يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"S. Khusainov Z."', وقت الاستعلام: 0.36s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 9, № 1 (2020); 85-95 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 9, № 1 (2020); 85-95 ; 2541-8017 ; 2223-9022 ; 10.23934/2223-9022-2020-9-1

    وصف الملف: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/908/746; https://www.jnmp.ru/jour/article/view/908/801; Виленский Б.С., Яхно Н.Н. Современное состояние проблемы инсульта. Вестник Российской АМН. 2006;(9–10):18–23.; Пирадов М.А., Крылов В.В., Белкин А.А., Петриков С.С. Инсульты. В кн.: Гельфанд Б.Р., Заболотский И.Б. (ред). Интенсивная терапия. Национальное руководство. 2-е изд., перераб. и доп. Москва: ГЭО-ТАР-Медиа; 2017. с. 288–309.; Шевченко Е.В., Рамазанов Г.Р., Петриков С.С. Причины головокружения у больных с подозрением на острое нарушение мозгового кровообращения. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2018;7(3):217–221. https://doi.org/10.23934/2223-9022-2018-7-3-217-221; Гусев Е.И., Скворцова В.И., Стаховская Л.В. Проблемы инсульта в Российской Федерации: время активных совместных действий. Журнал неврологии и психиатрии им. С.С. Корсакова. 2007;107(8):4–10.; Министерство Здравоохранения РФ. Статистический сборник 2017 г. URL: https://www.rosminzdrav.ru/ministry/61/22/stranitsa-979/statisticheskie-i-informatsionnye-materialy/statisticheskiy-sbornik-2017-god [Дата обращения 05 февраля 2020 г.]; Крылов В.В., Петриков С.С., Талыпов А.Э., Пурас Ю.В., Солодов А.А., Левченко О.В., и др. Современные принципы хирургии тяжелой черепно-мозговой травмы. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2013; (4): 39–47.; Vella MA, Crandall ML, Patel MB. Acute Management of Traumatic Brain Injury. Surg Clin North Am. 2017;97(5):1015–1030. PMID: 28958355 https://doi.org/10.1016/j.suc.2017.06.003; Шабанов А.К., Картавенко В.И., Петриков С.С., Марутян З.Г., Розумный П.А., Черненькая Т.В., и др. Тяжелая сочетанная черепно-мозговая травма: особенности клинического течения и исходы. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2017;6(4):324–330. https://doi.org/10.23934/2223-9022-2017-6-4-324-330; Janowitz T, Menon DK. Exploring new routes for neuroprotective drug development in traumatic brain injury. Sci Transl Med. 2010;2(27):27rv1. PMID: 20393189 https://doi.org/10.1126/scitranslmed.3000330; Острова И.В., Гребенчиков О.А., Голубева Н.В. Нейропротективное действие хлорида лития на модели остановки сердца у крыс (экспериментальное исследование). Общая реаниматология. 2019;15(3):73-82. https://doi.org/10.15360/1813-9779-2019-3-73-82; Schapira Anthony H.V. Neuroprotection in Parkinson’s Disease. Chapter 18. In: Anthony H.V. Schapira, Anthony E.T. Lang, Stanley Fahn (eds.). Movement Disorders 4. Blue Books of Neurology. Vol. 34. Elsevier Inc; 2010. p.301–320. https://www.sciencedirect.com/bookseries/bluebooks-of-neurology/vol/34/suppl/C; Lawrence JH, Loomis WF. Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J Physiol. 1946;105(6):197–204. PMID: 20283155 https://doi.org/10.1113/jphysiol.1946.sp004164; Cullen SC, Gross EG. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science. 1951;113(2942):580–582. PMID: 14834873 https://doi.org/10.1126/science.113.2942.580; Pittinger CB, Moyers J, Cullen SC, Featherstone RM, Gross EG, et al. Clinicopathologic studies associated with xenon anesthesia. Anesthesiology. 1953; 14(1):10–17. PMID: 13017008 https://doi.org/10.1097/00000542-195301000-00002; Cullen SC, Eger 2nd EI, Cullen BF, Gregory P. Observations on the anesthetic effect of the combination of xenon and halothane. Anesthesiology. 1969;31(4):305–309. PMID: 5811596 https://doi.org/10.1097/00000542-196910000-00003; Nakata Y, Goto T, Ishiguro Y, Terui K, Kawakami H, Santo M, et al. Minimum alveolar concentration (MAC) of xenon with sevoflurane in humans. Anesthesiology. 