez, G., Drenth, A., & Guest, D. I. (2013). Nuevas evidencias del cumplimiento de los postulados de Koch en el estudio de las relaciones Phytophthora palmivora y la pudrición del cogollo de la palma de aceite en Colombia. Palmas, 34(4), 41–45. Seedlings, P., Saunders, J. A., & Mcclure, J. W. (1974). The Suitability of a Quantitative Spectrophotometric Assay for Phenylalanine Ammonia-lyase Activity in Barley , 412–413. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037 Sharpee, W. C., & Dean, R. A. (2016). Form and function of fungal and oomycete effectors. Fungal Biology Reviews, 30(2), 62–73. https://doi.org/10.1016/j.fbr.2016.04.001 Shen, D., Li, Q., Sun, P., Zhang, M., & Dou, D. (2017). Intrinsic disorder is a common structural characteristic of RxLR effectors in oomycete pathogens. Fungal Biology, 121(11), 911–919. https://doi.org/10.1016/j.funbio.2017.07.005 Shine, M. B., Yang, J. W., El-Habbak, M., Nagyabhyru, P., Fu, D. Q., Navarre, D., … Kachroo, A. (2016). Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytologist, 212(3), 627–636. https://doi.org/10.1111/nph.14078 Siddique, Z., Akhtar, K. P., Hameed, A., Sarwar, N., Imran-Ul-Haq, & Khan, S. A. (2014). Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by cotton leaf curl Burewala virus. Journal of Plant Interactions, 9(1), 702–711. https://doi.org/10.1080/17429145.2014.905800 Silva, M. S., Arraes, F. B. M., Campos, M. de A., Grossi-de-Sa, M., Fernandez, D., Cândido, E. de S., … Grossi-de-Sa, M. F. (2018). Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Science, 270(February), 72–84. https://doi.org/10.1016/j.plantsci.2018.02.013 Sniezko, R. A., & Koch, J. (2017). Breeding trees resistant to insects and diseases : putting theory into application. Biological Invasions, 19(11), 3377–3400. https://doi.org/10.1007/s10530-017-1482-5 Soh, A. C., Wong, G., Tan, C. C., Chew, P. S., Chong, S., Ho, Y. W., … Ku Mar, K. (2011). Commercial-scale propagation and planting of elite oil palm clones: Research and development towards realization. Journal of Oil Palm Research, 23(APRIL), 935–952. Su, J., Spears, B. J., Kim, S. H., & Gassmann, W. (2018). Constant vigilance: plant functions guarded by resistance proteins. Plant Journal, 93(4), 637–650. https://doi.org/10.1111/tpj.13798 Sundram, S., & Intan-Nur, A. M. A. (2017). South American Bud rot: A biosecurity threat to South East Asian oil palm. Crop Protection, 101, 58–67. https://doi.org/10.1016/j.cropro.2017.07.010 Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). Revigo summarizes and visualizes long lists of gene ontology terms. PLoS ONE, 6(7). https://doi.org/10.1371/journal.pone.0021800 Tahi, M., Kebe, I., Eskes, A. B., Ouattara, S., Sangare, A., & Mondeil, F. (2000). Rapid screening of cacao genotypes for field resistance to Phytophthora palmivora using leaves, twigs and roots. European Journal of Plant Pathology, 106(1), 87–94. https://doi.org/10.1023/A:1008747800191 Takemoto, D., Shibata, Y., Ojika, M., Mizuno, Y., Imano, S., Ohtsu, M., … Camagna, M. (2018). Resistance to Phytophthora infestans: exploring genes required for disease resistance in Solanaceae plants. Journal of General Plant Pathology, 84(5), 312–320. https://doi.org/10.1007/s10327-018-0801-8 Thatcher, L. F., Williams, A. H., Garg, G., Buck, S. A. G., & Singh, K. B. (2016). Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors. BMC Genomics, 17(1), 1–19. https://doi.org/10.1186/s12864-016-3192-2 Thevenin, J. M., Rossi, V., Ducamp, M., Doare, F., Condina, V., & Lachenaud, P. (2012). Numerous clones resistant to Phytophthora palmivora in the “Guiana” genetic group of Theobroma cacao L. PLoS ONE, 7(7), 1–6. https://doi.org/10.1371/journal.pone.0040915 Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal. https://doi.org/10.1046/j.1365-313X.1997.11061187.x Torkamaneh, D., Boyle, B., & Belzile, F. (2018). Efficient genome-wide genotyping strategies and data integration in crop plants. Theoretical and Applied Genetics, 131(3), 499–511. https://doi.org/10.1007/s00122-018-3056-z Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016a). Bud Rot Caused by Phytophthora palmivora : A Destructive Emerging Disease of Oil Palm. Phytopathology, 106(4), 320–329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016b). Bud Rot Caused by Phytophthora palmivora: A Destructive Emerging Disease of Oil Palm. Phytopathology, 106(4), 320–329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW Torres, G., Sarria, G., Martinez, G., Varon, F., Drenth, A., & Guest, D. (2016). Bud Rot Caused by Phytophthora palmivora : A Destructive Emerging Disease of Oil Palm. Phytopathology, 106(4), 320–329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW Toruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annual Review of Phytopathology, 54(1), 419–441. https://doi.org/10.1146/annurev-phyto-080615-100204 Trapet, P., Kulik, A., Lamotte, O., Jeandroz, S., Bourque, S., Nicolas-Francès, V., … Wendehenne, D. (2015). NO signaling in plant immunity: A tale of messengers. Phytochemistry, 112(1), 72–79. https://doi.org/10.1016/j.phytochem.2014.03.015 Tyler, B. M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R. H. Y., Aerts, A., … Boore, J. L. