-
1Academic Journal
المؤلفون: G A Melnichenko, Zh E Belaya, L Ya Rozhinskaya, T A Grebennikova, E A Pigarova, N V Toroptsova, O A Nikitinskaya, L Ya Farba, N V Tarbaeva, T O Chernova, L K Dzeranova, A V Ilyin, S V Yureneva, I V Kryukova, E O Mamedova, E V Biryukova, N V Zagorodny, S S Rodionova, O M Lesniak, I A Skripnikova, A V Dreval, L A Alekseeva, I I Dedov
المصدر: Остеопороз и остеопатии, Vol 19, Iss 3, Pp 28-36 (2016)
مصطلحات موضوعية: Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: S S Rodionova, U R Khakimov
المصدر: Остеопороз и остеопатии, Vol 19, Iss 1, Pp 22-27 (2016)
مصطلحات موضوعية: остеопороз у мужчин, первичные формы остеопороза у мужчин, альфакальцидол, карбонат кальция, МПК, Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: S S Rodionova, E Yu Zakharova, Yu V Buklemishev, U R Khakimov, S V Lapkina
المصدر: Остеопороз и остеопатии, Vol 18, Iss 2, Pp 25-28 (2015)
مصطلحات موضوعية: гипофосфатазия щелочная фосфатаза, тканеспецифическая щелочная фосфатаза, метаболические остеопатии, остеопороз, остеомаляция, Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: S S RODIONOVA, A A ELOVOY-VRONSKIY, A I BERNAKEVICh
المصدر: Остеопороз и остеопатии, Vol 17, Iss 1, Pp 21-24 (2014)
مصطلحات موضوعية: Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
5Academic Journal
المؤلفون: S S Rodionova, T N Turgumbayev
المصدر: Остеопороз и остеопатии, Vol 16, Iss 1, Pp 24-28 (2013)
مصطلحات موضوعية: остеопороз, эндопротезирование тазобедренного сустава, алендронат, альфакальцидол, коррекция интенсивности резорбции и костеобразования, Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: L Ia Rozhinskaia, S D Arapova, L K Dzeranova, N N Molitvoslovova, E I Marova, A V Il'in, L I Benevolenskaia, O A Nikitinskaia, T A Korotkova, N V Toroptsova, A V Smirnov, N V Demin, S S Rodionova, Iu V Buklemeshev, A A Shumskiĭ
المصدر: Терапевтический архив, Vol 80, Iss 5, Pp 47-52 (2008)
مصطلحات موضوعية: osteoporosis, postmenopausal period, treatment, bivalos, strontium ranelat, Medicine
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: L Ya ROZhINSKAYa, S D ARAPOVA, L K DZERANOVA, N N MOLITVOSLOVOVA, E I MAROVA, A A ShIShKINA, N I SAZONOVA, T O ChERNOVA, A V IL'IN, L I BENEVOLENSKAYa, O A NIKITINSKAYa, T A KOROTKOVA, N V TOROPTsOVA, A V SMIRNOV, N V DEMIN, S S RODIONOVA, Yu V BUKLEMEShEV, A A ShUMSKIY
المصدر: Остеопороз и остеопатии, Vol 10, Iss 3, Pp 24-30 (2007)
مصطلحات موضوعية: Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: A V KRIVOVA, S S RODIONOVA
المصدر: Остеопороз и остеопатии, Vol 10, Iss 1, Pp 2-5 (2007)
مصطلحات موضوعية: Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
9Academic Journal
المؤلفون: S P Mironova, S S Rodionova, A F Kolondaev, V I Nuzhdin, T P Popova, I V Klyushnichenko
المصدر: Остеопороз и остеопатии, Vol 9, Iss 3, Pp 44-47 (2006)
مصطلحات موضوعية: Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
10Academic Journal
المؤلفون: S S RODIONOVA, U R KhAKIMOV
المصدر: Остеопороз и остеопатии, Vol 19, Iss 2, Pp 80-81 (2016)
مصطلحات موضوعية: Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
11Academic Journal
المؤلفون: V GYuL'NAZAROVA, S S RODIONOVA, O A KUZNETsOVA, I A ZEL'SKIY, M Yu PEN'KOV
المصدر: Остеопороз и остеопатии, Vol 14, Iss 3, Pp 25-27 (2011)
مصطلحات موضوعية: иммобилизационный остеопороз, псевдоартрозы нижних конечностей, комбинированное лечение, осте-синтез, Кальций-Д Никомед, Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