2001; 94(4):611–614. PMID: 11379681 https://doi.org/10.1097/00000542-200104000-00014 .; Eger EI 2nd, Laster MJ, Gregory GA, Katoh T, Sonner JM, et al. Women appear to have the same minimum alveolar concentration as men: a retrospective study. Anesthesiology. 2003; 99(5):1059–1061. PMID: 14576539 https://doi.org/10.1097/00000542-200311000-00009; Буров Н.Е., Потапов В.Н., Макеев Г.Н. Ксенон в анестезиологии. Москва: Пульс; 2000.; Wilhelm S, Ma D, Maze M, Franks NP. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology. 2002;96(6):1485–1491. PMID: 12170064 https://doi.org/10.1097/00000542-200206000-00031; Homi HM, Yokoo N, Ma D, Warner DS, Franks NP, Maze M, et al. The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology. 2003;99(4):876–881. PMID: 14508320 https://doi.org/10.1097/00000542-200310000-00020; Banks P, Franks NP, Dickinson R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology. 2010;112(3):614–622. PMID: 20124979 https://doi.org/10.1097/aln.0b013e3181cea398; Franks NP, Dickinson R, de Sousa SL, et al. How does xenon produce anaesthesia? Nature. 1998;396(6709):324. PMID: 9845069 https://doi.org/10.1038/24525; Raja SN, Sivanesan E, Guan Y. Central Sensitization, N-methyl- D-aspartate Receptors, and Human Experimental Pain Models: Bridging the Gap between Target Discovery and Drug Development. Anesthesiology. 2019;131(2):233–235. PMID:31233408 https://doi.org/10.1097/aln.0000000000002808; Greger IH, Mayer ML. Structural biology of glutamate receptor ion channels: towards an understanding of mechanism. Curr Opin Struct Biol. 2019;57:185–195. PMID: 31185364 https://doi.org/10.1016/j.sbi.2019.05.004; Huang H, Liu S, Kornberg T.B. Glutamate signaling at cytoneme synapses. Science. 2019;363(6430):948–955. PMID: 30819957 https://doi.org/10.1126/science.aat5053; Kaneko Y, Tuazon JP, Ji X, Borlongan CV. Pituitary Adenylate Cyclase Activating Polypeptide Elicits Neuroprotection Against Acute Ischemic Neuronal Cell Death Associated with NMDA Receptors. Cell Physiol Biochem. 2018;51(4):1982–1995. PMID: 30513524 https://doi.org/10.1159/000495722; Liu Y, Li AQ, Ma W, Ma W, Gao YB, Deng LQ, et. al. Limb Remote Ischemic Preconditioning Reduces Repeated Ketamine Exposure- Induced Adverse Effects in the Developing Brain of Rats. J Mol Neurosci. 2019;68(1):58–65. https://doi.org/ 10.1007/s12031-019-01282-3; Yang Q, Huang Q, Hu Z, Tang X. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation. Front Neurosci. 2019;13:1036. PMID: 31611768 https://doi.org/10.3389/fnins.2019.01036; Simon RP, Swan SH, Griffiths T, Meldrum BS. Blockade of N-methyl- D-aspartate receptors may protect against ischemic damage in the brain. Science. 1984; 226(4676):850–852. PMID:6093256 https://doi.org/ 10.1126/science.6093256; Ladak AA, Enam SA, Ibrahim MT. A Review of the Molecular Mechanisms of Traumatic Brain Injury. World Neurosurg. 2019;131:126–132. PMID: 31301445 https://doi.org/10.1016/j.wneu.2019.07.039; Kim UJ, Lee BH, Lee KH. Neuroprotective effects of a protein tyrosine phosphatase inhibitor against hippocampal excitotoxic injury. Brain Res. 2019;1719:133-139. PMID: 31128098 https://doi.org/10.1016/j.brainres.2019.05.027; Andreasen SR, Lundbye CJ, Christensen TB, Thielsen KD, Schmitt-John T, Holm MM, et al. Excitatory-inhibitory imbalance in the brain of the wobbler mouse model of amyotrophic lateral sclerosis substantiated by riluzole and diazepam. Neurosci Lett. 2017;658:85–90. PMID: 28823891 https://doi.org/10.1016/j.neulet.2017.08.033; Wong TP, Howland JG, Wang YT. NMDA Receptors and Disease+C464. In: Encyclopedia of Neuroscience. 2009:1177–1182. https://doi.org/10.1016/b978-008045046-9.01223-7; Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP, et al. Twopore- domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol. 2004;65(2):443–452. PMID: 14742687 https://doi.org/10.1124/mol.65.2.443; Bantel C, Maze M, Trapp S. Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology. 