يعرض 1 - 20 نتائج من 799 نتيجة بحث عن '"S. A. Orlov"', وقت الاستعلام: 0.82s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Кардиоваскулярная терапия и профилактика, Vol 23, Iss 3 (2024)

    وصف الملف: electronic resource

  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
  6. 6
    Academic Journal

    المصدر: World of Transport and Transportation; Том 21, № 4 (2023); 21–28 ; Мир транспорта; Том 21, № 4 (2023); 21–28 ; 1992-3252

    وصف الملف: application/pdf

    Relation: https://mirtr.elpub.ru/jour/article/view/2511/4293; https://mirtr.elpub.ru/jour/article/view/2511/4294; Ватулин Я. С., Попов В. А., Дятлов В. Н. Техническое диагностирование закладных элементов крановых путей грузоподъёмного оборудования в машинных залах тоннельных эскалаторов // Известия МГТУ «МАМИ». – 2022. – Т. 16. – № 3. – С. 241–250. DOI: https://doi.org/10.17816/2074-0530-106323.; Попов Б. Е., Котельников В. С., Зарудный В. В. [и др.]. Магнитная диагностика и остаточный ресурс подъёмных сооружений // Безопасность труда в промышленности. – 2001. – № 2 – С. 44–49. [Электронный ресурс]: https://elibrary.ru/item.asp?id=11691124&ysclid=ln4bswztzc251027582. Доступ 07.07.2023.; Харлов М. В., Попов В. А. Методика оценки технического состояния эскалатора // Интернет-журнал Науковедение. – 2017. – Т. 9 – № 4. [Электронный ресурс]: http://naukovedenie.ru/PDF/05TVN417.pdf. Доступ 15.05.2023.; Tawancy, H. M., Ul-Hamid, A., Abbas, N. M. Practical engineering failure analysis. New York: Marcel Dekker, 2004, 616 p. ISBN 978-0203026298.; Стеклов О. И. Стойкость материалов и конструкций к коррозии под напряжением. – М.: Машиностроение, 1990. – 384 с. ISBN 978-5217005009.; Дятлов В. Н. Моделирование процесса коррозии несущих металлоконструкций эскалатора метрополитена // Вестник МАДИ. – 2022. – № 1 (68). – С. 29–35. [Электронный ресурс]: https://elibrary.ru/item.asp?id=48283752&ysclid=ln4dgtk2rj605841534. Доступ 16.07.2023.; Дятлов В. Н. Уточнение модели развития коррозионных дефектов несущих металлоконструкций эскалатора метрополитена // Вестник МАДИ. – 2022. – № 3 (70). – С. 46–50. [Электронный ресурс]: https://elibrary.ru/vgxvvc?ysclid=ln4djx281v972174148. Доступ 16.07.2023.; Kazarinov, N., Smirnov, A., Petrov, Y., Gruzdkov, A. Dynamic fracture effects observed in a one-dimensional discrete mechanical system. E3S Web of Conferences, 2020, Vol. 157, Key Trends in Transportation Innovation (KTTI‑2019), art. 01020. DOI: https://doi.org/10.1051/e3sconf/202015701020.; Бардышев О. А., Попов В. А., Филин А. Н., Харлов М. В. Обеспечение безопасности тоннельных эскалаторов. – СПб.: Безопасность, 2020. – 128 с. ISBN 978- 5898090715.; Герасименко А. А., Александров Я. И., Андреев И. Н. [и др.]. Защита от коррозии, старения и биоповреждения машин, оборудования и сооружений: Справочник: В 2 т. Т. 1. / под общ. ред. А. А. Герасименко. – М.: Машиностроение, 1987. – 688 с.; Schweitzer, P. А. Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metals. Boca Raton, CRC Press, 2006, 752 p. ISBN 978-0429127137.; Селиверстов Г. В., Данилов А. С. Исследование коррозионной усталости металлоконструкций грузоподъёмных машин // Известия ТулГУ. Серия Технические науки. – 2009. – № 2–1. – С. 248–253. [Электронный ресурс]: https://elibrary.ru/item.asp?id=14615398&ysclid=ln4ftgq29u157526384. Доступ 16.07.2023.; Махутов Н. А. Деформационные критерии разрушения и расчёт элементов конструкций на прочность. – М.: Машиностроение, 1981. – 272 с.; Розенфельд И. Л. Коррозия и защита металлов. – М.: Металлургия, 1969. – 448 с.; Мыльников В. В., Кондрашкин О. Б., Шетулов Д. И. Циклическая прочность и долговечность конструкционных материалов: Монография. – Н. Новгород: ННГАСУ, 2018. – 177 с. ISBN 978-5528002897 [Электронный ресурс] http://www.bibl.nngasu.ru/electronicresources/uch-metod/physics/870594.pdf. Доступ 16.07.2023.; https://mirtr.elpub.ru/jour/article/view/2511

  7. 7
    Academic Journal

    المساهمون: The study was performed according to the Agreement of the Ministry of Education and Science of the Russian Federation No. 075-15-2021- 1065 dated September 28, 2021 on the provision of a grant for the implementation of certain activities of the Federal Scientific and Technical Program for the Development of Genetic Technologies for 2019–2027., Работа выполнена в рамках Соглашения Минобрнауки России № 075-15-2021-1065 от 28.09.2021 о предоставлении гранта на реализацию отдельных мероприятий Федеральной научно-технической программы развития генетических технологий на 2019–2027 гг.

    المصدر: Advances in Molecular Oncology; Том 10, № 1 (2023); 40-48 ; Успехи молекулярной онкологии; Том 10, № 1 (2023); 40-48 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-1

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/511/290; Wong M.C.S., Huang J., Chan P.S.F. et al. Global Incidence and Mortality of Gastric Cancer, 1980–2018. JAMA Network Open 2021;4(7):e2118457. DOI:10.1001/jamanetworkopen.2021.18457; Wang K., Ren Y., Ma Z. et al. Docetaxel, oxaliplatin, leucovorin, and 5-fluorouracil (FLOT) as preoperative and postoperative chemotherapy compared with surgery followed by chemotherapy for patients with locally advanced gastric cancer: a propensity scorebased analysis. Cancer Manag Res 2019;11:3009–20. DOI:10.2147/CMAR.S200883.; Lin J.-X., Tang Y.-H., Lin G.-J. et al. Association of adjuvant chemotherapy with overall survival among patients with locally advanced gastric cancer after neoadjuvant chemotherapy. JAMA Network Open 2022;5:e225557. DOI: jamanetworkopen.2022.5557; Gullo I., Carneiro F., Oliveira C., Almeida G.M. Heterogeneity in gastric cancer: from pure morphology to molecular classifications. Pathobiology 2018;85(1–2):50–63. DOI:10.1159/000473881; Sanjeevaiah A., Cheedella N., Hester C., Porembka M.R. Gastric cancer: recent molecular classification advances, racial disparity, and management implications. J Oncol Pract 2018;14(4):217–24. DOI:10.1200/JOP.17.00025; Zhang W. TCGA divides gastric cancer into four molecular subtypes: implications for individualized therapeutics. Chin J Cancer 2014;33(10):469–70. DOI:10.5732/cjc.014.10117; Мусаелян А.А., Назаров В.Д., Будникова А.С. и др. Клиникоморфологический портрет опухолей с микросателлитной нестабильностью. Успехи молекулярной онкологии 2021;8(2): 52–9. DOI:10.17650/2313-805X-2021-8-2-52-59; Ballhausen A., Przybilla M.J., Jendrusch M. et al. The shared neoantigen landscape of MSI cancers reflects immunoediting during tumor evolution. BioRxiv 2019:691469. DOI:10.1101/691469; Nebot-Bral L., Coutzac C., Kannouche P.L., Chaput N. Why is immunotherapy effective (or not) in patients with MSI/MMRD tumors? Bulletin Du Cancer 2019;106:105–13. DOI:10.1016/j.bulcan.2018.08.007; Muro K., Chung H.C., Shankaran V. et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol 2016;17(6):717–26. DOI:10.1016/S1470-2045(16)00175-3; Marabelle A., Le D.T., Ascierto P.A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 2019;38(1):1–10. DOI:10.1200/JCO.19.02105; Le D.T., Kim T.W., van Cutsem E. et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability–high/mismatch repair–deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol 2019;38(1):11–9. DOI:10.1200/JCO.19.02107; Le D.T., Uram J.N., Wang H. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372(26):2509–20. DOI:10.1056/NEJMoa1500596; Chao J., Fuchs C.S., Shitara K. et al. Assessment of pembrolizumab therapy for the treatment of microsatellite instability-high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials. JAMA Oncol 2021;7(6):895–902. DOI:10.1001/jamaoncol.2021.0275; Bang Y.-J., van Cutsem E., Feyereislova A. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010;376(9742):687–97. DOI:10.1016/S0140-6736(10)61121-X; Cavaliere A., Merz V., Casalino S. et al. Novel biomarkers for prediction of response to preoperative systemic therapies in gastric cancer. J Gastric Cancer 2019;19(4):375–92. DOI:10.5230/ jgc.2019.19.e39; Лядов В.К., Пардабекова О.А., Лядова М.А. Периоперационная химиотерапия рака желудка: состояние проблемы. Современная онкология 2018;20:56–60. DOI:10.26442/1815-1434_2018.2.56-60; Giommoni E., Lavacchi D., Tirino G. et al. Results of the observational prospective RealFLOT study. BMC Cancer 2021;21:1086. DOI:10.1186/s12885-021-08768-7; Gomez D.I., Mullin C.S., Mora-Guzmán F. et al. Rapid DNA extraction for specific detection and quantitation of Mycobacterium tuberculosis DNA in sputum specimens using Taqman assays. Tuberculosis 2011;91(Suppl. 1):S43–8. DOI:10.1016/j.tube.2011.10.009; Goel A., Nagasaka T., Hamelin R., Boland C.R. An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers. PLoS ONE 2010;5(2):e9393. DOI:10.1371/journal.pone.0009393; Luchini C., Bibeau F., Ligtenberg M.J.L. et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic reviewbased approach. Ann Oncol 2019;30(8):1232–43. DOI:10.1093/annonc/mdz116; Lorenzi M., Amonkar M., Zhang J. et al. Epidemiology of microsatellite instability high (MSI-H) and deficient mismatch repair (dMMR) in solid tumors: a structured literature review. J Oncol 2020;2020:1807929. DOI:10.1155/2020/1807929; Zhu L., Li Z., Wang Y. et al. Microsatellite instability and survival in gastric cancer: A systematic review and meta-analysis. Mol Clin Oncol 2015;3(3):699–705. DOI:10.3892/mco.2015.506; Amonkar M., Lorenzi M., Zhang J. et al. Structured literature review (SLR) and meta-analyses of the prevalence of microsatellite instability high (MSI-H) and deficient mismatch repair (dMMR) in gastric, colorectal, and esophageal cancers. J Clin Oncol 2019;37:e15074. DOI:10.1200/JCO.2019.37.15_suppl.e15074; Bermúdez A., Arranz-Salas I., Mercado S. et al. Her2-positive and microsatellite instability status in gastric cancer-clinicopathological implications. Diagnostics (Basel) 2021;11(6):944. DOI:10.3390/diagnostics11060944; Puliga E., Corso S., Pietrantonio F., Giordano S. Microsatellite instability in gastric cancer: between lights and shadows. Cancer Treat Rev 2021;95. DOI:10.1016/j.ctrv.2021.102175; Roy P.S., Nyodu T., Hazarika M. et al. Prevalence of HER2 expression and its correlation with clinicopathological parameters in gastric or gastroesophageal junction adenocarcinoma in NorthEast Indian population. Asian Pac J Cancer Prev 2019;20(4):1139–45. DOI:10.31557/APJCP.2019.20.4.1139; Kelly C.M., Janjigian Y.Y. The genomics and therapeutics of HER2- positive gastric cancer-from trastuzumab and beyond. J Gastrointest Oncol 2016;7(5):750–62. DOI:10.21037/jgo.2016.06.10; Laboissiere R.S., Buzelin M.A., Balabram D. et al. Association between HER2 status in gastric cancer and clinicopathological features: a retrospective study using whole-tissue sections. BMC Gastroenterol 2015;15:157. DOI:10.1186/s12876-015-0384-1; Kasochi C., Julius P., Mweemba I., Kayamba V. Human epidermal growth factor receptor 2 overexpression in gastric and gastroesophageal junction adenocarcinoma in patients seen at the University Teaching Hospital, Lusaka, Zambia. Afr Health Sci 2020;20(4):1857–64. DOI:10.4314/ahs.v20i4.41; Abrahao-Machado L.F., Scapulatempo-Neto C. HER2 testing in gastric cancer: An update. World J Gastroenterol 2016;22(19):4619–25. DOI:10.3748/wjg.v22.i19.4619; Kurokawa Y., Matsuura N., Kimura Y. et al. Multicenter large-scale study of prognostic impact of HER2 expression in patients with resectable gastric cancer. Gastric Cancer 2015;18(4):691–7. DOI:10.1007/s10120-014-0430-7; Jørgensen J.T., Hersom M. HER2 as a prognostic marker in gastric cancer – a systematic analysis of data from the literature. J Cancer 2012;3:137–44. DOI:10.7150/jca.4090; Rehkaemper J., Korenkov M., Quaas A. et al. Amplification of KRAS and its heterogeneity in non-Asian gastric adenocarcinomas. BMC Cancer 2020;20(1):587. DOI:10.1186/s12885-020-06996-x; Essakly A., Loeser H., Kraemer M. et al. PIK3CA and KRAS amplification in esophageal adenocarcinoma and their impact on the inflammatory tumor microenvironment and prognosis. Transl Oncol 2020;13(2):157–64. DOI:10.1016/j.tranon.2019.10.013; Оганян К., Мусаелян А., Лапин С. и др. Молекулярно-генетические предиктивные маркеры ответа на периоперационную химиотерапию в режиме FLOT при раке желудка. Вопросы онкологии 2022;3:341–2. DOI:10.37469/0507-3758-2022-68-3; Hofheinz R.D., Hegewisch-Becker S., Kunzmann V. et al. Trastuzumab in combination with 5-fluorouracil, leucovorin, oxaliplatin and docetaxel as perioperative treatment for patients with human epidermal growth factor receptor 2-positive locally advanced esophagogastric adenocarcinoma: A phase II trial of the Arbeitsgemeinschaft Internistische Onkologie Gastric Cancer Study Group. Int J Cancer 2021;149(6):1322–31. DOI:10.1002/ijc.33696; Al-Batran S., Haag G., Ettrich T. et al. 1421MO final results and subgroup analysis of the PETRARCA randomized phase II AIO trial: perioperative trastuzumab and pertuzumab in combination with FLOT versus FLOT alone for HER2 positive resectable esophagogastric adenocarcinoma. Ann Oncol 2020;31:841–73. DOI:10.1016/annonc/annonc284; Ishii T., Shitara K. Trastuzumab deruxtecan and other HER2- targeting agents for the treatment of HER2-positive gastric cancer. Expert Rev Anticancer Ther 2021;21(11):1193–201. DOI:10.1080/14737140.2021.1982698; https://umo.abvpress.ru/jour/article/view/511