12Academic Journal
المؤلفون: A A ShUMSKIY, S S RODIONOVA
المصدر: Остеопороз и остеопатии, Vol 19, Iss 2, Pp 85-85 (2016)
مصطلحات موضوعية: Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
13Academic Journal
المؤلفون: E N BAKhTINA, S S RODIONOVA, A A KULEShOV, S V KOLESOV
المصدر: Остеопороз и остеопатии, Vol 19, Iss 2, Pp 71-71 (2016)
مصطلحات موضوعية: Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
14Academic Journal
المؤلفون: A N TORGAShIN, S S RODIONOVA, K S IVANOV
المصدر: Остеопороз и остеопатии, Vol 19, Iss 2, Pp 110-110 (2016)
مصطلحات موضوعية: Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
15Academic Journal
المؤلفون: S S RODIONOVA, Yu V BUKLEMIShEV
المصدر: Остеопороз и остеопатии, Vol 19, Iss 2, Pp 83-83 (2016)
مصطلحات موضوعية: Osteopathy, RZ301-397.5
وصف الملف: electronic resource
-
16Academic Journal
المؤلفون: L. N. Denisov, L. I. Alekseeva, E. G. Zotkin, I. S. Dydykina, A. M. Lila, S. S. Rodionova, A. Yu. Kochish, E. A. Trofimov, E. Z. Yakupov, S. P. Yakupova, L. N. Eliseeva
المصدر: Современная ревматология, Vol 16, Iss 4, Pp 80-87 (2022)
مصطلحات موضوعية: prescription crystalline glucosamine sulfate, osteoarthritis, knee joints, effectiveness of treatment, meta-analysis, Medicine
وصف الملف: electronic resource
-
17Academic Journal
المؤلفون: S. S. Rodionova, M. A. Makarov, G. E. Balychev, A. N. Torgashin, С. С. Родионова, М. А. Макаров, Г. Е. Балычев, А. Н. Торгашин
المصدر: Meditsinskiy sovet = Medical Council; № 6 (2023); 282-288 ; Медицинский Совет; № 6 (2023); 282-288 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: деносумаб, antiresorptive drugs, D-deficiency, hypocalcemia, denosumab, антирезорбтивные препараты, D-дефицит, гипокальциемия
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7531/6715; Baker R.P., Squires B., Gargan M.F., Bannister G.C. Total hip arthroplasty and hemiarthroplasty in mobile, independent patients with a displaced intracapsular fracture of the femoral neck. A randomized, controlled trial. J Bone Joint Surg Am. 2006;88(12):2583–2589. https://doi.org/10.2106/JBJS.E.01373.; Blomfeldt R., Törnkvist H., Ericksson K., Söderqvist A., Ponzer S., Tidermark J. A randomised controlled trial comparing bipolar hemiarthroplasty with total hip replacement for displaced intracapsular fractures of the femoral neck in elderly patients. J Bone Joint Surg Br. 2007;89(2):160–165. https://doi.org/10.1302/0301-620X.89B2.18576.; Parker M.J., Gurusamy K.S. Arthroplasties (with and without bone cement) for proximal femoral fractures in adults. Cochrane Database Syst Rev. 2006;19(3):CD001706. https://doi.org/10.1002/14651858.CD001706.PUB3.; Миронов С.П., Родионова С.С., Дарчия Л.Ю., Максимов А.А., Панов А.А., Солод Э.И. и др. Патологические переломы, осложняющие остеопороз: клинические рекомендации. 2018. Режим доступа: httpss://www.citopriorov.ru/cito/files/Патологические_переломы_осл_остеопороз.pdf.; Kim B.-S., Lim J.-Y., Ha Y.-C. Recent Epidemiology of Hip Fractures in South Korea. Hip Pelvis. 