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science. https://doi.org/10.1126/science.1128796 Unamba, C. I. N., Nag, A., & Sharma, R. K. (2015). Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants. Frontiers in Plant Science, 6(December). https://doi.org/10.3389/fpls.2015.01074 Van de Wouw, A. P., & Idnurm, A. (2019). Biotechnological potential of engineering pathogen effector proteins for use in plant disease management. Biotechnology Advances, (April), 1–10. https://doi.org/10.1016/j.biotechadv.2019.04.009 Vanhove, A.-C., Vermaelen, W., Panis, B., Swennen, R., & Carpentier, S. C. (2012). Screening the banana biodiversity for drought tolerance: can an in vitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis. Frontiers in Plant Science, 3(August), 176. https://doi.org/10.3389/fpls.2012.00176 Varden, F. A., De la Concepcion, J. C., Maidment, J. H., & Banfield, M. J. (2017). Taking the stage: effectors in the spotlight. Current Opinion in Plant Biology, 38, 25–33. https://doi.org/10.1016/j.pbi.2017.04.013 Velásquez, A. C., Castroverde, C. D. M., & He, S. Y. (2018). Plant–Pathogen Warfare under Changing Climate Conditions. Current Biology, 28(10), R619–R634. https://doi.org/10.1016/j.cub.2018.03.054 Wang, W., & Jiao, F. (2019). Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. Planta, 250(2), 413–425. https://doi.org/10.1007/s00425-019-03219-x Windram, O., Penfold, C. A., & Denby, K. J. (2014). Network Modeling to Understand Plant Immunity. Annual Review of Phytopathology, 52(1), 93–111. https://doi.org/10.1146/annurev-phyto-102313-050103 Woittiez, L.S., Wijk, M.T. van, Slingerland, M., Noordwijk, M. van and Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57–77. https://doi.org/https://dx.doi.org/10.1016/j.eja.2016.11.002 Wu, S., Shan, L., & He, P. (2014). Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Science, 228, 118–126. https://doi.org/10.1016/j.plantsci.2014.03.001 Wu, Y. L., Yi, G. J., & Peng, X. X. (2010). Rapid screening of Musa species for resistance to Fusarium wilt in an in vitro bioassay. European Journal of Plant Pathology, 128(3), 409–415. https://doi.org/10.1007/s10658-010-9669-y Yang, J. K., Tong, Z. J., Fang, D. H., Chen, X. J., Zhang, K. Q., & Xiao, B. G. (2017). Transcriptomic profile of tobacco in response to Phytophthora nicotianae infection. Scientific Reports, 7(1), 1–7. https://doi.org/10.1038/s41598-017-00481-5 Zhao, M., Hui-Min, J., Ying, G., Cao, X.-X., Mao, H.-Y., Peng, L., & Shou-Qiang, O. (2018). Integrated RNA-seq and sRNA-seq revelad differences in transcriptome between susceptible and resistant tomato responding to Fusarium oxymporum. BioRxiv, (4). https://doi.org/10.1590/s1809-98232013000400007; https://repositorio.unal.edu.co/handle/unal/75740

  17. 17
    Academic Journal

    المؤلفون: Gallo García, Yuliana Marcela

    المساهمون: Marín Montoya, Mauricio Alejandro, Gutiérrez Sánchez, Pablo Andrés

    وصف الملف: application/pdf

    Relation: Adams, I. P., Fox, A., Boonham, N., Massart, S., & De Jonghe, K. (2018). The impact of high throughput sequencing on plant health diagnostics. European Journal of Plant Pathology, 152(4), 909–919. https://doi.org/10.1007/s10658-018-1570-0; Agindotan, B. O., Shiel, P. J., & Berger, P. H. (2007). Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods, 142(1–2), 1–9. https://doi.org/10.1016/j.jviromet.2006.12.012; Agrios, G. (2005). Plant pathology (5th ed.). Elsevier.; Agronet. (2014). Red de información y comunicación del sector agropecuario Colombiano. http://www.agronet.gov.co/estadistica/Paginas/default.aspx; Agronet. (2019). Agronet. http://www.agronet.gov.co/estadistica/Paginas/default.aspx; Ahmadvand, R., Takács, A., Taller, J., Wolf, I., & Polgár, Z. (2012). Potato viruses and resistance genes in potato. Acta Agronomica Humgarica, 60(3), 283–298. https://doi.org/10.1556/AAgr.60.2012.3.10; Alba, V. (1950). Viropatógenos. Conferencia Latinoamericana de Especialistas En Papa, 52–58.; Alcalá, R., Coşkan, S., Londoño, M., & Polston, J. (2017). Genome sequence of Southern tomato virus in asymptomatic tomato “Sweet Hearts.” Genome Announcements, 5(7), 1–2. https://doi.org/10.1128/genomeA.01374-16; Alemu, K. (2015). Detection of diseases, identification and diversity of viruses: A Review. Journal of Biology, Agriculture and Healthcare, 5(1), 204–214.; Alfaro García, J. P., & Franco Lara, L. (2015). Potato virus Y (PVY) Y Potato yellow veinvirus (PYVV) eninfecciones mixtas no causan síntomas atípicos en plantas de papa. Universidad Militar Nueva Grana, 11(2), 26–37. https://doi.org/http://dx.doi.org/10.18359/rfcb.1297; Alfson, K. J., Beadles, M. W., & Griffiths, A. (2014). A new approach to determining whole viral genomic sequences including termini using a single deep sequencing run. Journal of Virological Methods, 208, 1–5. https://doi.org/10.1016/j.jviromet.2014.07.023; Altschul, S., W, G., Miller, W., Myers, E., & Lipman, D. (1990). Basic local alignment search tool. Journal Molecular Biology, 215, 403–410.; Álvarez, D., Gutiérrez, P., & Marín, M. (2016). Molecular