  8. 8
    Academic Journal

    المصدر: The Scientific Notes of the Pavlov University; Том 30, № 1 (2023); 27-36 ; Учёные записки Первого Санкт-Петербургского государственного медицинского университета имени академика И. П. Павлова; Том 30, № 1 (2023); 27-36 ; 2541-8807 ; 1607-4181 ; 10.24884/1607-4181-2023-30-1

    وصف الملف: application/pdf

    Relation: https://www.sci-notes.ru/jour/article/view/985/575; Guo S., Bai Y., Li Y., Chen T. A large central bronchopleural fistula closed by bronchoscopic administration of recombinant bovine basic fibroblast growth factor: a case report // Respiration. – 2021. – Vol. 100, № 10. – P. 1000–1004. Doi:10.1159/000514717.; Порханов В. А., Поляков И. С., Кононенко В. Б. и др. Трансстернальная окклюзия свища главного бронха после пневмонэктомии // Хирургия. Журнал им. Н. И. Пирогова. – 2020. – Т. 10. – С. 11–22. Doi:10.17116/hirurgia202010111.; Aho J. M., Dietz A. B., Radel D. J. et al. Closure of a recurrent bronchopleural fistula using a matrix seeded with patient-derived mesenchymal stem cells // Stem Cells Transl Med. – 2016. – Vol. 5, № 10. – P. 1375–1379. Doi:10.5966/sctm.2016-0078.; Li S., Fan J., Liu J., Zhou J., Ren Y., Shen C., Che G. Neoadjuvant therapy and risk of bronchopleural fistula after lung cancersurgery: a systematic meta-analysis of 14 912 patients//Jpn J Clin Oncol. – 2016. – Vol. 46, № 6. – P. 534–46. Doi:10.1093/jjco/hyw037.; Petrella F., Toffalorio F., Brizzola S. et al. Stem cell transplantation effectively occludes bronchopleural fistula in an animal model // Ann Thorac Surg. – 2014. – Vol. 97, № 2. – P. 480–3. Doi:10.1016/j.athoracsur.2013.10.032.; Skrzypczak P., Roszak M., Kasprzyk M. et al. The technique of stump closure has no impact on post-pneumonectomy bronchopleural fistula in the non-small cell lung cancer – a cross-sectional study // J Thorac Dis. – 2022. – Vol. 14, № 9. – P. 3343–3351. Doi:10.21037/jtd-22-240.; Uchibori A., Okada S., Takeda-Miyata N. et al. Omental flap for bronchopleural fistula after pneumonectomy and aorta replacement // Ann Thorac Surg. – 2020. – Vol. 109, № 5. – P. e349–e351. Doi:10.1016/j.athoracsur.2019.08.079.; Saadi A., Perentes J. Y., Gonzalez M. et al. Vacuum-assisted closure device: a useful tool in themanagement ofsevere intrathoracic infections//Ann Thorac Surg. – 2011. – Vol. 91, № 5. – P. 1582–9. Doi:10.1016/j.athoracsur.2011.01.018.; Passera E., Guanella G., Meroni A. et al. Amplatzer device and vacuum-assisted closure therapy to treat a thoracic empyema with bronchopleural fistula // Ann Thorac Surg. – 2011. – Vol. 92, № 2. – P. e23–5. Doi:10.1016/j.athoracsur.2011.03.047.; Iwasaki M., Shimomura M., Ii T. Negative-pressure wound therapy in combination with bronchial occlusion to treat bronchopleural fistula: a case report // Surg Case Rep. – 2021. – Vol. 7, № 1. – P. 61. Doi:10.1186/s40792-021-01144-4.; Mazzella A., Pardolesi A., Maisonneuve P. et al. Bronchopleural fistula after pneumonectomy: risk factors and management, focusing on open-window thoracostomy // Semin Thorac Cardiovasc Surg. – 2018. – Vol. 30, № 1. – P. 104–113. Doi:10.1053/j.semtcvs.2017.10.003.; Trivisonno A., Nachira D., Boškoski I. et al. Regenerative medicine approachesfor the management of respiratory tract fistulas // Stem Cell Res Ther. – 2020. – Vol. 11, № 1. – P. 451. Doi:10.1186/s13287-020-01968-1.; Xue X., Yan Y., Ma Y. et al. Stem-cell therapy for esophageal anastomotic leakage by autografting stromal cells in fibrin scaffold // Stem Cells Transl Med. – 2019. – Vol. 8, № 6. – P. 548–556. Doi:10.1002/sctm.18-0137.; Sersar S. I., Maghrabi L. A. Respiratory-digestive tract fistula: two-center retrospective observational study // Asian Cardiovasc ThoracAnn. – 2018. – Vol. 26, № 3. – P. 218–223. Doi:10.1177/0218492318755013.; Choi S., Jeon B. G., Chae G., Lee S. J. The clinical efficacy of stem cell therapy for complex perianal fistulas: a meta-analysis // Tech Coloproctol. – 2019. – Vol. 23, № 5. – P. 411–427. Doi:10.1007/s10151-019-01994-z.; Castro-Poceiro J., Fernández-Clotet A., Panés J. Mesenchymalstromal cellsin the treatment of perianal fistulasin Crohn’s disease // Immunotherapy. – 2018. – Vol. 10, № 14. – P. 1203–1217. Doi:10.2217/imt-2018-0099.; Panés J., García-Olmo D., Van Assche G. et al. ADMIRE CD study group collaborators. Long-term efficacy and safety of stem cell therapy , № Cx601. – P. for complex perianal fistulas in patients with Crohn’s disease // Gastroenterology. – 2018. – Vol. 154, № 5. – P. 1334–1342.e4. Doi:10.1053/j.gastro.2017.12.020.; Zeng Y., Gao H. Z., Zhang X. B., Lin H. H. Closure of bronchopleural fistula with mesenchymal stem cells: case report and brief literature review // Respiration. – 2019. – Vol. 97, № 3. – P. 273–276. Doi:10.1159/000493757.; Díaz-Agero Álvarez P. J., Bellido-Reyes Y. A., Sánchez-Girón J. G. et al. Novel bronchoscopic treatment for bronchopleural fistula using adipose-derived stromal cells // Cytotherapy. – 2016. – Vol. 18, № 1. – P. 36–40. Doi:10.1016/j.jcyt.2015.10.003.; Wu M., Lin H., Shi L. et al. Bronchoscopic treatment of tracheobronchial fistula with autologous platelet-rich plasma // Ann Thorac Surg. – 2021. – Vol. 111, № 2. – P. e129–e131. Doi:10.1016/j.athoracsur.2020.05.047.; Okuda M., Yokomise H., Tarumi S., Huang C. L. Non-surgical closure of post-pneumonectomy empyema with bronchopleural fistula after open window thoracotomy using basic fibroblast growth factor // Interact Cardiovasc Thorac Surg. – 2009. – Vol. 9, № 5. – P. 916–8. Doi:10.1510/icvts.2009.212308.; Kondo N., Hashimoto M., Takuwa T. et al. Treatment of bronchial fistula after extraplural pneumonectomy using flexible bronchoscopy with the administration of OK432, fibroblast growth factor basic and fibrin glue sealant // Gen Thorac Cardiovasc Surg. – 2020. – Vol. 68, № 12. – P. 1562–1564. Doi:10.1007/s11748-020-01349-8.; Siddique A., Sabbah B. N., Arabi T. et al. Treatment of bronchial anastomoticfistula using autologous platelet-rich plasma post lung transplantation // J Cardiothorac Surg. – 2022. – Vol. 17, № 1. – P. 204. Doi:10.1186/s13019-022-01965-w.; Агрба В. З., Лапин Б. А., Порханов В. А. и др. Культура мезенхимальных стволовых клеток лабораторных приматов и перспективы их использования в экспериментальной медицине // Стволовые клетки и регенеративная медицина: Сборник статей / под ред. В. А. Ткачука – М.: МАКС Пресс, 2012. – С. 23–30.; Seguin A., Baccari S., Holder-Espinasse M. et al. Tracheal regeneration: evidence of bone marrow mesenchymal stem cell involvement // J Thorac Cardiovasc Surg. – 2013. – Vol. 145, № 5. – P. 1297–1304.e2. Doi:10.1016/j.jtcvs.2012.09.079.; Moriyama M., Matsumoto K., Taniguchi D. et al. Successful use of bio plugs for delayed bronchial closure after pneumonectomy in experimental settings // Interact Cardiovasc Thorac Surg. – 2022. – Vol. 34, № 4. – P. 660–667. Doi:10.1093/icvts/ivab306.; Petrella F., Spaggiari L. Stem Cells Application in Thoracic Surgery: Current Perspective and Future Directions //Adv Exp Med Biol. – 2018. – Vol. 1089. – P. 143–147. Doi:10.1007/5584_2018_180.; Brown C., McKee C., Bakshi S. et al. Mesenchymal stem cells: cell therapy and regeneration potential // J Tissue Eng Regen Med. – 2019. – Vol. 13, № 9. – P. 1738–1755. Doi:10.1002/term.2914.; Fan X. L., Zhang Y., Li X., Fu Q. L. Mechanisms underlying the protective effects of mesenchymal stem cellbased therapy // Cell Mol Life Sci. – 2020. – Vol. 77, № 14. – P. 2771–2794. Doi:10.1007/s00018-020-03454-6.; Егоров В. И., Ионов П. М., Юркевич Ю. В. и др. Первый опыт применения клеточных технологий в торакальной хирургии // Вестник Северо-Западного государственного медицинского университета им. И. И. Мечникова. – 2015. – Т. 7, № 2. – С. 7–13.; Everts P., Onishi K., Jayaram P., Lana J. F., Mautner K. Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020 // Int J Mol Sci. – 2020. – Vol. 21, № 20. – P. 7794. Doi:10.3390/ijms21207794.; Motz K. M., Yin L. X., Samad I. et al. Quantification of inflammatory markersin laryngotrachealstenosis// Otolaryngol Head Neck Surg. – 2017. – Vol. 157, № 3. – P. 466–472. Doi:10.1177/0194599817706930.; Short W. D., Steen E., Kaul A. et al. IL-10 promotes endothelial progenitor cell infiltration and wound healing via STAT3 // FASEB J. – 2022. – Vol. 36, № 7. – P. e22298. Doi:10.1096/fj.201901024RR.; Kuhn K. A., Manieri N. A., Liu T. C., Stappenbeck T. S. IL-6 stimulatesintestinal epithelial proliferation and repair after injury // PLoS One. – 2014. – Vol. 9, № 12. – P. e114195. Doi:10.1371/journal.pone.0114195.; Rodrigues M., Kosaric N., Bonham C. A., Gurtner G. C. Wound Healing: A Cellular Perspective // Physiol Rev. – 2019. – Vol. 99, № 1. – P. 665–706. Doi:10.1152/physrev.00067.2017.; Chuliá-Peris L., Carreres-Rey C., Gabasa M. et al. Matrix metalloproteinases and their inhibitors in pulmonary fibrosis: EMMPRIN/CD147 comes into play // Int J Mol Sci. – 2022. – Vol. 23, № 13. – P. 6894. Doi:10.3390/ijms23136894.; https://www.sci-notes.ru/jour/article/view/985