2020;32(3):119. https://doi.org/10.5371/hp.2020.32.3.119.; Jonas K., Nils W., Alexander D., Stefan B., Henning W., Thilo F. The etiology of revision total hip arthroplasty: current trends in a retrospective survey of 3450 cases. Arch Orthop Trauma Surg. 2020;140(9):1265–1273. https://doi.org/10.1007/S00402-020-03514-3.; Beck R.T., Illingworth K.D., Saleh K.J. Review of periprosthetic osteolysis in total joint arthroplasty: an emphasis on host factors and future directions. J Orthop Res. 2012;30(4):541–546. https://doi.org/10.1002/JOR.21554.; Knutsen A.R., Lau N., Longjohn D.B., Ebramzadeh E., Sangiorgio S.N. Periprosthetic femoral bone loss in total hip arthroplasty: Systematic analysis of the effect of stem design. Hip Int. 2017;27(1):26–34. https://doi.org/10.5301/hipint.5000413.; Sköldenberg O.G., Salemyr M.O., Bodén H.S., Ahl T.E., Adolphson P.Y. The effect of weekly risedronate on periprosthetic bone resorption following total hip arthroplasty: A randomized, double-blind, placebo-controlled trial. J Bone Joint Surg Am. 2011;93(20):1857–1864. https://doi.org/10.2106/JBJS.J.01646.; Friedl G., Radl R., Stihsen C., Rehak P., Aigner R., Windhager R. The effect of a single infusion of zoledronic acid on early implant migration in total hip arthroplasty: A randomized, double-blind, controlled trial. J Bone Joint Surg Am. 2009;91(2):274–281. https://doi.org/10.2106/JBJS.G.01193.; Chen X., Shen Y., Ye C., Mumingjiang Y., Lu J., Yu Y. Prophylactic efficacy on periprosthetic bone loss in calcar region after total hip arthroplasty of antiosteoporotic drugs: A network meta-analysis of randomised controlled studies. Postgrad Med J. 2021;97(1145):150–155. https://doi.org/10.1136/postgradmedj-2019-137120.; Ledin H., Good L., Aspenberg P. Denosumab reduces early migration in total knee replacement: A randomized controlled trial involving 50 patients. Acta Orthop. 2017;88(3):255–258. https://doi.org/10.1080/17453674.2017.1300746.; Mahatma M.M., Jayasuriya R.L., Hughes D., Hoggard N., Buckley S.C., Gordon A., et al. Effect of denosumab on osteolytic lesion activity after total hip arthroplasty: a single-centre, randomised, double-blind, placebocontrolled, proof of concept trial. Lancet Publishing Group. 2021;3(3): e195–e203. https://doi.org/10.1016/S2665-9913(20)30394-5.; Белая Ж.Е., Белова К.Ю., Бирюкова Е.В., Дедов И.И., Дзеранова Л.К., Драпкина О.М. и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза. Остеопороз и остеопатии. 2021;24(2):4–47. https://doi.org/10.14341/OSTEO12930.; Mjöberg B. Hip prosthetic loosening: A very personal review. World J Orthop. 2021;12(9):629–639. https://doi.org/10.5312/wjo.v12.i9.629.; Campbell D., Mercer G., Nilsson K.G., Wells V., Field J.R., Callary S.A. Early migration characteristics of a hydroxyapatite-coated femoral stem: An RSA study. Int Orthop. 2011;35(4):483–488. https://doi.org/10.1007/s00264-009-0913-z.; Lee S.W., Kim W.Y., Song J.H., Kim J.H., Lee H.H. Factors affecting periprosthetic bone loss after hip arthroplasty. Hip Pelvis. 2021;33(2):53–61. https://doi.org/10.5371/HP.2021.33.2.53.; Johanson P.E., Antonsson M., Shareghi B., Kärrholm J. Early Subsidence Predicts Failure of a Cemented Femoral Stem With Minor Design Changes. Clin Orthop Relat Res. 2016;474(10):2221–2229. https://doi.org/10.1007/s11999-016-4884-2.; Fender D., van der Meulen J.H.P., Gregg P.J. Relationship between outcome and annual surgical experience for the Charnley total hip replacement. J Bone Joint Surg Br. 2003;85(2):187–190. https://doi.org/10.1302/0301-620X.85B2.12759.; Snorrason F., Kärrholm J., Holmgren C. Fixation of cemented acetabular prostheses. The influence of preoperative diagnosis. J Arthroplasty. 