-
1
المؤلفون: Salii, Jill
المساهمون: Paiva, Nuno, Veritati - Repositório Institucional da Universidade Católica Portuguesa
مصطلحات موضوعية: Synthetic data, Churn prediction, Imbalanced datasets, Telecommunication, SMOTENC, ADASYN, TVAE, CTGAN, Lift score, Data quality, Dados sintéticos, Previsão de churn, Conjuntos de dados desbalanceados, Indústria de telecomunicações, Qualidade dos dados, Domínio/Área Científica::Ciências Sociais::Economia e Gestão
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10400.14/45795
-
2Academic Journal
المؤلفون: Cheng-Hui Chen, Chen-Kun Tsung, Shyr-Shen Yu
المصدر: Applied Sciences; Volume 12; Issue 18; Pages: 9286
مصطلحات موضوعية: Mixed-Type Data, fault diagnosis, SmoteNC ctGAN, limited failure
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Computing and Artificial Intelligence; https://dx.doi.org/10.3390/app12189286
الاتاحة: https://doi.org/10.3390/app12189286
-
3Conference
المؤلفون: Hasan, Md Abid, Rouf, Nirjhor Tahmidur, Hossain, Md Sajid, Latif, Lamia Binta, Tasnim, Anika, Grzegorzek, Marcin
مصطلحات موضوعية: Data Augmentation, Elbow Method, Flood Prediction, Random Forest, SMOTENC
Relation: International Conference on Tools with Artificial Intelligence 2023; #PLACEHOLDER_PARENT_METADATA_VALUE#; IEEE 35th International Conference on Tools with Artificial Intelligence, ICTAI 2023. Proceedings; https://publica.fraunhofer.de/handle/publica/467884
-
4Dissertation/ Thesis
المؤلفون: Islam, Jobair
المساهمون: Åbo Akademi, Fakulteten för samhällsvetenskaper och ekonomi, Informationssystem
مصطلحات موضوعية: Advanced analytics, AI and ML, Backorder prediction, EDA, Imblanced dataset, Linear Regression, Parameter tuning, Predictive modeling, Random Forest, RUS, SMOTENC, XGBoost, supply chains, business operations, forecasts, optimisation, analysis, machine learning, algorithms, artificial intelligence, data, regression analysis, modelling (representation), leveranskedjor, företagsverksamhet, prognoser, optimering, maskininlärning, algoritmer, artificiell intelligens
وصف الملف: 143+V; true
Relation: https://www.doria.fi/handle/10024/188325; URN:NBN:fi-fe20231113146482
-
5
المؤلفون: Nana Chai, Baofeng Shi, Bin Meng, Yizhe Dong
المصدر: Chai, N, Shi, B, Meng, B & Dong, Y 2023, ' Default feature selection in credit risk modeling : Evidence from Chinese small enterprises ', SAGE Open, vol. 13, no. 2 . https://doi.org/10.1177/21582440231165224
مصطلحات موضوعية: AFCM-SMOTENC-APRIORI algorithm, association rule, General Arts and Humanities, General Social Sciences, imbalanced data, feature attributes, small enterprise
وصف الملف: application/pdf