Characterization of Potato virus V ( PVV ) Infecting Solanum phureja Using Next-Generation Sequencing. Acta Biológica Colombiana, 21(3), 521–531. https://doi.org/http://dx.doi.org/10.15446/abc.v21n3.54712; Álvarez, D., Gutiérrez, P., & Marín, M. (2017). Secuenciación del genoma del Potato yellow vein virus ( PYVV ) y desarrollo de una prueba molecular para su detección. Bioagro, 29(1), 3–14.; Álvarez, N., Jaramillo, H., Gallo, Y., Gutiérrez, P., & Marín, M. (2017). Molecular characterization of Potato virus Y (PVY) and Potato virus V (PVV) (Potyvirus, Potyviridae) naturally infecting Cape gooseberry (Physalis peruviana L.) in Antioquia (Colombia). The Plant Pathology. https://doi.org/10.1039/b000000x; Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol., 11, 106.; Andrews, S. (2014). A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.; Arciniegas, N. (2003). Técnicas de diagnóstico y evaluación de resistencia al virus del Amarillamiento de las Nervaduras de la papa (PYVV) en accesiones de la Colección Central Colombiana de Solanum phureja. Universidad Nacional de Colombia.; Astier, S., Albouy, J., Maury, Y., Robaglia, C., & Lecoq, H. (2007). Principles of Plant Virology. Principles of Plant Virology, 112.; Babacar, N., Yancheng, G., Xiliang, W., & Dingren, B. (2010). Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Analytical and Bioanalytical Chemistry, 397, 1113–1135.; Baena, L. M., Andrés, P., Sánchez, G., & Montoya, M. M. (2017). Genome Sequencing of Potato yellow vein virus ( PYVV ) Strain Infecting Solanum lycopersicum in Colombia. Acta Biológica Colombiana, 22(1), 5–17.; Baker, C., Jeyaprakash, A., Webster, C., & Adkins, S. (2014). Plant Pathology Circular No. 415. Florida Department of Agriculture and Consumer Services. http://www.freshfromflorida.com/content/download/40511/873282/ppcirc415.pdf; Beemster, A. B. R., & Bokx, A. de. (1987). Survey of properties and symptoms. In J. A. De Bokx & J. P. H. van der Want (Eds.), Viruses of potatoes and seed potato production (Secon edit, pp. 84–113). Wageningen University.; Bennett, C. W. (1953). Interactions between Viruses and Virus Strains. Advances in Virus Research, 1(C), 39–67. https://doi.org/10.1016/S0065-3527(08)60461-3; Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic : a flexible trimmer for Illumina sequence data. Genome Analysis, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170; Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J., & Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20–31. https://doi.org/10.1016/j.virusres.2013.12.007; Bright, A., Patrick, S., & Philip, B. (2007). Simultaneous detection of potato viruses , PLRV , PVA , PVX and PVY from dormant potato tubers by TaqMan real-time RT-PCR. Journal of Virological Methods, 142, 1–9. https://doi.org/10.1016/j.jviromet.2006.12.012; Buchen, O. (2010). The Universal Virus Database of the International Committe on Taxonomy of Virus. http://www.ictvdb.org; Candresse, T., Marais, A., & Faure, C. (2013). First Report of Southern Tomato Virus on Tomatoes in Southwest France. Plant Disease, 97(8), 1124–1124. https://doi.org/https://doi.org/10.1094/PDIS-01-13-0017-PDN; COLOMBIA. MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. (2018). Indicadores e Instrumentos Enero 2018 Indicadores Generales. https://sioc.minagricultura.gov.co/Cacao/Documentos/002 - Cifras Sectoriales/002 - Cifras Sectoriales - 2018 Enero Cacao.pdf; Companyo, R., Granados, M., Guiteras, J., & Prat, M. (2009). Analytical and Bioanalytical chemistry. 395, 877–891.; Conesa, A., Madrigal, P., Tarazona, S., Gómez-Cabrero, D., Cervera, A., McPherson, A., Szczesniak, M., Gaffney, D., Elo, L., Zhang, X., & Mortazavi, A. (2016). A surver of best practices for RNA-seq data analysis. Genome Biology, 17–13.; Corpoica. (2016). Virus de la papa. http://corpoica.org.co/noticias/generales/virus-de-la-papa.; Cortazar, A., & Silva, E. P. (2004). Métodos físico-químicos en biotecnología: PCR. In PCR en Tiempo Real. http://www.ibt.unam.mx/computo/pdfs/met/pcr.pdf; Danks, C., & Barker, I. (2000). On site detection of plant pathogens usinf lateral flow devices.; Diez, A., & Martín, V. (2013). Implementación de algoritmos de ensamblaje de genomas en sistemas de memoria compartida y memoria distribuida. univesidad Politécnica de Madrid.; Donaire, L., Pagán, I., & Ayllón, M. A. (2016). Characterization of Botrytis cinerea negative-stranded RNA virus 1, a new mycovirus related to plant viruses, and a reconstruction of host pattern evolution in negative-sense ssRNA viruses. Virology, 499, 212–218. https://doi.org/10.1016/j.virol.2016.09.017; Edgar, R. C., Drive, R. M., & Valley, M. (2004). MUSCLE : multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340; Fang, Y, & Ramasamy, R. (2015). Current and Prospective Methods for Plant Disease Detection. Rains GC, Ed. Biosensors, 5, 537–561.; Fang, Yi, & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors, 5(3), 537–561. https://doi.org/10.3390/bios5030537; FAO. (2008). Organización de las Naciones Unidas para la Alimentación y la Agricultura. http://www.fao.org/publications/sofa/2008/es/; FAOSTAT. (2019). Organización