  9. 9
    Academic Journal

    المساهمون: This study was supported by the grant of the Russian National Science Foundation 17-75-30027, Данное исследование поддержано грантом РНФ 17-75-30027

    المصدر: Siberian journal of oncology; Том 22, № 1 (2023); 5-14 ; Сибирский онкологический журнал; Том 22, № 1 (2023); 5-14 ; 2312-3168 ; 1814-4861

    وصف الملف: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2422/1071; Palmero R., Garcia-Gomez R., Pallares C., Sanchez J.M., Porta R., Cobo M., Garrido P., Longo F., Moran T., Insa A., De Marinis F., Corre R., Bover I., Illiano A., Dansin E., de Castro J., Milella M., Reguart N., Altavilla G., Jimenez U., Provencio M., Moreno M.A., Terrasa J., Muñoz- Langa J., Valdivia J., Isla D., Domine M., Molinier O., Mazieres J., Baize N., Garcia-Campelo R., Robinet G., Rodriguez-Abreu D., Lopez- Vivanco G., Gebbia V., Ferrera-Delgado L., Bombaron P., Bernabe R., Bearz A., Artal A., Cortesi E., Rolfo C., Sanchez-Ronco M., Drozdowskyj A., Queralt C., de Aguirre I., Ramirez J.L., Sanchez J.J., Molina M.A., Taron M., Paz-Ares L.; Spanish Lung Cancer Group in collaboration with Groupe Français de Pneumo-Cancérologie and Associazione Italiana Oncologia Toracica. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-smallcell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012; 13(3): 239–46. doi:10.1016/S1470-2045-(11)70393-X.; Sakanoue I., Hamakawa H., Kaji R., Imai Y., Katakami N., Takahashi Y. Sleeve lobectomy for lung adenocarcinoma treated with neo- adjuvant afatinib. J Thorac Dis. 2018; 10(3): 170–4. doi:10.21037/jtd.2018.02.03.; Hishida T., Yoshida J., Aokage K., Nagai K., Tsuboi M. Longterm outcome of surgical resection for residual or regrown advanced non-small cell lung carcinomas following EGFR-TKI treatment: report of four cases. Gen Thorac Cardiovasc Surg. 2016; 64(7): 429–33. doi:10.1007/s11748-014-0508-5.; Takamochi K., Suzuki K., Sugimura H., Funai K., Mori H., Bashar A.H., Kazui T. Surgical resection after gefitinib treatment in patients with lung adenocarcinoma harboring epidermal growth factor receptor gene mutation. Lung Cancer. 2007; 58(1): 149–55. doi:10.1016/j.lungcan.2007.04.016.; Kappers I., Klomp H.M., Burgers J.A., Van Zandwijk N., Haas R.L., van Pel R. Neoadjuvant (induction) erlotinib response in stage IIIA nonsmall-cell lung cancer. J Clin Oncol. 2008; 26(25): 4205–7. doi:10.1200/JCO.2008.16.3709.; Levchenko E.V., Moiseyenko V.M., Matsko D.E., Iyevleva A.G., Ivantsov A.O., Yargnian S.M., Anisimov V.V., Semionov I.I., Imyanitov E.N. Down-staging of EGFR mutation-positive advanced lung carcinoma with gefitinib followed by surgical intervention: follow-up of two cases. Oncol- ogy. 2009; 32(11): 674–7. doi:10.1159/000242220.; Hishida T., Nagai K., Mitsudomi T., Yokoi K., Kondo H., Hori- nouchi H., Akiyama H., Nagayasu T., Tsuboi M.; Japan Clinical Oncology Group. Salvage surgery for advanced non-small cell lung cancer after response to gefitinib. J Thorac Cardiovasc Surg. 2010; 140(5): 69–71. doi:10.1016/j.jtcvs.2010.06.035.; Liu M., Jiang G., He W., Zhang P., Song N. Surgical resection of locally advanced pulmonary adenocarcinoma after gefitinib therapy. Ann Thorac Surg. 2011; 92(1): 11–2. doi:10.1016/j.athoracsur.2011.02.021.; Ong M., Kwan K., Kamel-Reid S., Vincent M. Neoadjuvant erlotinib and surgical resection of a stage iiia papillary adenocarcinoma of the lung with an L861Q activating EGFR mutation. Curr Oncol. 2012; 19(3): 222–6. doi:10.3747/co.19.908.; Hashimoto K., Horinouchi H., Ohtsuka T., Kohno M., Izumi Y., Hayashi Y., Nomori H. Salvage surgery for a super-responder by gefitinib therapy for advanced lung cancer. Gen Thorac Cardiovasc Surg. 2012; 60(12): 851–4. doi:10.1007/s11748-012-0087-2.; Marech I., Vacca A., Gnoni A., Silvestris N., Lorusso V. Surgical resection of locally advanced epidermal growth factor receptor (EGFR) mutated lung adenocarcinoma after gefitinib and review of the literature. Tumori. 2013; 99(5): 241–4. doi:10.1177/030089161309900522.; Funakoshi Y., Takeuchi Y., Maeda H. Pneumonectomy after response to gefitinib treatment for lung adenocarcinoma. Asian Cardiovasc Thorac Ann. 2013; 21(4): 482–4. doi:10.1177/0218492312462834.; López-González A., Almagro E., Salas C., Varela A., Provencio M. Use of a tyrosine kinase inhibitor as neoadjuvant therapy for non-small cell lung cancer: A case report. Respir Med Case Rep. 2013; 9: 8–10. doi:10.1016/j.rmcr.2013.02.002.; Yamamoto Y., Kodama K., Maniwa T., Takeda M. Surgical resection of advanced non-small cell lung cancer after a response to EGFR-TKI: presentation of two cases and a literature review. J Cardiothorac Surg. 2017; 12(1): 98. doi:10.1186/s13019-017-0668-3.; Yu H.A., Sima C.S., Huang J., Solomon S.B., Rimner A., Paik P., Pietanza M.C., Azzoli C.G., Rizvi N.A., Krug L.M., Miller V.A., Kris M.G., Riely G.J. Local therapy with continued EGFR tyrosine kinase in- hibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J Thorac Oncol. 2013; 8(3): 346–51. doi:10.1097/JTO.0b013e31827e1f83.; Gomez D.R., Blumenschein G.R. Jr, Lee J.J., Hernandez M., Ye R., Camidge D.R., Doebele R.C., Skoulidis F., Gaspar L.E., Gibbons D.L., Karam J.A., Kavanagh B.D., Tang C., Komaki R., Louie A.V., Palma D.A., Tsao A.S., Sepesi B., William W.N., Zhang J., Shi Q., Wang X.S., Swisher S.G., Heymach J.V. Local consolidative therapy versus mainte- nance therapy or observation for patients with oligometastatic non-small- cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol. 2016; 17(12): 1672–82. doi:10.1016/S1470-2045(16)30532-0.; Францев В.И., Капуллер Л.Л. К вопросу о резекции бронха как радикальной операции при аденоме. Экспериментальная хирургия. 1958; (5): 34–40.; Mok T.S., Wu Y.L., Thongprasert S., Yang C.H., Chu D.T., Saijo N., Sunpaweravong P., Han B., Margono B., Ichinose Y., Nishiwaki Y., Ohe Y., Yang J.J., Chewaskulyong B., Jiang H., Duffield E.L., Watkins C.L., Armour A.A., Fukuoka M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009; 361(10): 947–57. doi:10.1056/NEJMoa0810699.; Maemondo M., Inoue A., Kobayashi K., Sugawara S., Oizumi S., Isobe H., Gemma A., Harada M., Yoshizawa H., Kinoshita I., Fujita Y., Okinaga S., Hirano H., Yoshimori K., Harada T., Ogura T., Ando M., Miyazawa H., Tanaka T., Saijo Y., Hagiwara K., Morita S., Nukiwa T.; North-East Japan Study Group. Gefitinib or chemotherapy for non-small- cell lung cancer with mutated EGFR. N Engl J Med. 2010; 362(25): 2380–8. doi:10.1056/NEJMoa0909530.; https://www.siboncoj.ru/jour/article/view/2422

  10. 10
    Academic Journal

    المصدر: Advances in Molecular Oncology; Том 9, № 2 (2022); 79-88 ; Успехи молекулярной онкологии; Том 9, № 2 (2022); 79-88 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2022-9-2