2009;110(5):986–995. PMID:19352153 https://doi.org/10.1097/ALN.0b013e31819dadc7; Maas A. Traumatic brain injury: Changing concepts and approaches. Chin J Traumatol. 2016;19(1):3–6. PMID: 27033264 https://doi.org/10.1016/j.cjtee.2016.01.001; Hill CS, Coleman MP, Menon DK. Traumatic Axonal Injury: Mechanisms and Translational Opportunities. Trends Neurosci. 2016; 39(5):311–324. PMID: 27040729 https://doi.org/10.1016/j.tins.2016.03.002; Campos-Pires R, Armstrong SP, Sebastiani A, Luh C, Gruss M, Radyushkin K, et al. Xenon improves neurologic outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury. Crit Care Med. 2015;43(1):149–158. PMID: 25188549 https://doi.org/10.1097/CCM.0000000000000624; Campos-Piries R, Himet T, Valeo F, Luh C, Gruss M, Radyushkin K, et al. Xenon improves long-term cognitive function, reduces neuronal loss and chronic neuroinflammation, and improves survival after traumatic brain injury in mice. Br J Anaesth. 2019;123(1):60–73. PMID: 31122738 https://doi.org/ 10.1016/j.bja.2019.02.032; Campos-Pires R, Koziakova M, Yonis A, Pau A, Macdonald W, Harris K, et al. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model. J Neurotrauma. 2018;35(8):1037–1044. PMID: 29285980 https://doi.org/10.1089/neu.2017.5360; Harris K, Armstrong SP, Campos-Pires R, Kiru L, Franks NP, Dickinson R, et al. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site. Anesthesiology. 2013;119(5):1137–1148. PMID: 23867231 https://doi.org/10.1097/ALN.0b013e3182a2a265; Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–1623. PMID: 18468545 https://doi.org/10.1016/S0140-6736(08)60694-7; Guruswamy R, ElAli A. Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. Int J Mol Sci. 2017;18(3).pii:E496. PMID: 28245599 https://doi.org/10.3390/ijms18030496; Tymianski M. Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat Neurosci. 2011;14(11):1369–1373. PMID: 22030547 https://doi.org/10.1038/nn.2951; Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–188. PMID: 24361499 https://doi.org/10.1016/j.pneurobio.2013.11.006; Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage: current approaches to acute management. Lancet. 2018;392(10154):1257–1268. PMID: 30319113 https://doi.org/10.1016/S0140-6736(18)31878-6; Paroutoglou K, Parry-Jones AR. Hyperacute management of intracerebral haemorrhage. Clin Med (Lond). 2018;18(Suppl 2):s9–s12. PMID: 29700086 https://doi.org/10.7861/clinmedicine.18-2-s9; Kaiser S, Frase S, Selzner L, Lieberum JL, Wollborn J, Niesen WD, et al. Neuroprotection after Hemorrhagic Stroke Depends on Cerebral Heme Oxygenase-1. Antioxidants (Basel). 2019;8(10).pii: E496. PMID: 31635102 https://doi.org/10.3390/antiox8100496; Ardizzone TD, Lu A, Wagner KR, Tang Y, Ran R, Sharp FR. Glutamate receptor blockade attenuates glucose hypermetabolism in perihematomal brain after experimental intracerebral hemorrhage in rat. Stroke. 2004;35(11):2587–2591. PMID: 15375303 https://doi.org/10.1161/01.STR.0000143451.14228.ff; Qureshi AI, Ali Z, Suri MF, Shuaib A, Baker G, Todd K, et al. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: An in vivo microdialysis study. Crit Care Med. 2003;31(5):1482–1489. PMID: 12771622 https://doi.org/10.1097/01.CCM.0000063047.63862.99; Aronowski J, Hall CE. New horizons for primary intracerebral hemorrhage treatment: Experience from preclinical studies. Neurol Res. 2005;27(3):268–279. PMID: 15845210 https://doi.org/10.1179/016164105X25225; Wang JA, Tong ML, Zhao B, Zhu G, Xi DH, Yang JP. Parthenolide ameliorates intracerebral hemorrhage-induced brain injury in rats. Phytother Res. 2020;34(1):153–160. PMID: 31497910 https://doi.org/10.1002/ptr.6510; Hickenbottom SL, Grotta JC, Strong R, Denner LA, Aronowski J. Nuclear factor-kappab and cell death after experimental intracerebral hemorrhage in rats. Stroke. 1999;30(11): 2472–2477. PMID: 10548686 https://doi.org/10.1161/01.str.30.11.2472; Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, et al. Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. J Neuroinflammation. 2017;14(1):36. PMID: 28196545 https://doi.org/10.1186/s12974-017-0790-0; Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908. PMID: 17033693 https://doi.org/10.1038/sj.jcbfm.9600403; Wang J, Fields J, Zhao C, Langer J, Thimmulappa RK, Kensler TW, et al. Role of nrf2 in protection against intracerebral hemorrhage injury in mice. Free Radic Biol Med. 2007; 43(3):408–414. PMID: 17602956 https://doi.org/ 10.1016/j.freeradbiomed.2007.04.020; Veltkamp R, Purrucker J. Management of Spontaneous Intracerebral Hemorrhage. Curr Neurol Neurosci Rep. 2017;17(10):80. PMID: 28887767 https://doi.org/ 10.1007/s11910-017-0783-5; Sansing LH. Intracerebral Hemorrhage. Semin Neurol. 2016;36(3):223–224. PMID: 27214696 https://doi.org/10.1055/s-0036-1583296; David HN, Haelewyn B, Risso JJ, Colloc’h N, Abraini JH. Xenon is an inhibitor of tissue-plasminogen activator: adverse and beneficial effects in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab. 2010;30(4):718–728. PMID: 20087367 https://doi.org/10.1038/jcbfm.2009.275; Sheng SP, Lei B, James ML, Lascola CD, Venkatraman TN, Jung JY, et al. Xenon neuroprotection in experimental stroke: interactions with hypothermia and intracerebral hemorrhage. Anesthesiology. 2012;117(6):1262–1275. PMID: 23143806 https://doi.org/10.1097/ALN.0b013e3182746b81; Lavaur J, Le Nogue D, Lemaire M, Pype J, Farjot G, Hirsch EC, et al. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons. J Neurochem. 2017;142(1):14–28. PMID: 28398653 https://doi.org/ 10.1111/jnc.14041; Coburn M, Maze M, Franks NP. The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury. Crit Care Med. 2008;36(2):588–595. PMID: 18216607 https://doi.org/10.1097/01.CCM.0B013E3181611F8A6; Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet. 2017;389(10069):655–666. PMID: 27637674 https://doi.org/10.1016/S0140-6736(16)30668-7; Grasso G, Alafaci C, Macdonald RL. Management of aneurysmal subarachnoid hemorrhage: State of the art and future perspectives. Surg Neurol Int. 2017;8:11. PMID: 28217390 https://doi.org/10.4103/2152-7806.198738; Veldeman M, Coburn M, Rossaint R, Clusmann H, Nolte K, Kremer B, et al. Xenon Reduces Neuronal Hippocampal Damage and Alters the Pattern of Microglial Activation after Experimental Subarachnoid Hemorrhage: A Randomized Controlled Animal Trial. Front Neurol. 2017; 8:511. PMID: 29021779 https://doi.org/10.3389/fneur.2017.00511; Miao YF, Peng T, Moody MR, Klegerman ME, Aronowski J, Grotta J, et al. Delivery of xenon-containing echogenic liposomes inhibits early brain injury following subarachnoid hemorrhage. Sci Rep. 2018;8(1):450. PMID: 29323183 https://doi.org/10.1038/s41598-017-18914-6; Káradóttir R, Cavelier P, Bergersen LH, Attwell D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature. 2005;438(7071):1162–1166. PMID: 16372011 https://doi.org/10.1038/nature04302; Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke. 1996;27(9):1641–1646. PMID: 8784142 https://doi.org/10.1161/01.str.27.9.1641; Fries M, Brücken A, Çizen A, Westerkamp M, Löwer C, Deike- Glindemann J, et al. Combining xenon and mild therapeutic hypothermia preserves neurological function after prolonged cardiac arrest in pigs. Crit Care Med. 2012;40(4):1297–1303. PMID: 22425822 https://doi.org/10.1097/CCM.0b013e31823c8ce7; Laitio R, Hynninen M, Arola O, Virtanen S, Parkkola R, Saunavaara J. et al. Effect of Inhaled Xenon on Cerebral White matter Damage in Comatose Survivors of Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA. 2016;315(11):1120–1128. PMID: 26978207 https://doi.org/10.1001/jama.2016.1933; Laitio T, Maze M. Xenon limits brain damage following cardiac arrest. Shock. 2018;18(Is3):192–195.; Shu Y, Patel SM, Pac-Soo C, Fidalgo AR, Wan Y, Maze M, Ma D, et al. Xenon pretreatment attenuates anesthetic-induced apoptosis in the developing brain in comparison with nitrous oxide and hypoxia. Anesthesiology. 2010;113(2):360–368. PMID: 20613483 https://doi.org/10.1097/ALN.0b013e3181d960d7; Yang YW, Wang YL, Lu JK, Tian L, Jin M, Cheng WP, et al. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors. Neural Regen Res. 2018;13(3):510–517. PMID: 29623938 https://doi.org/10.4103/1673-5374.228757; https://www.jnmp.ru/jour/article/view/908