de las Naciones Unidas para la Alimentación y la agricultura. http://www.fao.org/faostat/es/#data/QC/visualize; Fedepapa. (2018). Revista Fedepapa : El agricultor y su papel en el país. FEDEPAPA, 43, 48. http://fedepapa.com/wp-content/uploads/2017/01/REVISTA-43-OK.pdf; Fischer, G., Almanza, P. J., & Miranda, D. (2014). Importancia y cultivo de la Uchuva (Physalis peruviana L .). Scielo, 36(1), 1–15. https://doi.org/10.1590/0100-2945-441/13; Fischer, G., & Velásquez, M. (2010). Uchuva Physalis peruviana L. Solanaceae. Agr. Sci, April.; Frost, K. E., Groves, R. L., & Charkowski, A. O. (2013). Integrated Control of Potato Pathogens Through Seed Potato Certification and Provision of Clean Seed Potatoes. Plant Disease, 97(10), 1268–1280. https://doi.org/10.1094/PDIS-05-13-0477-FE; Fukuhara, T. (2019). Endornaviruses: persistent dsRNA viruses with symbiotic properties in diverse eukaryotes. Virus Genes, 55(2), 165–173. https://doi.org/10.1007/s11262-019-01635-5; Gallo-García, Y. M., Jaramillo-Mesa, H., Toro-Fernández, L. F., Marín-Montoya, M., & Gutiérrez, P. A. (2018). Characterization of the genome of a novel ilarvirus naturally infecting Cape gooseberry (Physalis peruviana). Archives of Virology, 163(6). https://doi.org/10.1007/s00705-018-3796-8; Gallo García, Y., Sierra Mejía, A., Donaire Segarra, L., Aranda, M. A., Gutiérrez, P. A., & Montoya, M. M. (2019). Natural coinfection of RNA viruses in potato ( Solanum tuberosum subsp . Andigena ) crops in Antioquia ( Colombia ). Acta Biol. Colomb, 24(3), 546–560.; Gallo, Y., Gutierrez, P., & Marin, M. (2013). Detection of PMTV Using Polyclonal Antibodies Raised Against a Capsid-Specific Peptide Antigen. Revista Facultad Nacional de Agronomia Medellin, 66(2), 6999–7008.; Gallo, Y., Gutierrez, P., & Marín, M. (2012). Generación de antígenos derivados de la proteína de la cápside de PVY, TaLMV y PMTV, para la producción de anticuerpos útiles en el desarrollo de pruebas serológicas.; Gallo, Y., Sierra, A., Muñoz, L., Marín, M., & Gutiérrez, P. A. (2019). Genome characterization of three Alstroemeria necrotic streak orthotospovirus (ANSV) isolates naturally infecting bell pepper (Capsicum annuum) in Antioquia (Colombia). Tropical Plant Pathology, 44(4), 326–334. https://doi.org/10.1007/s40858-019-00292-1; Gallo, Y., Toro, L. F., Jaramillo, H., Gutiérrez, P. A., & Marín, M. (2018). Identificación y caracterización molecular del genoma completo de tres virus en cultivos de lulo (Solanum quitoense) de Antioquia (Colombia). Revista Colombiana de Ciencias Hortícolas, 12(2), 281–292.; García Ruíz, D., Olarte Quintero, M. A., Gutiérrez Sánchez, P. A., & Marín Montoya, M. A. (2016). Detección serológica y molecular del Potato virus X (PVX) en tubérculos-semilla de papa (Solanum tuberosum L. y Solanum phureja Juz. Bukasov) en Antioquia, Colombia. Revista Colombiana de Biotecnología, 18(1), 1–8. https://doi.org/10.15446/rev.colomb.biote.v18n1.51389; Gil, Jose F, Gutiérrez, P., Cotes, J. M., González, E. P., & MA. (2011). Caracterización genotípica de aislamientos Colombianos del Potato Mop Top Virus (PMTV, Pomovirus). Actual Biol, 33(94), 69–84.; Gil, Jose F, Marin, M., & Cotes, J. M. (2010). Diagnóstico y caracterización molecular de virus asociados al cultivo de la papa en Colombia, con énfasis en el virus mop-top (PMTV, Pomovirus).; Gil, José Fernando, Cotes, J. M., & Marín, M. (2011). Incidencia de potyvirus y caracterización molecular de PVY en regiones productoras de papa ( Solanum tuberosum L .) de Colombia. Revista Colombiana de Biotecnología, 85–93.; Gil, José Fernando, Cotes, J. M., & Marín, M. A. (2013). Incidencia visual de Síntomas asociados a enfermedades virales en cultivos de papa de Colombia. Biotecnología En El Sector Agropecuario y Agroindustrial, 11(2), 101–110.; Gómez, F., Trejo, L., García, C., & Cadena, J. (2014). Lulo (Solanum quitoense [Lamarck.]) as new landscape crop in the Mexican agro-ecosystem. Revista Mexicana de Ciencias Agrícolas, 9, 1741–1753.; Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet, 17(6), 333–351. https://doi.org/10.1038/nrg.2016.49; Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883; Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086; Gutiérrez, P. A., Alzate, J. F., & Marín-Montoya, M. A. (2013). Complete genome sequence of a novel potato virus S strain infecting Solanum phureja in Colombia. Archives of Virology, 158(10), 2205–2208. https://doi.org/10.1007/s00705-013-1730-7; Gutiérrez, P. A., Alzate, J. F., & Marín Montoya, M. (2014). Genome sequence of a virus isolate from tamarillo (Solanum betaceum) in Colombia: evidence for a new potyvirus. Archives of Virology, 160(2), 557–560. https://doi.org/10.1007/s00705-014-2296-8; Gutiérrez, P., Alzate, J. F., & Marín, M. (2015). Complete genome sequence of an isolate of Potato virus X ( PVX ) infecting Cape gooseberry ( Physalis peruviana ) in Colombia. Virus Genes, 50(3), 518–522. https://doi.org/10.1007/s11262-015-1181-1; Gutiérrez, P., Alzate, J., & Marín, M. (2012). Pirosecuenciación del genoma de una cepa andina de Potato virus S ( PVS , Carlavirus ) infectando Solanum phureja ( Solanaceae ) en Colombia. Revista Facultad de Ciencias Básicas, 8(1), 84–93.; Guzmán, M., Ruiz, E., Arciniegas, N., & Coutts, R. H. A. (2006). Occurrence and variability of Potato yellow vein virus in three Departments of Colombia. Journal of Phytopathology, 154(11–12), 748–750. https://doi.org/10.1111/j.1439- 0434.2006.01174.x; Guzmán, Mónica, Román, V., Franco, L., & Rodríguez, P. (2010). Presencia de cuatro virus en algunas accesiones de la Colección Central Colombiana de papa mantenida en campo. Agronomia Colombiana, 38(2), 225–233.; Halterman, D., Charkowski, A., & Verchot, J. (2012). Potato , Viruses , and Seed Certification in the USA to Provide Healthy Propagated Tubers Planted into field. Pest Technology, 1, 1–14.; Hameed, A., Iqbal, Z., Asad, S., & Mansoor, S. (2014). Detection of Multiple Potato Viruses in the Field Suggests Synergistic Interac- tions among Potato Viruses in Pakistan. Plant Pathol. J, 30(4), 407–415.; Hanssen, I., Lapidot, M., & Thomma, B. (2010). Emerging Viral Diseases of Tomato Crops. The American Phytopathological Society, 23(5), 539–548. https://doi.org/10.1094 /MPMI -23-5-0539; Hass, B., Papanicolaou, A., & Yassour, M. (2013). De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nature Protocols, 8, 1494–1512.; He, Z., Larkin, R., & Honeycutt, W. (2012). Sustainable Potato Production: Global Case Studies (S. D. H. N. Y. London (ed.)). https://doi.org/DOI 10.1007/978-94-007-4104-1; Hily, J. M., Candresse, T., Garcia, S., Vigne, E., Tannière, M., Komar, V., Barnabé, G., Alliaume, A., Gilg, S., Hommay, G., Beuve, M., Marais, A., & Lemaire, O. (2018). High-throughput sequencing and the viromic study of grapevine leaves: From the detection of grapevine-infecting viruses to the description of a new environmental Tymovirales member. Frontiers in Microbiology, 9(AUG). https://doi.org/10.3389/fmicb.2018.01782; Jagatheeswari, D. (2014). Morphological studies on flowering plants ( Solanaceae ). International Letters of Natural Sciences, 15, 36–43. https://doi.org/10.18052/www.scipress.com/ILNS.15.36; Knapp, S., Bohs, L., Nee, M., & Spooner, D. M. (2004). Solanaceae - A model for linking genomics with biodiversity. Comparative and Functional Genomics, 5(3), 285–291. https://doi.org/10.1002/cfg.393; Koski, L., Gray, M., Lang, B., & Burger, G. (2005). AutoFACT: an automatic functional annotation and classification tool. BMC Bioinformatics, 6, 151.; Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7 : Molecular Evolutionary Genetics Analysis Version 7 . 0 for Bigger Datasets Brief communication. Mol. Biol. Evol, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054; Langmead, B., & Salzberg, S. (2013). Fast gapped-read alignment with Bowtie 2. Nat Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923.Fast; Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10(3), R25. https://doi.org/10.1186/gb-2009-10-3-r25; Li, B., & Dewey, C. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323.; Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324; Li, R., Gao, S., Hernandez, A. G., Wechter, W. P., Fei, Z., & Ling, K. S. (2012). Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS ONE, 7(5). https://doi.org/10.1371/journal.pone.0037127; Li, Y., Wang, H., Nie, K., Zhang, C., Zhang, Y., Wang, J., Niu, P., & Ma, X. (2016). VIP: an integrated pipeline for metagenomics of virus identification and discovery. Nature Publishing Group. https://doi.org/10.1038/srep23774; Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., & Law, M. (2012). Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology, 2012. https://doi.org/10.1155/2012/251364; MADR. (2015). El cultivo de pimentón (capsicum annuum L) bajo invernadero. In Boletin mensual, insumos y factores asociados a la producción agropecuaria (Vol. 37). http://scholar.google.es/scholar?q=pistacho+cultivo+españa&btnG=&hl=ca&as_sdt=0,5#5; Madroñero, J., Madroñero, J., Rozo, Z. L. C., Pérez, J. A. E., & Romero, M. L. V. (2019). Plataformas de secuenciación de nueva generación y proteómica aplicadas a la virología vegetal: ¿Cómo ha avanzado Colombia? Acta Biológica Colombiana, 24(3), 423–438. https://doi.org/10.15446/abc.v24n3.79486; Maree, H. J., Fox, A., Al Rwahnih, M., Boonham, N., & Candresse, T. (2018). Application of HTS for Routine Plant Virus Diagnostics: State of the Art and Challenges. Frontiers in Plant Science, 9(August), 1–4. https://doi.org/10.3389/fpls.2018.01082; Marshall, B. B., Barker, H., & Verrall, S. R. (1988). Effects of potato leafroll virus on the crop processes leading to tuber yield in potato cultivars which differ in tolerance of infection. Annals of Applied Biology, 113, 297–305.; Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L. R., Davis, C. E., & Dandekar, A. M. (2015). Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35(1), 1–25. https://doi.org/10.1007/s13593-014-0246-1; Matousek, J., Schubert, J., Ptacek, J., Kozlova, P., & Dedic, P. (2004). Complete nucleotide sequence and molecular probing of potato virus S genome. Acta Virologica, 49, 195–205.; McLeish, M. J., Fraile, A., & García-Arenal, F. (2019). Evolution of plant–virus interactions: host range and virus emergence. Current Opinion in Virology, 34, 50–55. https://doi.org/10.1016/j.coviro.2018.12.003; Medina, C., Gutiérrez, P., & Marin, M. (2015). Detección del Potato Virus Y (PVY) en tubérculos de papa mediante TAS-ELISA Y qRT-PCR en Antioquia (Colombia). Bioagro, 27(2), 83–92.; Medina, H., Gutiérrez, P., & Marín, M. (2017). Detection and sequencing of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in a volunteer plant of Solanum tuberosum L. cv. Diacol-Capiro. Acta Agronomica, 66(1), 625–632. https://doi.org/https://doi.org/10.15446/acag.v66n4.59753 Detection; Mesa, M., González, M., Gutiérrez, P., & Marín, M. (2016). Diagnóstico serológico y molecular del Potato leafroll virus (PLRV) en tubérculos-semilla de papa en Antioquia , Colombia. Acta Agronomica, 65(2), 204–210. https://doi.org/http://dx.doi.org/10.15446/acag.v65n2.50764 Diagnóstico; Miller, J. R., Koren, S., & Sutton, G. (2010). Assembly algorithms for next-generation sequencing data. Genomics, 95(6), 315–327. https://doi.org/10.1016/j.ygeno.2010.03.001; Mumford, R. A., Walsh, K., Barker, I., & Boonham, N. (2000). Detection of Potato mop top virus and Tobacco rattle virus Using a Multiplex Real-Time Fluorescent Reverse-Transcription Polymerase Chain Reaction Assay. Virology, 90(5), 448–453.; Muñoz-baena, L., Marín-montoya, M., & Gutiérrez, P. A. (2017). Genome sequencing of two Bell pepper endornavirus (BPEV) variants infecting Capsicum annuum in Colombia. Agronomia Colombiana, 35(1), 44–52. https://doi.org/10.15446/agron.colomb.v35n1.60626; Muñoz, D., Gutiérrez, P., & Marín, M. (2016). Detección y caracterización molecular del Potato virus Y (PVY) en cultivos de papa ( Solanum tuberosum L .) del norte de Antioquia , Colombia. Protección Veg., 31(1), 9–19.; Muñoz, L., Gutiérrez, P., & Marín, M. (2016b). Detección y secuenciación del genoma del Potato Virus Y (PVY) que infecta plantas de tomate en Antioquia, Colombia. Bioagro, 28(2), 69–80.; Muñoz, L., Gutiérrez, P., & Marín, M. (2017). Secuenciación del genoma completo del Potato yellow vein virus (PYVV) en tomate (Solanum lycopersicum) en Colombia. Acta Biológica Colombiana, 22(1), 5. https://doi.org/10.15446/abc.v22n1.59211; Musacchia, F., Basu, S., Petrosino, G., Salvemini, M., & Sanges, R. (2015). Annocript: a flexible pipeline for the annotation of transcriptomes able to identify putative long noncoding RNAs. Bioinformatics, 31, 2199–2201; Navarrete, I., Pnchi, N., Kromann, P., Forbes, G., & Andrade, J. (2017). Health quality of seed potato and yield losses in Ecuador. Revista Latinoamericana de La Papa, 21(2), 69–88. https://doi.org/http://dx.doi.org/10.1101/108712; Nie, X., & Singh, R. P. (2001). A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves and tubers. Journal of Virological Methods, 91, 37–49.; Nikitin, M. M., Statsyuk, N. V., Frantsuzov, P. A., Dzhavakhiya, V. G., & Golikov, A. G. (2018). Matrix approach to the simultaneous detection of multiple potato pathogens by real-time PCR. Journal of Applied Microbiology, 124(3), 797–809. https://doi.org/10.1111/jam.13686; Nolte, P., Whitworth, J. L., Thornton, M. K., & McIntosh, C. S. (2004). Effect of Seedborne Potato virus Y on Performance of Russet Burbank , Russet Norkotah , and Shepody Potato. Plant Disease, 88(3), 248–252.; Osman, F., Leutenegger, C., Golino, D., & Rowhani, A. (2008). Comparison of low-density arrays , RT-PCR and real-time TaqMan RT-PCR in detection of grapevine viruses. Journal of Virological Methods, 149, 292–299. https://doi.org/10.1016/j.jviromet.2008.01.012; Panno, S., Davino, S., Rubio, L., Rangel, E., Davino, M., García-Hernández, J., & Olmos, A. (2012). Simultaneous detection of the seven main tomato-infecting RNA viruses by two multiplex reverse transcription polymerase chain reactions. Journal of Virological Methods, 186(1–2), 152–156. https://doi.org/10.1016/j.jviromet.2012.08.003; Parella, G., Gognalons, P., Gebre-Selassie, K., Vovlas, C., & Carchoux, G. (2003). An update on the host range of Tomato spotted wilt virus. Plant Pathology, 85, 227.; Park, M. ., Kwon, S. ., Choi, H., Hemenway, C., & Kim, K. (2008). Mutations that alter a repeat ACCA element located at 5‟ end of Potato virus X genome affect RNA accumulation. Virology Journal, 378, 133–141.; Pecman, A., Kutnjak, D., Gutiérrez-Aguirre, I., Adams, I., Fox, A., Boonham, N., & Ravnikar, M. (2017). Next generation sequencing for detection and discovery of plant viruses and viroids: Comparison of two approaches. Frontiers in Microbiology, 8(OCT), 1–10. https://doi.org/10.3389/fmicb.2017.01998; Pérez, M., Castañón, G., & Ramírez, M. (2015). Avances y Perspectivas sobre el estudio del origen y la diversidad genética de Capsicum spp. Ecosistemas y Recursos Agropecuarios, 2(4), 117–128.; Puchades, A., Carpino, C., Alfaro-Fernandez, A., Font-San-Ambrosio, M., Davino, S., Guerri, J., Rubio, L., & Galipienso, L. (2017). Detection of Southern tomato virus by molecular hybridisation. Annals of Applied Biology, 171(2), 172–178. https://doi.org/10.1111/aab.12367; Puente, L., Pinto, M. C., Castro, E., & Cortés, M. (2011). Physalis peruviana L, the multiple properties of a