    وصف الملف: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/441/263; Bai R., Lv Z., Xu D., Cui J. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 2020;8:34. DOI:10.1186/s40364-020-00209-0.; Pourmir I., Gazeau B., de Saint Basile H., Fabre E. Biomarkers of resistance to immune checkpoint inhibitors in non-small-cell lung cancer: myth or reality? Cancer Drug Resist 2020;3:276–86. DOI:10.20517/cdr.2020.14.; Möller M., Turzer S., Schütte W. et al. Blood immune cell biomarkers in patient with lung cancer undergoing treatment with checkpoint blockade. J Immunother 2020;43(2):57–66. DOI:10.1097/CJI.0000000000000297.; Salmaninejad A., Valilou S.F., Shabgah A.G. et al. PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy. J Cell Physiol 2019;234(10):16824–37. DOI:10.1002/jcp.28358.; Reck M., Rodríguez-Abreu D., Robinson A.G. et al. Pembrolizumab versus chemotherapy for PD-L1 – positive non–small-cell lung cancer. N Engl J Med 2016;375(19):1823–33. DOI:10.1056/NEJMoa1606774.; Duchemann B., Remon J., Naigeon M. et al. Integrating circulating biomarkers in the immune checkpoint inhibitor treatment in lung cancer. Cancers (Basel) 2020;12(12):3625. DOI:10.3390/cancers12123625.; Wang L., Hu Y., Wang S. et al. Biomarkers of immunotherapy in non-small cell lung cancer. Oncol Lett 2020;20(5):139. DOI:10.3892/ol.2020.11999.; Prelaj A., Tay R., Ferrara R. et al. Predictive biomarkers of response for immune checkpoint inhibitors in non-small-cell lung cancer. Eur J Cancer 2019;106:144–59. DOI:10.1016/j.ejca.2018.11.002.; Zhang H., Cui B., Zhou Y. et al. B2M overexpression correlates with malignancy and immune signatures in human gliomas. Sci Rep 2021;11:5045. DOI:10.1038/s41598-021-84465-6.; Xie J., Wang Y., Freeman M.E. et al. β2-microglobulin as a negative regulator of the immune system: high concentrations of the protein inhibit in vitro generation of functional dendritic cells. Blood 2003;101(10):4005–12. DOI:10.1182/blood-2002-11-3368.; Melichar B., Spisarová M., Bartoušková et al. Neopterin as a biomarker of immune response in cancer patients. Ann Transl Med 2017;5(13):280. DOI:10.21037/atm.2017.06.29.; Keegan A., Ricciuti B., Garden P. et al. Plasma IL-6 changes correlate to PD-1 inhibitor responses in NSCLC. J Immunother Cancer 2020;8:e000678. DOI:10.1136/jitc-2020-000678.; Hussaini S., Chehade R., Boldt R.G. et al. Association between immune-related side effects and efficacy and benefit of immune checkpoint inhibitors – A systematic review and meta-analysis. Cancer Treat Rev 2021;92:102134. DOI:10.1016/j.ctrv.2020.102134.; Basak E.A., van der Meer J.W.M., Hurkmans D.P. et al. Overt thyroid dysfunction and anti-thyroid antibodies predict response to anti-PD-1 immunotherapy in cancer patients. Thyroid 2020;30(7):966–73. DOI:10.1089/thy.2019.0726.; https://umo.abvpress.ru/jour/article/view/441

  11. 11
    Academic Journal

    المصدر: PULMONOLOGIYA; № 3 (1992); 82-89 ; Пульмонология; № 3 (1992); 82-89 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/3889/3236; Шумаков В. И., Казаков Э. И., Хубутия А. Ш. и др. Инфекционные осложнения при трансплантации сердца // Грудная и сердечно-сосудистая хир.— 1991.—№ 2.— С. 3—6.; Яблонский П. К., Кузнецов И. М., Рябуха Н. А., Лева шов Ю. Н. Экспериментальное обоснование оптимального способа формирования бронхиального анастомоза при трансплантации изолированного легкого / / Всесоюзный конгресс по заболеваниям органов дыхания, 2-й: Резюме.— Челябинск, 1991.— С. 202.; Andreassin В., Duchatelle J. P., M al И. et al Lung transplantation for emphysema and distended lungs / / International Lung Transplantation Seminar, 2-nd: Proceedings.— Zurich, 1991.— P. 22.; Brooks R. G. Infectious complications in heart-lung tr a n s ­ plant recipient / / Am. J. Med.— 1985.— Vol. 79, N 4.— P. 412—422.; Cooper J. D. Bilateral lung transplant / / International Lung T ransplantation Seminar, 2-nd: Proceedings.— Zurich, - 1 9 9 1 . - P. 30.; Cooper J. D. International lung transplant registry 11 Ibid.— P. 82.; Cooper J. D. Herbert Sloan lecture. Lung transplantation / / Ann. Thorac. Surg .— 1989.— Vol. 47, N 1.— P. 28—44.; Duchatelle J. P., Andreassian B., Sleim an Ch. et al. Reappreation of single lung transplantai for emphysema / / International Lung Transplantation Seminar, 2-nd: Proceedings.— Zurich, 1991.— P. 39.; Dumer J. S., M ontero C. G., Griffith B. P. et al Infections in heart-lung transplantrecepient / / T ransplantation.— 1986.— Vol. 41, N 6.— P. 725—729.; Hutter J. A., Despins P., Higenbottam T. et al. Heartlung transplantation: Better use of resourses / / Am. j. Med.— 1988.— Vol. 55, N 7.— P. 4 — 11.; Kaiser L. R. Comparison of single and bilateral tran splantation for emphysema / / International Lung Transplantation Seminar, 2-nd: Proceedings.— Zurich, 1991.— P. 76.; Klepetko V/. Special consideration of management of tracheobronchial problems / / Ibid.— P. 42.; Pasque М. K. Single lung transplantation for pulmonary hypertension; Technical and immediate hemodynamic results / / Ibid.— P. 11—20.; Patterson G. A., Cooper J. D. Status of lung transplantation / / Surg. Clin. North Am.— 1988.— Vol. 68, N 3.— P. 545—558.; Patterson G. A., Todd T. R., Cooper J. D. et al. Airway complications after double lung transplantation / / J. Thorac. Cardiovasc. S urg.— 1990.— Vol. 99, N 1.— P. 14—21.; Patterson G. A. Double lung transplantation / / Clin. Chest Med.— 1990.— Vol. 1, N 2.— P. 227—233.; S tevens P. М., Johnson P. С., Bell R. L. et al. Regional ventilation an perfusion after lung transplantation' in patient with emphysema / / N. Engl. J. Med.— 1970.— Vol. 28, N 2.— P. 245—249.; Trulock E. P., Egan Т. М., Kouchoukos N. T. et al. Single lung transplantation fo severe obstructive pulmonary diseases / / Chest.— 1989.— Vol. 96, N 4.— P. 738—742.; Trulock E. P. Recipient-selection for lung, heart-lung transplantatio / / International Lung Transplantation Seminar, 2-nd: Proceedings.— Zurich, 1991.— P. 1—3.; Veith F. S., Koerner S. C. Single lung transplantation in experimental and human emphysema / / Ann. Surg.— 1973.— Vol. 178, N 3.— P. 463—476; https://journal.pulmonology.ru/pulm/article/view/3889

  12. 12
    Academic Journal

    المصدر: PULMONOLOGIYA; № 1 (1993); 53-56 ; Пульмонология; № 1 (1993); 53-56 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/3734/3086; Гервазиев Д. В. Роль изменений кальцийрегулирующей системы в формировании гиперреактивности бронхов у больныхбронхиальнойастмой: Автореф. дис. канд. мед. наук.— М., 1986.; Орлов С. Н., Баранова И. А., Покудин И. И. и др. Транспорт одновалентных ионов и кальция в эритроцитах при бронхиальной астме // Вестн. АМН СССР.— 1991.— № 3.— С. 43—49.; Петрова М. А., Услонцев Б. М. // Новое в этиологии, патогенезе, клинике, лечении и профилактике бронхиальной астмы / Под ред. Г. Б. Федосеева.— Л., 1985.— С. 11 —13.; Петруняка В. В., Панюшкина Е. А., Северина Е. П. Активизация и ингибирование Na+, К+-АТФазы мембран эритроцитов эндогенными Са2+-зависимыми регуляторами. Са2 + -зависимое действие уабаина на Са2+-АТФазу // Биол. мембраны.— 1990.— № 4.— С. 352—358.; Петруняка В. В., Северина Е. П., Орлов С. Н. и др. Оценка роли эндогенных регуляторов в активации Са-АТФазы мембран эритроцитов // Биохимия.— 1989 — № 6.— С. 974—979.; Постнов Ю. В., Орлов С. Н. Первичная гипертензия как патология клеточных мембран.— М., 1987.; Рябова К. Г. Альфа-адренергическая рецепция при бронхиальной астме: Автореф. дис. . канд. мед. наук.— М., 1987.; Чучалин А. Г. Закономерности обмена кальция у человека при различных патологических процессах // Тер. арх.— 1987.—№ 1.—С. 121 — 127.; Чучалин А. Г., Берова М. М. Функциональное состояние кальцийрегулирующей системы у больных бронхиальной астмой // Клин. мед.— 1989.— № 8.— С. 56—59.; Barnes Р. J. Adrenergic-receptor of normal and asthmatic airways // Eur. J. Respir. Dis.— 1984.— Suppl. 135.— P. 72—79.; Barnes P. J., Dollery С. T., MacDermot J. Increased pulmonary a-adrenergic and reduced p-adrenergic receptors in experimental asthma // Nature.— 1980.— Vol. 285.— P. 569.; Borle A. B. Calcitonin and the regulation of calcium transport and of cellular calcium metabolism // Triangle.— 1983.—Vol. 22, N 2—3.—P. 75—80.; Borle A. B. Regulation of cellular calcium metabolism and calcium transport by calcitonin // J. Membr. Biol.— 1975.—Vol. 21, N 1—2.—P. 125—146.; Bousquet J., Kjeeeman N.-l. M. Predictive value of tests in childhood allergy // J. Allergy Clin. Immunol.— 1986.—Vol. 78, N 5.—Pt 1.—P. 1019—1022.; Coburn R. F., Baron С. B. Coupling mechanisms in airway smooth muscle // Am. J. Physiol.— 1990.— Vol. 258.— P. L. 119—L. 133.; Hopp R. J., Bewtra A. K., Biven R. et al. Bronchial Reactivity pattern nonasthmatic parents of asthmatics // Ann. ALlergy.— 1988.— Vol. 61.— N 3.— P. 181 — 186.; Kunos J., Kunos P., Hirata F., Ishac E. J. N. Adrenergic receptors: Possible mechanisms of inverse regulation of a and p-receptors // J. Allergy Clin. Immunol.— 1985.— Vol. 76, N 2.— Pt. 2.— P. 346—351.; Middleton E. Airway smooth muscle, asthma, and calcium ions // Ibid.— 1984.—Vol. 73, N 5 —Pt 2.—P. 643— 650.; Michel F. B., Chanez P., Clauzel A. M. et al. Facteurs genetiques de 1 asthme // Rev. Franc. Allergol.— 1989.— Vol. 29, N 2.— P. 81—87.; Raeburn D. Effects of altered availability of Na+ on guinea — pig airway smooth muscle contractility // Pulm. Pharmacol.— 1990.—Vol. 3, N 3.—P. 121 — 127.; Rechkemmer G. R. The molecular biology of chloride secretion on epithelia // Am. Rev. Respir. Dis.— 1988.— Vol. 136, N. 6.— Pt 2.— P. S7—S9.; https://journal.pulmonology.ru/pulm/article/view/3734