1993;8(1):83–90. https://doi.org/10.1016/s0883-5403(06)80112-9.; Sköldenberg O.G., Salemyr M.O., Bodén H.S., Lundberg A., Ahl T.E., Adolphson P.Y. A new uncemented hydroxyapatite-coated femoral component for the treatment of femoral neck fractures: Two-year radiostereometric and bone densitometric evaluation in 50 hips. J Bone Joint Surg Br. 2011;93(5):665–677. https://doi.org/10.1302/0301-620X.93B5.25374.; Aro H.T., Alm J.J., Moritz N., Mäkinen T.J., Lankinen P. Low BMD affects initial stability and delays stem osseointegration in cementless total hip arthroplasty in women: A 2-year RSA study of 39 patients. Acta Orthop. 2012;83(2):107–114. https://doi.org/10.3109/17453674.2012.678798.; Szulc P., Seeman E., Duboeuf F., Sornay-Rendu E., Delmas P.D. Bone fragility: Failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res. 2006;21(12):1856–1863. https://doi.org/10.1359/jbmr.060904.; Zebaze R.M., Ghasem-Zadeh A., Bohte A., Iuliano-Burns S., Mirams M., Price R.I., et al. Intracortical remodelling and porosity in the distal radius and postmortem femurs of women: a cross-sectional study. Lancet. 2010;375(9727):1729–1736. https://doi.org/10.1016/S0140-6736(10)60320-0.; Arabmotlagh M., Rittmeister M., Hennings T. Alendronate prevents femoral periprosthetic bone loss following total hip arthroplasty: Prospective randomized double-blind study. J Orthop Res. 2006;24(7):1336–1341. https://doi.org/10.1002/jor.20162.; Seeman E. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Osteoporos Int. 2003;14(3):2–8. https://doi.org/10.1007/s00198-002-1340-9.; Kärrholm J. Radiostereometric analysis of early implant migration – A valuable tool to ensure proper introduction of new implants. Acta Orthop, 2012;83(6):551–552. https://doi.org/10.3109/17453674.2012.745352.; Aro H.T., Nazari-Farsani S., Vuopio M., Löyttyniemi E., Mattila K. Effect of Denosumab on Femoral Periprosthetic BMD and Early Femoral Stem Subsidence in Postmenopausal Women Undergoing Cementless Total Hip Arthroplasty. JBMR Plus. 2019;3(10):e10217. https://doi.org/10.1002/jbm4.10217.; https://www.med-sovet.pro/jour/article/view/7531
-
18Academic Journal
المؤلفون: A. N. Torgashin, S. S. Rodionova, A. K. Morozov, A. V. Torgashina, R. M. Magomedgadzhiev, I. A. Fedotov, А. Н. Торгашин, С. С. Родионова, А. К. Морозов, А. В. Торгашина, Р. М. Магомедгаджиев, И. А. Федотов
المصدر: The Siberian Journal of Clinical and Experimental Medicine; Том 38, № 3 (2023); 223-230 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 3 (2023); 223-230 ; 2713-265X ; 2713-2927
مصطلحات موضوعية: субхондральный перелом, avascular necrosis (osteonecrosis), subchondral insufficiency fracture of the knee (SIF/SIFK), асептический некроз
وصف الملف: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/1966/880; Nguyen U.S., Zhang Y., Zhu Y., Niu J., Zhang B., Felson D.T. Increasing prevalence of knee pain and symptomatic knee osteoarthritis: survey and cohort data. Ann. Intern. Med. 2011;155(11):725–732. DOI:10.7326/0003-4819-155-11-201112060-00004.; Azad H., Ahmed A., Zafar I., Bhutta M.R., Rabbani M.A., Kc H.R. X-ray and MRI correlation of bone tumors using histopathology as gold standard. Cureus. 2022; 14(7):e27262. DOI:10.7759/cureus.27262.; Hodgson R.J., O’Connor P.J., Grainger A.J. Tendon and ligament imaging. Br. J. Radiol. 2012;85(1016):1157–1172. DOI:10.1259/bjr/34786470.; Berger A. Magnetic resonance imaging. BMJ. 2002;324(7328):35. DOI:10.1136/bmj.324.7328.35.; Eustace S., Keogh C., Blake M., Ward R.J., Oder P.D., Dimasi M. MR imaging of bone oedema: mechanisms and interpretation. Clinical. Radiolol. 