highly functional fruit: A review. Food Research International, 44, 1733–1740.; Radford, A., Chapman, D., Dixon, L., Chatrey, J., Darby, A., & Hall, N. (2012). Application of next generation sequencing technologies in virology. Journal of General Virology, 93, 1853–1868.; Radford, A. D., Chapman, D., Dixon, L., Chantrey, J., Darby, A. C., & Hall, N. (2012). Application of next-generation sequencing technologies in virology. Journal of General Virology, 93(PART 9), 1853–1868. https://doi.org/10.1099/vir.0.043182-0; Riascos, M., Gutiérrez Sánchez, P. A., Marín Montoya, M. A., & Montoya, M. A. M. (2018). Identificación molecular de Potyvirus infectando cultivos de papa en el oriente de Antioquia (Colombia). Acta Biológica Colombiana, 23(1), 39–50. https://doi.org/10.15446/abc.v23n1.65683; Robinson, M., McCarthy, D., & Smyth, G. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140.; Ruffalo, M., Laframboise, T., & Koyutürk, M. (2011). Comparative analysis of algorithms for next-generation sequencing read alignment. Bioinformatics, 27(20), 2790–2796. https://doi.org/10.1093/bioinformatics/btr477; Sabanadzovic, S., Valverde, R. A., Brown, J. K., Martin, R. R., & Tzanetakis, I. E. (2009). Southern tomato virus: The link between the families Totiviridae and Partitiviridae. Virus Research, 140(1–2), 130–137. https://doi.org/10.1016/j.virusres.2008.11.018; Salomone, A., Bruzzone, C., Minuto, G., Minuto, A., & Roggero, P. (2002). A compararison of lateral flow and ELISA for detection of Tomato mosaic virus in tomato. Journal of Plant Pathology, 84, 1993.; Salomone, A., Mongelli, M., Roggero, P., & Boscia, D. (2004). Reliability of detection of citrus tristeza virus by an inmunochromatographic lateral flow assay in comparison with ELISA. Journal of Plant Pathology, 86, 43 – 48.; Salomone, A., & Roggero, P. (2002). Host range, seed transmission and detection by ELISA and lateral flow of an Italian isolate of pepino mosaic virus. Journal of Plant Pathology, 84, 65–68.; Santillan, F. W., Fribourg, C. E., Adams, I. P., Gibbs, A. J., Boonham, N., Kehoe, M. A., Maina, S., & Jones, R. A. C. (2018). The Biology and Phylogenetics of Potato virus S Isolates from the Andean Region of South America. Plant Disease, 102(5), 869–885. https://doi.org/10.1094/PDIS-09-17-1414-RE; Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., Mcroberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. NatEcoEvol, 3(3), 430–439. https://doi.org/10.1038/s41559-018-0793-y; Savenkov, E., Germundsson, A., Zamyathin, A., Sandgren, M., & Valkonen, J. (2003). Potato mop-top virus: The coat protein- encoding RNA and the gene for cystein -rich protein are dispensable for systemic virus movement in Nicotianan benthamiana. Journal of General Virology, 80, 2779–2784.; Savenkov, E. I., & Valkonen, J. P. . (2001). Potyviral helper-component proteinase expressed in transgenic plants enhances titers of Potato Leaf Roll Virus but does not alleviate its phloem limitation. Virology, 283, 285–293.; Scholthof, K., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., & Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938–954. https://doi.org/10.1111/j.1364-3703.2011.00752.x; Schulte-Geldermann, E., Gildemacher, P. R., & Struik, P. C. (2012). Improving Seed Health and Seed Performance by Positive Selection in Three Kenyan Potato Varieties. American Journal of Potato Research, 89(6), 429–437. https://doi.org/10.1007/s12230-012-9264-1; Sifres, A. B., & Nuez, F. (2011). Pattern of genetic variability of Solanum habrochaites in its natural area of distribution. Genet Resour Crop, 58, 347–360.; Singh, M., Singh, R. P., & Fageria, M. S. (2012). Optimization of a Real-Time RT-PCR Assay and its Comparison with ELISA , Conventional RT-PCR and the Grow-out Test for Large Scale Diagnosis of Potato virus Y in Dormant Potato Tubers. American Journal of Potato Research, 90(1), 43–50. https://doi.org/10.1007/s12230-012-9274-z; Singh, R. P., Kurz, J., Boiteau, G., & Bernard, G. (1995). Detection of potato leafroll virus in single aphids by the reverse transcription polymerase chain reaction and its potencial epidemiological application. Journal of Virological Methods, 1(506), 133–143.; Spooner, D. M., Ghislain, M., Simon, R., Jansky, S. H., & Gavrilenko, T. (2014). Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Botanical Review, 80(4), 283–383. https://doi.org/10.1007/s12229-014-9146-y; Stammler, J., Oberneder, A., Kellermann, A., & Hadersdorfer, J. (2018). Detecting potato viruses using direct reverse transcription quantitative PCR (DiRT-qPCR) without RNA purification: an alternative to DAS-ELISA. European Journal of Plant Pathology, 152(1), 237–248. https://doi.org/10.1007/s10658-018-1468-x; Stevenson, W., Loria, R., & Gardy, F. (2001). Compendium of Potato Diseases (Second Edi).; Syller, J. (2012). Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology, 13(2), 204–216. https://doi.org/10.1111/j.1364-3703.2011.00734.x; Tamayo, P., & Jaramillo, J. (2013). Enfermedades del tomate ,pimenton, aji y berenjena en Colombia. Guía para su diagnóstico y manejo. https://repository.agrosavia.co/handle/20.500.12324/13267; Tamayo, P., Navarro, R., & de la Rotta, M. C. (2001). Enfermedades del cultivo del lulo en Colombia. Boletín Técnico 9 - CORPOICA.; Thomas-Sharma, S., Abdurahman, A., Ali, S., Andrade-Piedra, J. L., Bao, S., Charkowski, A. O., Crook, D., Kadian, M., Kromann, P., Struik, P. C., Torrance, L., Garrett, K. A., & Forbes, G. A. (2016). Seed degeneration in potato: The need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology, 65(1), 3–16. https://doi.org/10.1111/ppa.12439; Turco, S., Golyaev, V., Seguin, J., Farinelli, L., Boller, T., Schumpp, O., & Pooggin, M. (2018). Small RNA-Omics for Virome Reconstruction and Antiviral Defense Characterization in Mixed Infections of Cultivated Solanum Plants. The American Phytopathological Society, 31(7), 707–723.; Urcuqui-inchima, S., Haenni, A., & Bernardi, F. (2001). Potyvirus proteins: a wealth of functions. Virus Research, 74, 157–175.; Vaca Vaca, J., Betancur Pérez, J., & López-López, K. (2012). Distribución y diversidad genética de Begomovirus que infectan tomate (Solanum lycopersicum L) en Colombia. Revista Colombiana de Biotecnología, 14(1), 60–76.; Vallejo, D., Gutiérrez, P., & Marín, M. (2016). Genome characterization of a Potato virus S ( PVS ) variant from tuber sprouts of Solanum phureja Juz . et Buk . Agronomia Colombiana, 34(1), 51–60. https://doi.org/10.15446/agron.colomb.v34n1.53161; Valverde, R., Nameth, S., & Jordan, R. (1990). Analysis of double-stranded RNA for plant virus diagnosis. Plant Disease, 74, 255–258.; Vance, V. B. (1991). Replication of Potato Virus X RNA Is Altered in Coinfections with Potato Virus Y. Virology Journal, 494, 486–494.; Villamil-Garzón, A, Cuellas, W., & Guzmán-Barney, M. (2014). Co-infección natural de Potato yellow vein virus y potivirus en cultivos de Solanum tuberosum en Colombia. Agronomia Colombiana, 32, 213–223.; Villamil-Garzón, Angela, Cuellar, W. J., & Guzmán-Barney, M. (2014). Co-infección natural de potato yellow vein virus y potivirus en cultivos de Solanum tuberosum en Colombia. Agronomia Colombiana, 32(2), 213–223. https://doi.org/10.15446/agron.colomb.v32n2.43968; Villegas, M. D., Montoya, M. M., & Gutiérrez, P. A. (2017). Genome comparison and primer design for detection of Tamarillo leaf malformation virus ( TaLMV ). Archives of Phytopathology and Plant Protection, 5408(September), 1–14. https://doi.org/10.1080/03235408.2017.1370934; Wang, B., Ma, Y., Zhang, Z., Wu, Z., Wu, Y., Wang, Q., & Li, M. (2011). Potato viruses in China. Crop Protection, 30(9), 1117–1123. https://doi.org/10.1016/j.cropro.2011.04.001; Wilm, A., Poh, P., Aw, K., Bertrand, D., Hui, G., Yeo, T., Ong, S. H., Wong, C. H., Khor, C. C., Petric, R., Hibberd, M. L., & Nagarajan, N. (2012). LoFreq : a sequence-quality aware , ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acid Research, 40(22), 11189–11201. https://doi.org/10.1093/nar/gks918; Xu, C., Sun, X., Taylor, A., Jiao, C., Xu, Y., Cai, X., Whang, X., Ge, C., Pan, G., Whang, Q., Fei, Z., & Wang, Q. (2017). Diversity , Distribution , and Evolution of Tomato Viruses en China Uncovered by Small RNA Sequencing. Journal of Virology, 91(11), 1–14. https://doi.org/10.1128/JVI.00173-17; Yadav, R., Rathi, M., Pednekar, A., & Rewachandani, Y. (2016). A DETAILED REVIEW ON SOLANACEAE FAMILY. Europan Journal of Pharmaceutical and Medical Research, 3(1), 369–378.; Yang, I., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics, 13, 119–125.; Yang, L., Nie, B., Liu, J., & Song, B. (2013). A Reexamination of the Effectiveness of Ribavirin on Eradication of Viruses in Potato Plantlets in vitro Using ELISA and Quantitative RT-PCR. American Journal of Potato Research, 91(3), 304–311. https://doi.org/10.1007/s12230-013-9350-z; Yang, L., Nie, B., Liu, J., & Song, B. (2014). A Reexamination of the Effectiveness of Ribavirin on Eradication of Viruses in Potato Plantlets in vitro Using ELISA and Quantitative RT-PCR. American Journal of Potato Research, 91(3), 304–311. https://doi.org/10.1007/s12230-013-9350-z; Zapata, J., Saldarriaga, A., Londoño, M., & Díaz, C. (2002). Manejo del cultivo de la uchuva en Colombia. Repositorio agrosavia. Disponible: http://hdl.handle.net/20.500.12324/12833; Zhang, W., Zhang, Z., Fan, G., Gao, Y., & Wen, J. (2017). Development and application of a universal and simplified multiplex RT-PCR assay to detect five potato viruses. Journal of General Plant Pathology, 83(1), 33–45. https://doi.org/10.1007/s10327-016-0688-1; https://repositorio.unal.edu.co/handle/unal/78313

  18. 18
    Academic Journal

    المصدر: BioRxiv : the preprint server for biology. (April 11, 2019)

    وصف الملف: application/pdf

    Relation: info:eu-repograntAgreement/INTA/PNPV-1135022/AR./Identificación y desarrollo de protocolos para la detección de patógenos de importancia agrícola.; info:eu-repograntAgreement/INTA/PNHFA-1106075/AR./Desarrollo de bases tecnológicas para el aumento de la competitividad con sostenibilidad de las Legumbres en Argentina.; http://hdl.handle.net/20.500.12123/12257; https://www.biorxiv.org/content/10.1101/606384v1; https://doi.org/10.1101/606384

  19. 19
    Dissertation/ Thesis
  20. 20