  13. 13
    Academic Journal

    المصدر: PULMONOLOGIYA; № 2 (1991); 14-20 ; Пульмонология; № 2 (1991); 14-20 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4013/3356; Авилова О. М. Багиров М. М. // Хирургия трахеи и бронхов.- М., 1986.— С. 9—10.; Перельман М. И., Бирюков Ю. В., Королева И. С., Джафаров Ч. М. // Хирургия.— 1987.— Nr. 9.— С. 43—48.; Петровский Б. В., Перельман М. И., Королева Н. С. // Трахеобронхиальная хирургия.— М., 1978.; Arnett Е. N. Bacos J. М. et al. // Amer. J. Med.1977.— Vol. 63 .- P. 634—643.; Berry D. F. Buccigrossi D., Peadody J. et al // Chest.1986.— Vol. 89,— P. 296—301.; Comings D. E., Scubi K. B., Van Eyes J., Motulsky A. G. // Ann. intern. Med.— 1967.— Vol. 66 .— P. 884—892.; Davis F. V., Andrus E. C. // New Engl. J. Med.1954.— Vol. 87.— P. 372—378.; Dozois R. R., Bernats P. E. Woolner L. B. Anderson H. A. // Mayo Clin. Proc.— 1968,— Vol. 43.— P. 557—569.; Dines D. E. Payne W. S., Bernatz P. E., Pairolerо P. С. // Chest.— 1979.— Vol. 75.- P. 320—324.; Dunn E. J., U lie tit) К. S., Wright C. В., Cottesman L. // Ibid.— 1990.— Vol. 97.— P. 338—346.; Engelman P., Liebow A. A., Gmelich Friedman P. J. // Amer. Rev. resp. Dis.— 1977.— Vol. 115.— P. 997-1008.; Feigin D. S., Eggleston J. C., Siegelman S. S. // Johns Hopk. med. J . — 1979.— Vol. 144,— P. 1—8.; Goodwin R. A., Des Prez R. M. // Amer. Rev. resp. Dis.— 1978.— Vol. 117.— P. 929—956.; Goodwin R. A., Nickell J. A., Des Pres R. M. // Medicine (Baltim ore).— 1972.— Vol. 51.— P. 227—246.; Grybosky W. A., Grutcher R. R., Holleway J. B. et al. // Arch. Surg.— 1963.— Vol. 87.— P. 590—599.; Hanley P. C., SHwb C., Lie J. T. // Mayo Clin. Proc.1984.— Vol. 59.— P. 300—304.; Light A. M. // J. Clin. Path . 1978.— Vol. 31.— P. 78—88.; Mahajan V., Strim lan V., Van Ordstrand H. S. //Chest.1975.— Vol. 68 .— P. 32—35.; Peabody J. W., Brown R. B., Sullivan M. B., Cannon A. // J. thorac. Surg.— 1958.— Vol. 35.— P. 384—396.; Rose K. G., Sesterhenn К, Wustrow F. // Lancet.1979.— Vol. 1.— P. 433.; Schowengerdt C. G., Suyornoto R., Main F. B. // J. thorac. cardiovasc. Surg.— 1969.— Vol. 57.— P. 365—379.; Scully R. E., Mark E. J., NcNeely W. F., McNelly B. U. /./ New Engl. J. Med.— 1989.— Vol. 320—389.; Sesterhenn K., Rose K. G. // Laryng.— Rhinol.— Otol.1979.— Bd. 58, N 5.— S. 495—501.; Strimlan C. V. Dines D. E., Payne W. S. // Mayo Clin. Proc.— 1975.— Vol. 50.— P. 702—705.; Ward M. J., Davies D. // Thorax.— 1981.— Vol. 36.p 956-957; Yacoub M. H., Thompson V. C. // Ibid.— 1971.— Vol. 2.— P. 365—375.; https://journal.pulmonology.ru/pulm/article/view/4013

  14. 14
    Academic Journal

    المصدر: PULMONOLOGIYA; № 2 (1995); 73-78 ; Пульмонология; № 2 (1995); 73-78 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/3692/3048; Баскаков М .Б., Орлов С.И., Агнаев В.М. и др. Высокоселективный хелатор кальция (квин 2) подавляет активацию кальцием К+-каналов / / Биол. мембраны.— 1989.— Т.6, № 2.— С.167— 176.; Орлов С.И. Кальмодулин (Итоги науки и техники. Общие проблемы физико-химической биологии. Т.8)— М.: ВИНИТИ, 1987.; Орлов С.Н.,. Кравцов Г.М. Участие кальмодулина в регуляции электрического потенциала плазматической мембраны внутриклеточным кальцием / / Биохимия.— 1983.— Т.48.— С. 1447— 1455.; Орлов С.И., Покудин И.М., Агнаев В.М. Блокатор кальмодулинзависимых реакций (R 24571) подавляет активацию кальцием калиевых каналов и не влияет на активность Са-насоса эритроцитов / / Докл. АН СССР.— 1989.— Т.304.— С.213—216.; Ткачук В.А. Введение в молекулярную биологию.— М.: Изд-во МГУ, 1983.; A ndrea J.A., Walsh М .P. Protein kinase С of smooth muscle / / Hypertension.— 1992.— Vol.20.— P.585—595.; Barnes P.J. New drugs in asthma / / Eur. Respir. J.— 1992.— Vol.5.— P .l 126— 1136.; B elviski M.J., Stretton C.D., Barnes P.J. Nitrix oxide is the endogenous neurotransm itter of bronchodilator nerves in human airways / / Eur. J. Pharmacol.— 1992.— Vol.210.— P.221—222.; Berridge M.J. Inositol triphosphate and calcium signalling / / N ature.— 1993.— Vol.361.— P.315—325.; Black J.L., Armour C.L., Johnson P.R.A. et al. The action of potassium channel actinator BRL 38227 (lemakalim) on human airway smooth muscle / / Am. Rev. Respir. Dis.— 1990.— Vol.142.— P.1384— 1389.; Black J.L., Barnes P.J. Potassium channels and airway function: a new therapeutic approches / / Thorax.— 1990.— Vol.45.— P.213—218.; Clark L.A., Small R.C. Simulteneous recording of electrical and mechanical activity from smooth muscle from ginea-pig isolated trachea (abstr.) / / J. Physiol. (Lond.).— 1979.— Vol.300.— P.5P.; Escande D., Cavera I. K+-channel openers and natural cardioprotection / / Trends Pharmacol. Sci.— 1992.— Vol. 13.— P.269—271.; Fredholm B.B., Brodin K., Stantberg K. On the mechanism of relaxation of tracheal muscle by thephylline and other cyclic nucleotide phosphodiesterase inhibitors / / Acta Pharmacol. Toxicol.— 1979.— Vol.45.— P.336—344.; Green K.A., Foster R.W ., Sm all R.C. A patch-clamp study of K+-channel activity in bovine isoleted tracheal smooth muscle cells / / Br. J. Pharmacol.— 1991.— Vol.102.— P.871—878.; Gruetter C.A., Childers C.C., Bosserman M.K. Comparison of relaxation induced by gliceral trinitraye, isosorbide dinitrate and sodium nitroprusside in bovine airways / / Am. Rev. Respir. Dis.— 1989.— Vol.139.— P .l 192— 1197.; Hamet P., Orlov S.N ., Tremblay J. Intracellular signalling in hypertinsion / / Hypertension / Eds J.H.Laragh, B.M.Brener. 2-nd Ed.— New York: Raven Press, 1994.— P.634—667.; Hamet P., Pang S.C., Tremblay J. Atrial natriuretic factor-induced agression of cGMP in cultured vascular smooth muscle and endothelial cells / / J. Biol. Chem.— 1989.— Vol.264.— P.12364— 12369.; Hartshome D.S., Kawanuira T. Regulation of contraction-relaxation in smooth musle / / NIPS.— 1992.— Vol.7.— P.59—64.; Hausdorff W.P., Caron M .G., Lefkow itz R.J. Turning off the signal: desensitization of beta-adrenergic receptor function / / FASEB J.— 1990.— Vol.4.— P.2881—2889.; Honda K., Satake Т., Takagi K., Tomita T. Effect of relaxant on electrical and mechanical activities in guinea-pig trachea muscle / / Br. J. Pharmacol.— 1986.— Vol.87.— P.665—671.; Hulme E.C., Birdsall N.J.M., Buckley N.J. Muscarinic receptor subtypes / / Am. Rev. Pharmacol.— 1990.— Vol.30.— P.633—673.; Ishi K., Murad F. ANF relax bovine tracheal smooth muscle and increase cG M P / / Am. J. Physiol.— 1989.— Vol.256.— P.C495—C500.; Jones T.R., Charette L., Garcia M .L., Kaczorowski G.J. Selective inhibition of relaxation of guinea-pig trachea bycharybdotoxin, a potent Ca2+- activated K+-channel inhibiton / / J. Pharmacol. Ther. 1990.— Vol.255.— P.697— 706.; Kannan M .S., Jager L.P., Daniel E.E., Garfield R.E. Effect of 4-aminopyridine and tetraethylammonium cloride on the electrical activity and cable properties of canine tracheal smooth musle / / Ibid.— 1983.— VOl. 227.— P.706— 715.; Kesten S., Chapman K.R., Broder I. et al. A 3 month comparison of twice daily inhaled albuterol in the management of stable asthma / / Am. Rev. Respir. Dis,— 1991.— Vol. 144.— P.622—625.; Kroeger E.A., Stephens N.L. Effect of tetraethylammonium on tonic airway smooth muscle: initiation of phasic electrical activity / / Am. J. Physiol.— 1975.— Vol.228.— P.633— 636.; Ките H., Graziano M .P., Kotlikoff M .I. Stimulatory and inhibitory regulation of calcium-activated potassium channels by guanine nucleotide-binding proteins / / Proc. Natl. Acad. Sci. USA.— 1992.— Vol.89.— P. 11051 — 11055.; Ките H., Kotlikoff M .I. Muscarinic inhibition of single К ca channels in smooth muscle cells by a pertussis-sensitive G-protein / / Am. J. Physiol.— 1991.— Vol.261.— P.C1204—C1209.; Ките H., Takai A., Tokuno H., Tomita T. Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation / / N ature.— 1989.— Vol.341.— P.152— 154.; Lefkow itz R.L. G-protein coupled receptor kinases / / Cell.— 199 3. _ Vol.74.— P.409—412.; Lofdahl C.G., Chung K.F. Long-acting P2-adrenoceptor agonists: a new perspective in the treatm ent of asthm a / / Eur. Respir. J.— 1991.— Vol.4.— P.218—226.; McCann J.D., Welsh M.J. Calcium-activated potassium channels in canine airway smooth muscle / / J. Physiol. (Lond).— 1986.— Vol.372.— P. 113— 127.; McManus O.B., Harris G.H., Giangiacomo K.M. et al. An activator of calcium-dependent potassium channels isolated from a medicinae herb / / Biochemistry.— 1993.— Vol.32.— P.6128—6133.; Miura М ., Belvisi M .G., Strelton C.D. et al. Role of potassium channel in bronchodilator responses in human airways / / Am. Rev. Respir. Dis.— 1992.— Vol.146.— P.132— 136.; Morthan R., M artin C., Amidce Т., Mirroneau J. Calcium channel currents in isolated smooth muscle cells from human bronchus / / J.Appl. Physiol.— 1989.— Vol.66.— P.1706— 1714.; Murry L.F. Effects of a receptor operated channel blocker on intracellular calcium in human airway smooth muscle cells / / Am. Rev. Respir. Dis.— 1992.— Vol. 145.— P.A205.; Orlov S.N ., Tremblay J., Hamet P. cAMP and cGMP influx and efflux in cultured vascullared smooth muscle cells (VSMC). / / Itnernational Congress of Pharmacology, 12-th: Abstracts.— Montreal, 1994.— P.R1381.; Pike L.J. Phospatidylinositol 4-kinases and the role of polyphosphinositides in cellular regulation / / Endocrinol. Rev.— 1992.— Vol. 13.— P.692— 706.; Quast U. Do the K+ channel openers relax smooth muscle by opening K+ channels? / / Trends Pharmacol. Sci.— 1993.— Vol. 14.— P.331—337.; Rembold C.M. Regulation of contraction and relaxation in arterial smooth muscle / / Hypertension.— 1992.— Vol.20.— P. 129— 137.; Robison G.A., Sutherland E.W . Cyclic AMP and the function of eukaryotic cells: an introduction / / Ann. N.Y. Acad. Sci.— 1971.— Vol.185.— P.5—9.; Small R.C., Foster R.W . Electrophysiology of the airway smooth myscle cell / / Asthma: Basic Mechanisme and Clinical M anagement / Eds P.J.Barnes, I.W.Rodger, N.C.Thompson.— London: Academic Press, 1988.— P.35—56.; Torphy T.J., Undem R.J. Phosphdiesterase inhibitors — new oppotunities for the treatm ent of asthm a / / Thorax.— 1991.— Vol.46.— P.488— 503.; Oilman A., Hedner J., Svedm yr N. Inhaled salmeterol and salbutamol in asthm atic patients. An evaluation of asthma symptoms and the possible development of tachyphylaxis / / Am. Rev. Respir. Dis.— 1990.— Vol. 142.— P.571— 575.; Waldeck B., W idmack E. Comparison of the effects of forscolin and isoprenaline on trachel, cardiac and sceletal muscle from guinea-pig / / Eur. J. Pharmacol.— 1985.— Vol. 112.— P.349—359.; https://journal.pulmonology.ru/pulm/article/view/3692