2001;56(1):4–12. DOI:10.1053/crad.2000.0585.; Smith R. Publishing information about patients. BMJ. 1995;311(7015):1240–1241. DOI:10.1136/bmj.311.7015.1240.; Filardo G., Kon E., Tentoni F., Andriolo L., Di Martino A., Busacca M. et al. Anterior cruciate ligament injury: post-traumatic bone marrow oedema correlates with long-term prognosis. Int. Orthop. 2016;40(1):183–190. DOI:10.1007/s00264-015-2672-3.; Sanders T.G., Paruchuri N.B., Zlatkin M.B. MRI of osteochondral defects of the lateral femoral condyle: incidence and pattern of injury after transient lateral dislocation of the patella. AJR. 2006;187(5):1332–1337. DOI:10.2214/AJR.05.1471.; Viana S.L., Machado B.B., Mendlovitz P.S. MRI of subchondral fractures: a review. Skeletal. Radiol. 2014;43(11):1515–1527. DOI:10.1007/s00256-014-1946-y.; Ochi J., Nozaki T., Nimura A., Yamaguchi T., Kitamura N. Subchondral insufficiency fracture of the knee: review of current concepts and radiological differential diagnoses. Jpn. J. Radiol. 2022;40(5):443–457. DOI:10.1007/s11604-021-01224-3.; Gorbachova T., Melenevskky Y., Cohen M., Cerniglia B.W. Osteochondral lesions of the knee: Diff erentiating the most common entities at MRI. Radiographics. 2018;38(5):1478–1495. DOI:10.1148/rg.2018180044.; Mink J.H., Deutsch A.L. Occult cartilage and bone injuries of the knee. Detection, classification and assessment with MR imaging. Radiology. 1989;170(3 Pt. 1):823–829. DOI:10.1148/radiology.170.3.2916038.; Miller M.D., Osborne J.R., Gordon W.T., Hinkin D.T., Brinker M.R. The natural history of bone bruises. A prospective study of magnetic resonance imaging-detected trabecular microfractures in patients with isolated medial collateral ligament injuries. Am. J. Sports Med. 1998;26(1):15–19. DOI:10.1177/03635465980260011001.; Vellet A.D., Marks P.H., Fowler P.J., Munro T.G. Occult posttraumatic osteochondral lesions of the knee: prevalence, classification and shortterm sequelae evaluated with MR imaging. Radiology. 1991;178(1):271–276. DOI:10.1148/radiology.178.1.1984319.; Bretlau T., Tuxøe J., Larsen L., Jørgensen U., Thomsen H.S., Lausten G. Bone bruise in the acutely injured knee. Knee Surg. Sports Traumatol. Arthrosc. 2002;10(2):96–101. DOI:10.1007/s00167-001-0272-9.; Maraqhelli D., Brandi M.L., Matucci Cerinic M., Peired A.J., Colagrande S. Edema-like marrow signal intensity: a narrative review with a pictorial essay. Skeletal. Radiol. 2021;50(4):645–663. DOI:10.1007/s00256-020-03632-4.; Zanetti M, Bruder E, Romero J, Hodler J. Bone Marrow Edema Pattern in Osteoarthritic Knees: Correlation between MR Imaging and Histologic Findings. Radiology. 2000;215(3):835–840. DOI:10.1148/radiology.215.3.r00jn05835.; Accadbled F., Vial J., de Guazy J.S. Osteochondritis dissecans of the knee. Orthop. Traumatol. Surg. Res. 2018;104(1S):S97–S105. DOI:10.1016/j.otsr.2017.02.016.; https://www.sibjcem.ru/jour/article/view/1966
-
19Academic Journal
المؤلفون: A. N. Torgashin, S. S. Rodionova, A. A. Shumsky, M. A. Makarov, A. V. Torgashina, I. F. Akhtyamov, A. N. Kovalenko, N. V. Zagorodniy, S. P. Mironov
المصدر: Научно-практическая ревматология, Vol 58, Iss 6, Pp 637-645 (2021)
مصطلحات موضوعية: osteonecrosis, guidelines, osteonecrosis of the hip, Diseases of the musculoskeletal system, RC925-935
وصف الملف: electronic resource
-
20Academic Journal