  2. 2
    Academic Journal

    المصدر: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 7, № 2 (2018); 134-143 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 7, № 2 (2018); 134-143 ; 2541-8017 ; 2223-9022 ; 10.23934/2223-9022-2018-7-2

    وصف الملف: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/464/535; https://www.jnmp.ru/jour/article/view/464/536; Dong B., Pineo G., Mulrooney T. Thrombolytic therapy for pulmonary embolism. Cochrane Database Syst. Rev. 2002; (3): CD004437. DOI:10.1002/14651858.CD004437; Dong B.R., Yue J., Liu G.J., et al. Thrombolytic therapy for pulmonary embolism. Cochrane Database Syst. Rev. 2006; (2): CD004437. PMID: 16625603. DOI:10.1002/14651858.CD004437.pub2.; Dong B.R., Hao Q., Yue J., et al. Thrombolytic therapy for pulmonary embolism. Cochrane Database Syst. Rev. 2009; (3): CD004437. PMID: 19588357. DOI:10.1002/14651858.CD004437.pub3.; Hao Q., Dong B.R., Yue J., et al. Thrombolytic therapy for pulmonary embolism. Cochrane Database Syst. Rev. 2015; (9): CD004437. PMID: 26419832. DOI:10.1002/14651858.CD004437.pub4.; Meyer G., Vicaut E., Danays T., et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N. Engl. J. Med. 2014; 370(15): 1402–1411. PMID: 24716681. DOI:10.1056/NEJMoa1302097.; Cook G.J.R. Clinical Nuclear Medicine. London; New York, 2006. 915 p.; Konstantinides S.V., Torbicki A., Agnelli G., et al. 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur. Heart J. 2014; 35(43): 3033-3069, 3069a-3069k. PMID: 25173341. DOI:10.1093/eurheartj/ehu283.; Torbicki A., Perrier A., Konstantinides S., et al. Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur. Heart J. 2008; 29(18): 2276–2315. PMID: 18757870. DOI:10.1093/eurheartj/ehn310.; Pistolesi M., Lavorini F., Miniati M. Diagnostic strategies for suspected pulmonary embolism. European respiratory monograph. 2004. Monograph 30. Ch.6: Imaging: 89–105.; Van Beek E., Moody A.R., Oudkerk M. Imaging of pulmonary embolism: an overview. In: European respiratory monograph. 2003. Monograph 27. Ch.7: Pulmonary Vascular Pathology: A Clinical Update: 110–123.; Bajc M., Olsson B., Palmer J., et al. Ventilation / Perfusion SPECT for diagnostics of pulmonary embolism in clinical practice. J. Intern. Med. 2008; 264(4): 379–387. PMID: 18823506. DOI:10.1111/j.1365- 2796.2008.01980.x.; Collart J.P., Roelants V., Vanpee D., et al. Is a Lung perfusion scan obtained by using single photon emission computed tomography able to improve the radionuclide diagnosis of pulmonary embolism? Nucl. Med. Commun. 2002; 23(11): 1107–1113. PMID: 12411840. DOI:10.1097/01.mnm.0000040972.43128.16.; Corbus H.F., Seitz J.P., Larson R.K., et al. Diagnostic usefulness of lung SPECT in pulmonary thromboembolism: an outcome study. Nucl. Med. Commun. 1997; 18 (10): 897–906. PMID: 9392789.; Reinartz P., Wildberger J.E., Schaefer W., et al. Tomographic imaging in the diagnosis of pulmonary embolism: a comparison between V/Q lung scintigraphy in SPECT technique and multislice spiral CT. J. Nucl. Med. 2004; 45(9): 1501–1508. PMID: 15347717.; Gutte H., Mortensen J., Jensen C.V., et al. Detection of pulmonary embolism with combined ventilation-perfusion SPECT and low-dose CT: head-to-head comparison with multidetector CT angiography. J. Nucl. Med. 2009; 50(12): 1987–1992. PMID: 19910421. DOI:10.2967/ jnumed.108.061606.; Савельев В.С., Яблоков Е.Г., Кириенко А.И. Массивная эмболия легочной артерии. М.: Медицина, 1990. 336 c.; Бокарев И.Н., Попова Л.В. Венозный тромбоэмболизм и тромбоэмболия легочной артерии. М.: МИА, 2005. 208 с.; https://www.jnmp.ru/jour/article/view/464