  15. 15
    Academic Journal

    المصدر: PULMONOLOGIYA; № 3 (1996); 58-64 ; Пульмонология; № 3 (1996); 58-64 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/3457/2843; Basset G., Crone С., Saumon G. Significance of active ion transport in transalveolar water absorption: a study on isolated rat lung // J. Physiol. Lond. — Vol. 384. — P. 311—324.; Basset G., Crone C., Saumon G. Fluid absorption by rat lung in situ: pathways for sodium entry in the luminal membrane of alveolar epithelium // Ibid. — P. 325—345.; Basset G., Saumon G., Bouchonnet F., Crone C. Apical sodium transport in pulmonary epithelium in situ // Biochim. Biophys. Acta. — 1988. — Vol. 942, № 1. — P. l1—18.; Bland R.D., Boyd C.A.R. Cation transport in lung epithelial cells derived from fetal, newborn and adult rabbits // J. Appl. Physiol. — 1986. — Vol. 61, № 2. — P. 507—515.; Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding // Anal. Biochem. — 1976. — Vol. 72. — P. 248—254.; Brown S.E.S., Kim K.J., Goodman B.E., Wells J.R., Crandall E.D. Sodium-amino acid cotransport by type II alveolar epithelial cells // J. Appl. Physiol. — 1985. — Vol. 59. — Р. 1616—1622.; Brown S.E.S., Heming T.A., Benedict C.R., Bidani A. ATP-sensitive Na -H antiport in type II alveolar epithelial cells // Am. J. Physiol. — 1991. — Vol. 261. — P. C954—C963.; Clerici C., Soler P., Saumon G. Sodium dependent phosphate and alanine transport but sodium-independent hexose transport in type II alveolar epithelial cells in primary culture // Biochim. Biophys. Acta. — 1991. — Vol. 1063. — P. 27—35.; De Jonge P.C., Wieringa Т., Van Put ten J.P., Krans H.M., Van Dam K. Phloretin - an uncoupler and an inhibitor of mitochondrial oxidative phosphorilation // Ibid. — 1983. — Vol. 772. — P. 219—225.; Delamere N., Coca-Prados М., Aggarwal S. Studies on regulation of the ascorbic acid transporter in a cell line derived from rabbit non-pigmented ciliary epithelium // Ibid. — 1993. — Vol. l149. — P. 102—108.; Dobbs L.G., Gonzalez R., Williams M.C. An improved method for isolating type II ceils in high yield and purity // Am. Rev. Respir. Dis. — 1986. — Vol. 134. — P. 1268—1275.; Edelson J.D., Shannon J.M., Mason R.J. Alkaline phosphatase: a marker of alveolar type II cells differentiation // Ibid. — 1988. — Vol. 138. — P. 1268—1275.; Feng Z.-P., Clark R.B., Berthiaume Y. Identification of nonselective cation channels in cultured adult rat alveolar type II cells // Am. J. Respir. Cell Mol. Biol. — 1993. — Vol. 9. — P. 248—254.; Fisher A.B., Furia L.t Berman H. Metabolism of rat granular pneumocytes isolated in primary culture // J. Appl. Physiol. — 1980. — Vol. 49. — P. 743—750.; Helbig H., Korbmocher C., Wohlfarth J., Berweck S., Kuhner D., Wiederholt M. Electrogenic Na+-ascorbate cotransport in cultured bovine pigmented ciliary epithelial cells // Am. J. Physiol. — 1989. — Vol. 256. — P. C44—C49.; Kemp P.J., Boyd C.A. Pathways for glucose transport in type II pneumocytes freshly isolated from adult guinea pig lung // Ibid. — 1992. — Vol. 263. — P. L612—L616.; Kemp P.J., Roberts G.C., Boyd C.A.R. Identification and properties of pathways for K+ transport in guinea-pig and rat alveolar epithelial type II cells // J. Physiol. Lond. — 1994. - Vol. 476. - P. 79—88.; Kerr J.S., Reicherter J., Fisher A.B. 2-Deoxy-D-glucose uptake by rat granular pneumocytes in primary culture // Am. J. Physiol. — 1982. — Vol. 243. — P. C14—C19.; Kimmich G.A., Randles J. A Na-independent, phloretin-sensitive monosacharide transport system in isolated intestinal epithelial cells // J. Membr. Biol. — 1975. — Vol. 23, № 1. — P. 57—76.; Kimmich G.A., Carter-Su C., Randles J. Energetic of Na-dependent, sugar transport by isolated intestinal epithelial cells: evidence for a major role for membrane potentials // Am. J. Physiol. — 1977. — Vol. 233, № 5. — P. E357—E362.; LaCagnin L.B., Bowman L., Ma J.Y.C., Miles P.R. Metabolic changes in alveolar type II cells after exposure to hydrogen peroxide // Ibid. — 1990. — Vol. 259. — P. L57—L65.; Lumban R.L., Crandall E.D. Na+-HC03 symport modulates intracellular pH in alveolar epithelial cells // Ibid. — 1991. — Vol. 260. — P. L555—L561.; Matalon S. Mechanism and requlation of ion transport in abuld and mammalian alveolar type II pneumocytes // Ibid. — 1991. — Vol. 261. - P. C727—C738.; Matalon S., Bauer M.L., Benos D.J., Kleyman T.R., Lin C., Cragoe E.J., O’Brodovich H. Fetal lung epithelial cells contain two populations of amiloride-sensitive Na channels // Ibid. — 1993. — Vol. 264. — P. L357—L364.; Matalon S., Bridges R., Benos D.J. Amiloride-inhabitable Na conductive pathways in alveolar type II pneumocytes // Ibid. — 1991. - Vol. 260. — P. L90—L96.; Matthay M.A., Berthiaume Y., Staub N.C. Long-term clearance of liquid and protein from the lung of unasthezed sheep // J. Appl. Physiol. — 1985. — Vol. 59. — P. 928—934.; Michell D.B., Santone K.S., Acosta D. Evaluation of cytoxicity in cultured cells by enzyme leakage // J. Tissue Culture Meth. — 1980. — Vol. 6. — P. 113—116.; Mullin J.M., Kofeldt L.M., Russo L.M., Hagee M.M., Dantzig A.H. Basolateral 3-O-methyl glucose transport by cultured kidney (LLC-PK1) epihtelial cells // Am. J. Physiol. — 1992. — Vol. 262, № 3. - Pt 2. — P. F480—F487.; Nord E.P., Brown S.E.S., Crandall E.D. Characterization of Na+- H+ antiport in type II alveolar epithelial cells // Ibid. — 1987. — Vol. 252. — P. C490—C498.; O’Brodouich H.,Rafii B., Post M. Bioelectric properties of fetal alveolar epithelial monolayers // Ibid. — 1990. — Vol. 258. — P. L201—L206.; O’Brodovich H., Hannam V., Seear M., Mullen J.B.M. Amiloride impairs lung water clearance in newborn guinea pigs // J. Appl. Physiol. — 1990. — Vol. 68. — P. 1758—1762.; Oelberg D.G., Xuy F., Shabarek F. Sodium-coupled transport of glucose by plasma membranes of type II pneumocytes // Biochim. Biophys. Acta. — 1994. — Vol. 1194. — P. 92—98.; Russo R.M., Lubman R.L., Crandall E.D. Evidence for amiloridesensitive sodium channels in alveolar epithelial cells // Am. J. Physiol. — 1992. — Vol. 262. — P. L405—L411.; Lubman R.L., Crandall E.D. Polarized distribution of Na+-H+ antiport activity in rat alveolar epithelial cells // Ibid. — 1994. — Vol. 266. — P. L138—L147.; Saumon G., Basset G. Electrolyte and fluid transport across the mature alveolar epithelium // J. Appl. Physiol. — 1993. — Vol. 74, № 1. — P. l—15.; Grinstein S. et al. Mechanisms of regulation of Na-H echanger // J. Membr. Biol. — 1986. — Vol. 90. — P. l—12.; Smedira N., Gates L., Hastings R.t Jayr C., SakumaT., Pittet J.F., Matthay M.A. Alveolar and lung liquid clearance in anestathized rabbits // J. Appl. Physiol. — 1991. — Vol. 70. — P. 1827—1835.; Verkman A.S., Solomon A.K. A stepwise merchanism for the permeation of phloretin through a lipid bilayer // J. Gen. Physiol. — 1982. — Vol. 80, № 4. — P. 557—581.; Wangensteen D., Barlett M. D-and L-glucose transport across the pulmonary epithelium // J. Appl. Physiol. — 1984. — Vol. 57, № 6. — P. 1722—1730.; Waters B., Thakar J., Lapierre Y. Erythrocyte lithium transport variables as a marker for manic-depressive // Neuropsychobiology. — 1983. — Vol. 9, № 2. — P. 94—98.; Yue G., Shoemaker R.L., Matalon S. Regulation of low-amilorideaffinity sodium channels in alveolar type II cells // Am. J. Physiol. — 1994. — Vol. 267. — P. L94—L100.; Aiton J.F., Brown C.D., Ogden P., Simmons N.L. K+ transport in “tight”epithelial monolayers of MDCK cells // J. Membr. Biol. — 1982. — Vol. 65. — № 1—2. — P. 99—109.; Aiton J.F., Chipperfield A.R., Lamp J.F., Ogden P., Simmons N.L. Occurrence of passive furosemide-sensitive transmembrane potessium transport in cultured cells // Biochim. Biophys. Acta. — 1981. — Vol. 646, № 3. — P. 389—398.; O’Grady S.M., Palfrey H.C., Field M. Characteristics and functions of Na-K-2C1 cotransport in epithelial tissued // Am. J. Physiol. — 1987. — Vol. 253. — P. C177—C192.; Jorgensen P.L. Mechanism of the Na+-K+-pump. Protein structure and conformations of pure (Na+-K+)-ATPase // Biochim. Biophys. Acta. — 1982. — Vol. 694, № 1. — P. 27—68.; Chipperfield A.R. The Na+-K+-CI' cotranspost system // Clin. Sci. — 1986. — Vol. 71, № 5. — P. 465—476.; https://journal.pulmonology.ru/pulm/article/view/3457