المؤلفون: S. S. Rodionova, A. F. Kolondaev, A. N. Torgashin, I. A. Solomyannik, С. С. Родионова, А. Ф. Колондаев, А. Н. Торгашин, И. А. Соломянник
المصدر: Meditsinskiy sovet = Medical Council; № 21 (2022); 163-173 ; Медицинский Совет; № 21 (2022); 163-173 ; 2658-5790 ; 2079-701X
مصطلحات موضوعية: профилактика повторных переломов, bisphosphonates, osteoporosis, low-energy fractures, prevention of repeated fractures, бисфосфонаты, остеопороз, низкоэнергетические переломы
وصف الملف: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7219/6474; Russell R.G. Bisphosphonates: the first 40 years. Bone. 2011;49(1):2–19. https://doi.org/10.1016/j.bone.2011.04.022.; Rogers M.J., Mönkkönen J., Munoz M.A. Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. Bone. 2020;139:115493. https://doi.org/10.1016/j.bone.2020.115493.; Pazianas M., van der Geest S., Miller P. Bisphosphonates and bone quality. Bonekey Rep. 2014;3:529. https://doi.org/10.1038/bonekey.2014.24.; Cui P., Liu H., Sun J., Amizuka N., Sun Q., Li M. Zoledronate promotes bone formation by blocking osteocyte-osteoblast communication during bone defect healing. Histol Histopathol. 2018;33(1):89–99. https://doi.org/10.14670/HH-11-893.; Dhillon S. Zoledronic Acid (Reclast®, Aclasta®): A review in osteoporosis. Drugs. 2016;76(17):1683–1697. https://doi.org/10.1007/s40265-016-0662-4.; Takimoto R., Suzawa T., Yamada A., Sasa K., Miyamoto Y., Yoshimura K. et al. Zoledronate promotes inflammatory cytokine expression in human CD14- positive monocytes among peripheral mononuclear cells in the presence of γδ T cells. Immunology. 2021;162(3):306–313. https://doi.org/10.1111/imm.13283.; Recker R.R., Delmas P.D., Halse J., Reid I.R., Boonen S., García-Hernandez P.A. et al. Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res. 2008;23(1):6–16. https://doi.org/10.1359/jbmr.070906.; Black D.M., Delmas P.D., Eastell R., Reid I.R., Boonen S., Cauley J.A. et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–1822. https://doi.org/10.1056/NEJMoa067312.; Delmas P.D., Munoz F., Black D.M., Cosman F., Boonen S., Watts N.B. et al. Effects of yearly zoledronic acid 5 mg on bone turnover markers and relation of PINP with fracture reduction in postmenopausal women with osteoporosis. J Bone Miner Res. 2009;24(9):1544–1551. https://doi.org/10.1359/jbmr.090310.; Saag K., Lindsay R., Kriegman A., Beamer E., Zhou W. A single zoledronic acid infusion reduces bone resorption markers more rapidly than weekly oral alendronate in postmenopausal women with low bone mineral density. Bone. 2007;40(5):1238–1243. https://doi.org/10.1016/j.bone.2007.01.016.; Black D.M., Reid I.R., Boonen S., Bucci-Rechtweg C., Cauley J.A., Cosman F. et al. The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: a randomized extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2012;27(2):243–254. https://doi.org/10.1002/jbmr.1494.; Black D.M., Reid I.R., Cauley J.A., Cosman F., Leung P.C., Lakatos P. et al. The effect of 6 versus 9 years of zoledronic acid treatment in osteoporosis: a randomized second extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2015;30(5):934–944. https://doi.org/10.1002/jbmr.2442.; Jacques R.M., Boonen S., Cosman F., Reid I.R., Bauer D.C., Black D.M., Eastell R. Relationship of changes in total hip bone mineral density to vertebral and nonvertebral fracture risk in women with postmenopausal osteoporosis treated with once-yearly zoledronic acid 5 mg: the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2012;27(8):1627–1634. https://doi.org/10.1002/jbmr.1644.; Shuai B., Shen L., Yang Y., Ma C., Zhu R., Xu X. Assessment of the impact of zoledronic acid on ovariectomized osteoporosis model using micro-CT scanning. PLoS ONE. 2015;10(7):e0132104. https://doi.org/10.1371/journal.pone.0132104.; Burket J.C., Brooks D.J., MacLeay J.M., Baker S.P., Boskey A.L., van der Meulen M.C. Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone. 2013;52(1):326–36. https://doi.org/10.1016/j.bone.2012.10.018.; Gamsjaeger S., Buchinger B., Zwettler E., Recker R., Black D., Gasser J.A. et al Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Miner Res. 2011;26(1):12–18. https://doi.org/10.1002/jbmr.180.; Gamsjaeger S., Hofstetter B., Zwettler E., Recker R., Gasser J.A., Eriksen E.F. et al. Effects of 3 years treatment with once-yearly zoledronic acid on the kinetics of bone matrix maturation in osteoporotic patients. Osteoporos Int. 2013;24(1):339–347. https://doi.org/10.1007/s00198-012-2202-8.; Nakamura T., Fukunaga M., Nakano T., Kishimoto H., Ito M., Hagino H. et al. Efficacy and safety of once-yearly zoledronic acid in Japanese patients with primary osteoporosis: two-year results from a randomized placebocontrolled double-blind study (ZOledroNate treatment in Efficacy to osteoporosis; ZONE study). Osteoporos Int. 2017;28(1):389–398. https://doi.org/10.1007/s00198-016-3736-y.; Wang C. Efficacy and safety of zoledronic acid for treatment of postmenopausal osteoporosis: a meta-analysis of randomized controlled trials. Am J Ther. 2017;24(5):e544–e552. https://doi.org/10.1097/MJT.0000000000000415.; Anagnostis P., Stevenson J.C. Bisphosphonate drug holidays – when, why and for how long? Climacteric. 2015;18(Suppl. 2):32–38. https://doi.org/10.3109/13697137.2015.1099092.; Anagnostis P., Paschou S.A., Mintziori G., Ceausu I., Depypere H., Lambrinoudaki I. et al. Drug holidays from bisphosphonates and denosumab in postmenopausal osteoporosis: EMAS position statement. Maturitas. 2017;101:23–30. https://doi.org/10.1016/j.maturitas.2017.04.008.; Nayak S., Greenspan S.L. Cost-effectiveness of 3 versus 6 years of zoledronic acid treatment before bisphosphonate holiday for women with osteoporosis. Osteoporos Int. 2022;33(1):229–238. https://doi.org/10.1007/s00198-021-06010-5.; Ma S., Goh E.L., Jin A., Bhattacharya R., Boughton O.R., Patel B. et al. Longterm effects of bisphosphonate therapy: perforations, microcracks and mechanical properties. Sci Rep. 2017;7:43399. https://doi.org/10.1038/srep43399.; Lloyd A.A., Gludovatz B., Riedel C., Luengo E.A., Saiyed R., Marty E. et al. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proc Natl Acad Sci U S A. 2017;114(33):8722–8727. https://doi.org/10.1073/pnas.1704460114.; Heo Y.M., Park S.E., Cha S.M., Shin H.D., Choi J.K. Diagnostic criteria and treatment of atypical ulnar fractures associated with prolonged bisphosphonate therapy: multicenter case analysis. J Hand Surg Am. 2021:S0363– 5023(21)00481-0. https://doi.org/10.1016/j.jhsa.2021.08.001.; Black D.M., Condra K., Adams A.L, Eastell R. Bisphosphonates and the risk of atypical femur fractures. Bone. 2022;156:116297. https://doi.org/10.1016/j.bone.2021.116297.; Black D.M., Abrahamsen B., Bouxsein M.L., Einhorn T., Napoli N. Atypical femur fractures: review of epidemiology, relationship to bisphosphonates, prevention, and clinical management. Endocr Rev. 2019;40(2):333–368. https://doi.org/10.1210/er.2018-00001.; Kim H.Y. Review and update of the risk factors and prevention of antiresorptive-related osteonecrosis of the jaw. Endocrinol Metab (Seoul). 