  16. 16
    Academic Journal

    المصدر: PULMONOLOGIYA; № 1 (1991); 35-39 ; Пульмонология; № 1 (1991); 35-39 ; 2541-9617 ; 0869-0189

    وصف الملف: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4001/3344; Петрова М. А., Услонцев Б. М. / / Новое в этиологии, патогенезе, клинике, лечении и профилактике бронхиальной астмы. / Под ред. Г. Б. Федосеева.— Л., 1985.; Петруняка В. В., Гончаренко М. С., Кондакова А. К., М авров И. И. / / Вопр. мед. химии.— 1989.— N 6.С. 59—64.; Петруняка В. В., Панюшкина Е. А., Северина Е. П . / / Биол. мембраны.— 1990.— N 4.— С. 352—358.; Петруняка В. В., Северина Е. П., Орлов С. Н. и др. / / Биохимия.— 1989.— N 6.— С. 974—979.; Покидин Н. П., Орлов С. П. / / Биол. мембраны.— 1986.N 2.— С. 108—117.; Постное Ю. В., Орлов С. Н. Первичная гипертензия как патология клеточных мембран.— М., 1987.; Ткачук В. А. Введение в молекулярную эндокринологию.— М., 1982.; Чучалин А. Г . / / Тер. арх.— 1987.— N 1.— С. 121 — 127.; Эмирова А. С., Татарский А. Р., Чучалин А. Г. / / Там же,— 1990.— N 3.— С. 100—102.; Bai T. R. / / Amer. Rev. resp. Dis.— 1990.— Vol. 141.— P. 552—557.; Borke J. L., Erikseri E. F., Minami J. et al . / / J . clin. Endocr. M etab.— 1988.— Vol. 67.— P. 1299—1304.; Borke J. L., Minam i J., Verma A. K. et al . / / J . clin. Invest.— 1987.— Vol. 80.— P. 1225.; Cole C. H., Maletz R. / / Clin. Sei.— 1975.— Vol. 47.— P. 239—245.; Frizzell A. / / Amer. Rev. resp. Dis.— 1988.— Vol. 138.— P. 53—56.; Hendricki H., Casteels R. / / Pflügers Arch.— 1974.Bd 343.— S. 299—308.; Kaji D. M., Thakkar Ü., Kahn. S. clin. Invest.1981.— Vol. 68.— P. 422—430.; Michel F. B., Chanez P., Clauzel A. M. et al. / / Rev. franc. A llerg .— 1989.— Vol. 29.— P. 81—87.; Middleton E. Jr. / / J. Allergy.— 1985.— Vol. 76.— P. 341-346.; Orlov S. N., Pokudin N. F, Kotelevlcev Yu. V., Gulak P. V. / / J. Membr. Biol.— 1989.— Vol. 107.— P. 105—117.; Rechkemmer G. R. / / Amer. Rev. resp. Dis.— 1988.Vol. 138.— P. 57—59.; Richardson J. B. / / J. Allergy.— 1987.— Vol. 80.— P. 409—411.; Sheppard D. / / Chest.— Vol. 96.— P. 1165—1168.; Small R. C., Foster R. W. / / Amer . Rev. resp. Dis.1987.— Vol. 136.— P. 57—511.; Thastrup O . / / Agents Actions.— 1990.— Vol. 29.— P. 8—15.; Toldi Z., Gyurkovits K. / / Orv. Hetil.— 1986.— Vol. 127.— P. 2497—2499.; https://journal.pulmonology.ru/pulm/article/view/4001

  17. 17
    Academic Journal

    المصدر: Head and Neck Tumors (HNT); Том 12, № 2 (2022); 71-78 ; Опухоли головы и шеи; Том 12, № 2 (2022); 71-78 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2022-12-2

    وصف الملف: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/779/533; Valderrabano P., McIver B. Evaluation and management of indeterminate thyroid nodules: the revolution of risk stratification beyond cytological diagnosis. Cancer Control 2017;24(5):1073274817729231-1073274817729231. DOI:10.1177/1073274817729231.; Partyka K.L., Trevino K., Randolph M.L. et al. Risk of malignancy and neoplasia predicted by three molecular testing platforms in indeterminate thyroid nodules on fine-needle aspiration. Diagn Cytopathol 2019 2019;47(9):853-62. DOI:10.1002/dc.24250.; Cibas E.S., Ali S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopatho-logy. Thyroid 2017;17(11):1341-6. DOI:10.1089/thy.2017.0500.; Steward D.L., Carty S.E., Sippel R.S. et al. Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA Oncol 2019;5(2):204-12. DOI:10.1001/jamaoncol.2018.4616.; Ravella L., Lopez J., Descotes F. et al. Cytological features and nuclear scores: diagnostic tools in preoperative fine-needle aspiration of indeterminate thyroid nodules with RAS or BRAF K601E mutations? Cytopathology 2021;32(1):37-44. DOI:10.1111/cyt.12904.; WHO classification of tumours of endocrine organs. Ed. by G. Kloppel, A. Couvelard, R.H. Hruban et al. Lyon, Fr World Heal Organ, 2017.; Haugen B.R., Alexander E.K., Bible K.C. et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26(1):1-133. DOI:10.1089/thy.2015.0020.; Bardet S., Goardon N., Lequesne J. et al. Diagnostic and prognostic value of a 7-panel mutation testing in thyroid nodules with indeterminate cytology: the SWEETMAC study. Endocrine 2021;71(2):407-17. DOI:10.1007/s12020-020-02411-4.; Nikiforov Y.E., Buddinger P.W., Thompson L.D. Diagnostic pathology and molecular genetics of the thyroid: a comprehensive guide for practicing thyroid pathology. 3rd edn. 2020.; Penna G.C., Vaisman F., Vaisman M. et al. Molecular markers involved in tumorigenesis of thyroid carcinoma: focus on aggressive histotypes. Cytogenet Genome Res 2016; 150(3-4):194-207. DOI:10.1159/000456576.; Jarry A., Masson D., Cassagnau E. et al. Real-time allele-specific amplification for sensitive detection of the BRAF mutation V600E. Mol Cell Probes 2004;18(5):349-52. DOI:10.1016/j.mcp.2004.05.004.; Liu T., Brown T.C., Juhlin C.C. et al. The activating TERT promoter mutation C228T is recurrent in subsets of adrenal tumors. Endocr Relat Cancer 2014;21(3): 427-34. DOI:10.1530/ERC-14-0016.; Бельцевич Д.Г., Мудунов А.М., Ванушко В.Э. и др. Дифференцированный рак щитовидной железы. Современная онкология 2020;22(4):30-44. DOI:10.26442/18151434.2020.4.200507. =; Trimboli P., Treglia G., Condorelli E. et al. BRAF-mutated carcinomas among thyroid nodules with prior indeterminate FNA report: a systematic review and metaanalysis. Clin Endocrinol (Oxf) 2016; 84(3):315-20. DOI:10.1111/cen.12806.; Pongsapich W., Chongkolwatana C., Poungvarin N. et al. BRAF mutation in cytologically indeterminate thyroid nodules: after reclassification of a variant thyroid carcinoma. Onco Targets Ther 2019;12:1465-73. DOI:10.2147/OTT.S190001.; Vuong H.G., Duong U.N.P., Altibi A.M.A. et al. A meta-analysis of prognostic roles of molecular markers in papillary thyroid carcinoma. Endocr Connect 2017;6(3):R8-17. DOI:10.1530/EC-17-0010.; Prete A., Borges de Souza P., Censi S. et al. Update on fundamental mechanisms of thyroid cancer. Front Endocrinol 2020;11:102. DOI:10.3389/fendo.2020.00102.; Decaussin-Petrucci M., Descotes F., Depaepe L. et al. Molecular testing of BRAF, RAS and TERT on thyroid FNAs with indeterminate cytology improves diagnostic accuracy. Cytopathology 2017;28(6):482-7. DOI:10.1111/cyt.12493.; Качко В.А., Ванушко В.Э., Платонова Н.М. и др. Возможности использования свободно циркулирующей ДНК плазмы крови в дооперационной диагностике при новообразованиях щитовидной железы. Проблемы эндокринологии 2019;65(6):400-7. DOI:10.14341/probl11311).; Nikiforov Y.E., Ohori N.P., Hodak S.P., et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab 2011;96(11):3390-7. DOI:10.1210/jc.2011-1469.; https://ogsh.abvpress.ru/jour/article/view/779

  18. 18
    Academic Journal

    المساهمون: The article is published with research and medical support from Bayer JSC., Статья опубликована при научно-медицинской поддержке АО «Байер».

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2022); 50-56 ; Медицинский Совет; № 9 (2022); 50-56 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6916/6214; Cocco E., Scaltriti M., Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15(12):731-747. https://doi.org/10.1038/s41571-018-0113-0.; Vaishnavi A., Le A.T., Doebele R.C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5(1):25-34. https://doi.org/10.1158/2159-8290.CD-14-0765.; Amatu A., Sartore-Bianchi A., Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open. 2016;1(2):e000023. https://doi.org/10.1136/esmoopen-2015-000023.; Khotskaya Y.B., Holla V.R., Farago A.F., Shaw K.R.M., Meric-Bernstam F., Hong D.S. Targeting TRK family proteins in cancer. Pharmacol Ther. 2017;173:58-66. https://doi.org/10.1016/j.pharmthera.2017.02.006.; Brodeur G.M., Minturn J.E., Ho R., Simpson A.M., Iyer R., Varela C.R. et al. Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res. 2009;15(10):3244-3250. https://doi.org/10.1158/1078-0432.CCR-08-1815.; Reichardt L.F. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci. 2006;361(1473):1545-1564. https://doi.org/10.1098/rstb.2006.1894.; Valent A., Danglot G., Bernheim A. Mapping of the tyrosine kinase receptors trkA (NTRK1), trkB (NTRK2) and trkC (NTRK3) to human chromosomes 1q22, 9q22 and 15q25 by fluorescence in situ hybridization. Eur J Hum Genet. 1997;5(2):102-104. Available at: https://pubmed.ncbi.nlm.nih. gov/9195161/.; Pirker R., Herth F.J., Kerr K.M., Filipits M., Taron M., Gandara D. et al. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thor Oncol. 2010;5(10):1706-1713. https://doi.org/10.1097/JTO.0b013e3181f1c8de.; Kim S., Park C., Ji Y., Kim D.G., Bae H., van Vrancken M. et al. Deamination Effects in Formalin-Fixed, Paraffin-Embedded Tissue Samples in the Era of Precision Medicine. J Mol Diagn. 2017;19(1):137-146. https://doi.org/10.1016/j.jmoldx.2016.09.006.; Dumenil C., Massiani M.-A., Dumoulin J., Giraud V., Labrune S., Chinet T., Leprieur E.G. Clinical factors associated with early progression and grade 3-4 toxicity in patients with advanced non-small-cell lung cancers treated with nivolumab. PLoS ONE. 2018;13(4):e0195945. https://doi.org/10.1371/journal.pone.0195945.; Costantini A., Corny J., Fallet V., Renet S., Friard S., Chouaid C. et al. Efficacy of next treatment received after nivolumab progression in patients with advanced nonsmall cell lung cancer. ERJ Open Research. 2018;4(2):00120-2017. https://doi.org/10.1183/23120541.00120-2017.; Gatalica Z., Xiu J., Swensen J., Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol. 2019;32(1):147-153. https://doi.org/10.1038/s41379-018-0118-3.; Farago A.F., Taylor M.S., Doebele R.C., Zhu V.W., Kummar S., Spira A.I. et al. Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis Oncol. 2018;2018:PO.18.00037. https://doi.org/10.1200/PO.18.00037.; Drilon A., Laetsch T.W., Kummar S., DuBois S.G., Lassen U.N., Demetri G.D. et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med. 2018;378(8):731-739. https://doi.org/10.1056/NEJMoa1714448.; Hong D.S., Shen L., van Tilburg C.M., Tan D.S.-W., Kummar S., Lin J.J. et al. Longterm efficacy and safety of larotrectinib in an integrated dataset of patients with TRK fusion cancer. J Clin Oncol. 2021;39(15_suppl):3108-3108. https://doi.org/10.1200/JCO.2021.39.15_suppl.3108.; Hong D.S., DuBois S.G., Kummar S., Farago A., Albert C.M., Rohrberg K.S. et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2021;21(4):531-540. https://doi.org/10.1016/S1470-2045(19)30856-3.; Laetsch T.W., DuBois S.G., Mascarenhas L., Turpin B., Federman N., Albert C.M. et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018;19(5):705-714. https://doi.org/10.1016/S1470-2045(18)30119-0.; Hyman D.M., Laetsch T.W., Kummar S., DuBois S.G., Farago A.F., Pappo A.S. et al. The efficacy of larotrectinib (LOXO-101), a selective tropomyosin receptor kinase (TRK) inhibitor, in adult and pediatric TRK fusion cancers. J Clin Oncol. 2017;35(18_suppl). https://doi.org/10.1200/jco.2017.35.18_suppl.lba2501.; Hyman D.M., van Tilburg C.M., Albert C.M., Tan D.S.W., Geoerger B., Farago A.F. et al. Durability of response with larotrectinib in adult and pediatric patients with TRK fusion cancer. Ann Oncol. 2019;30(5):v162-v163. https://doi.org/10.1093/annonc/mdz244.007.; McDermott R., van Tilburg C.M., Farago A.F., Kummar S., Tan D.S.W., Albert C.M. et al. Survival benefits of larotrectinib in an integrated dataset of patients with TRK fusion cancer. Ann Oncol. 2020;31(4 Suppl.):S1101-S1102. https://doi.org/10.1016/j.annonc.2020.08.1347.; Mascarenhas L., Albert C., Pappo A., Geoerger B., Doz F., Federman N. et al. Larotrectinib Demonstrates Durable Efficacy and Safety in an Expanded Dataset Of Pediatric Patients With TRK Fusion Cancer. Ped Blood Canc. 2020;67(S4). https://doi.org/10.1002/pbc.28742.; https://www.med-sovet.pro/jour/article/view/6916

  19. 19
    Academic Journal

    المصدر: Meditsinskiy sovet = Medical Council; № 9 (2022); 139-146 ; Медицинский Совет; № 9 (2022); 139-146 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6926/6223; Kim S.Y., Kim T.W. Current challenges in the implementation of precision oncology for the management of metastatic colorectal cancer. ESMO Open. 2020;5(2):e000634. https://doi.org/10.1136/esmoopen-2019-000634.; Singh M.P., Rai S., Pandey A., Singh N.K., Srivastava S. Molecular subtypes of colorectal cancer: An emerging therapeutic opportunity for personalized medicine. Genes Dis. 2019;8(2):133-154. https://doi.org/10.1016/j.gendis.2019.10.013.; Poulsen T.S., de Oliveira D.V.N.P., Espersen M.L.M., Klarskov L.L., Skovrider-Ruminski W., Hogdall E. Frequency and coexistence of KRAS, NRAS, BRAF and PIK3CA mutations and occurrence of MMR deficiency in Danish colorectal cancer patients. APMIS. 2021;129(2):61-69. https://doi.org/10.1111/apm.13091.; Benson A.B., Venook A.P., Al-Hawary M.M., Arain M.A., Chen Y.-J., Ciombor K.K. et al. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2021;19(3):329-259. https://doi.org/10.6004/jnccn.2021.0012.; Пашков Д.В., Венина А.Р., Иванцов А.О., Янус Г.А., Раскин Г.А., Имянитов Е.Н. и др. Рак толстой кишки с микросателлитной нестабильностью у пожилых больных: роль иммунодефицита и клинические особенности. Сибирский онкологический журнал. 2020;19(1):31-39. https://doi.org/10.21294/1814-4861-2020-19-1-31-39.; Yamamoto H., Watanabe Y., Maehata T., Imai K., Itoh F. Microsatellite instability in cancer: a novel landscape for diagnostic and therapeutic approach. Arch Toxicol. 2020;94(10):3349-3357. https://doi.org/10.1007/s00204-020-02833-z.; Cao Y., Zhang G., Zhang J., Yang Y., Ren J., Yan X. et al. Predicting Microsatellite Instability Status in Colorectal Cancer Based on Triphasic Enhanced Computed Tomography Radiomics Signatures: A Multicenter Study. Front Oncol. 2021;11:687771. https://doi.org/10.3389/fonc.2021.687771.; Lichtenstern C.R., Ngu R.K., Shalapour S., Karin M. Immunotherapy, Inflammation and Colorectal Cancer. Cells. 2020;9(3):618. https://doi.org/10.3390/cells9030618.; Marcus L., Lemery S.J., Keegan P., Pazdur R. FDA Approval Summary: Pembrolizumab for the Treatment of Microsatellite Instability-High Solid Tumors. Clin Cancer Res. 2019;25(13):3753-3758. https://doi.org/10.1158/1078-0432.CCR-18-4070.; Трякин А.А., Федянин М.Ю., Цуканов А.С., Шелыгин Ю.А., Покатаев И.А., Игнатова Е.О. и др. Микросателлитная нестабильность как уникальная характеристика опухолей и предиктор эффективности иммунотерапии. Злокачественные опухоли. 2019;9(4):59-69. https://doi.org/10.18027/2224-5057-2019-9-4-59-69.; Serebriiskii I.G., Connelly C., Frampton G., Newberg J., Cooke M., Miller V. et al. Comprehensive characterization of RAS mutations in colon and rectal cancers in old and young patients. Nat Commun. 2019;10(1):3722. https://doi.org/10.1038/s41467-019-11530-0.; Bond C.E., Whitehall V.L.J. How the BRAF V600E Mutation Defines a Distinct Subgroup of Colorectal Cancer: Molecular and Clinical Implications. Gastroenterol Res Pract. 2018;2018:9250757. https://doi.org/10.1155/2018/9250757.; Cohen R., Pudlarz T., Delattre J.-F., Colle R., Andre T. Molecular Targets for the Treatment of Metastatic Colorectal Cancer. Cancers (Basel). 2020;12(9):2350. https://doi.org/10.3390/cancers12092350.; Douillard J.-Y., Oliner K.S., Siena S., Tabernero J., Burkes R., Barugel M. et al. Pani-tumumab-FOLFOX4 Treatment and RAS Mutations in Colorectal Cancer. N Engl J Med. 2013;369(11):1023-1034. https://doi.org/10.1056/NEJMoa1305275.; Grassi E., Corbelli J., Papiani G., Barbera M.A., Gazzaneo F., Tamberi S. Current Therapeutic Strategies in BRAF-Mutant Metastatic Colorectal Cancer. Front Oncol. 2021;11:601722. https://doi.org/10.3389/fonc.2021.601722.; Oh D.-Y., Bang Y.-J. HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17(1):33-48. https://doi.org/10.1038/s41571-019-0268-3.; Siena S., Sartore-Bianchi A., Marsoni S., Hurwitz H.I., McCall S.J., Penault-Llorca F. et al. Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer. Ann Oncol. 2018;29(5):1108-1119. https://doi.org/10.1093/annonc/mdy100.; Lee M.K.C., Loree J.M. Current and emerging biomarkers in metastatic colorectal cancer. Curr Oncol. 2019;26(Suppl 1):S7-S15. https://doi.org/10.3747/co.26.5719.; Федянин М.Ю., Ачкасов С.И., Болотина Л.В., Гладков О.А., Глебовская В.В., Гордеев С.С. и др. Практические рекомендации по лекарственному лечению рака ободочной кишки и ректосигмоидного соединения. Злокачественные опухоли. 2020;10(3s2-1):350-391. https://doi.org/10.18027/2224-5057-2020-10-3s2-22.; Solomon J.P., Linkov I., Rosado A., Mullaney K., Rosen E.Y., Frosina D. et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol. 2020;33(1):38-46. https://doi.org/10.1038/s41379-019-0324-7.; Yamashiro Y., Kurihara T., Hayashi T., Suehara Y., Yao T., Kato S., Saito T. NTRK fusion in Japanese colorectal adenocarcinomas. Sci Rep. 2021;11(1):5635. https://doi.org/10.1038/s41598-021-85075-y.; Мусаелян А.А., Назаров В.Д., Будникова А.С., Лапин С.В., Воробьев С.Л., Эмануэль В.Л. и др. Клинико-морфологический портрет опухолей с микросателлитной нестабильностью. Успехи молекулярной онкологии. 2021;8(2):52-59. https://doi.org/10.17650/2313-805X-2021-8-2-00-00.; Lang A.H., Drexel H., Geller-Rhomberg S., Stark N., Winder T., Geiger K. et al. Optimized allele-specific real-time PCR assays for the detection of common mutations in KRAS and BRAF. J Mol Diagn. 2011;13(1):23-28. https://doi.org/10.1016/j.jmoldx.2010.11.007.; Wolff A.C., Hammond M.E.H., Allison K.H., Harvey B.E., Mangu P.B., Bartlett J.M.S. et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol. 2018;36(20):2105-2122. https://doi.org/10.1200/JCO.2018.77.8738.; Shia J., Schultz N., Kuk D., Vakiani E., Middha S., Segal N.H. et al. Morphological characterization of colorectal cancers in The Cancer Genome Atlas reveals distinct morphology-molecular associations: clinical and biological implications. Mod Pathol. 2017;30(4):599-609. https://doi.org/10.1038/modpathol.2016.198.; Kasi P.M., Kamatham S., Shahjehan F., Li Z., Johnson P.W., Merchea A. et al. BRAF-V600E and microsatellite instability prediction through CA-19-9/CEA ratio in patients with colorectal cancer. J Gastrointest Oncol. 2020;11(2):236-241. https://doi.org/10.21037/jgo.2019.12.08.; Yanus G.A., Belyaeva A.V., Ivantsov A.O., Kuligina E.S., Suspitsin E.N., Mitiushkina N.V. et al. Pattern of clinically relevant mutations in consecutive series of Russian colorectal cancer patients. Med Oncol. 2013;30(3):686. https://doi.org/10.1007/s12032-013-0686-5.; Федянин М.Ю., Эльснукаева Х.М., Демидова И.А., Строяковский Д.Л., Шелыгин Ю.А., Цуканов А.С. и др. Колоректальный рак с мутацией в гене BRAF в Российской Федерации: эпидемиология и клинические особенности. Результаты многоцентрового исследования. Медицинский совет. 2021;(4S):52-63. Режим доступа: https://www.med-sovet.pro/jour/article/view/6211.; Qiu M.-Z., He C.-Y., Yang X.-H., Yang L.-Q., Lin J.-Z., Zhou D.-L. et al. Relationship of HER2 alteration and MSI status in colorectal adenocarcinoma. J Clin Oncol. 2021;26(7): e1161-e1170. https://doi.org/10.1200/JCO.2021.39.3_suppl.121.; Wang X.-Y., Zheng Z.-X., Sun Y., Bai Y.-H., Shi Y.-F., Zhou L.-X. et al. Significance of HER2 protein expression and HER2 gene amplification in colorectal adenocarcinomas. World J Gastrointest Oncol. 2019;11(4):335-347. https://doi.org/10.4251/wjgo.v11.i4.335.; https://www.med-sovet.pro/jour/article/view/6926

  20. 20
    Academic Journal