2021;36(5):917–927. https://doi.org/10.3803/EnM.2021.1170.; Mavi E., Hocaoglu P.T. Effects of a single intravaneous dose of zoledronic acid on bone healing following tooth extraction in ovariectomized rabbits. Saudi Dent J. 2021;33(7):724–730. https://doi.org/10.1016/j.sdentj.2020.03.016.; Williams D.W., Lee C., Kim T., Yagita H., Wu H., Park S. et al. Impaired bone resorption and woven bone formation are associated with development of osteonecrosis of the jaw-like lesions by bisphosphonate and anti-receptor activator of NF-κB ligand antibody in mice. Am J Pathol. 2014;184(11):3084–3093. https://doi.org/10.1016/j.ajpath.2014.07.010.; Everts-Graber J., Lehmann D., Burkard J.P., Schaller B., Gahl B., Häuselmann H. et al. Risk of osteonecrosis of the jaw under denosumab compared to bisphosphonates in patients with osteoporosis. J Bone Miner Res. 2022;37(2):340–348. https://doi.org/10.1002/jbmr.4472.; Yang G., Singh S., McDonough C.W., Lamba J.K., Hamadeh I., Holliday L.S. et al. Genome-wide association study identified chromosome 8 locus associated with medication-related osteonecrosis of the jaw. Clin Pharmacol Ther. 2021;110(6):1558–1569. https://doi.org/10.1002/cpt.2397.; Yang G., Collins J.M., Rafiee R., Singh S., Langaee T., McDonough C.W. et al. SIRT1 gene SNP rs932658 is associated with medication-related osteonecrosis of the jaw. J Bone Miner Res. 2021;36(2):347–356. https://doi.org/10.1002/jbmr.4185.; Curtis J.R., Saag K.G., Arora T., Wright N.C., Yun H., Daigle S. et al. Duration of bisphosphonate drug holidays and associated fracture risk. Med Care. 2020;58(5):419–426. https://doi.org/10.1097/MLR.0000000000001294.; Nayak S., Greenspan S.L. A systematic review and meta-analysis of the effect of bisphosphonate drug holidays on bone mineral density and osteoporotic fracture risk. Osteoporos Int. 2019;30(4):705–720. https://doi.org/10.1007/s00198-018-4791-3.; Naylor K.E., McCloskey E.V., Jacques R.M., Peel N.F.A., Paggiosi M.A., Gossiel F. et al. Clinical utility of bone turnover markers in monitoring the withdrawal of treatment with oral bisphosphonates in postmenopausal osteoporosis. Osteoporos Int. 2019;30(4):917–922. https://doi.org/10.1007/s00198-018-04823-5.; Colón-Emeric C.S., Lee R.H. Bisphosphonate holidays: using cost-effectiveness analysis for the “yes, but” questions. Osteoporos Int. 2021;32(12):2389–2390. https://doi.org/10.1007/s00198-021-06064-5.; Hayes K.N., Winter E.M., Cadarette S.M., Burden A.M. Duration of bisphosphonate drug holidays in osteoporosis patients: a narrative review of the evidence and considerations for decision-making. J Clin Med. 2021;10(5):1140. https://doi.org/10.3390/jcm10051140.; Boonen S., Black D.M., Colón-Emeric C.S., Eastell R., Magaziner J.S., Eriksen E.F. et al. Efficacy and safety of a once-yearly intravenous zoledronic acid 5 mg for fracture prevention in elderly postmenopausal women with osteoporosis aged 75 and older. J Am Geriatr Soc. 2010;58(2):292–299. https://doi.org/10.1111/j.1532-5415.2009.02673.x.; Eriksen E.F., Lyles K.W., Colón-Emeric C.S., Pieper C.F., Magaziner J.S., Adachi J.D. et al. Antifracture efficacy and reduction of mortality in relation to timing of the first dose of zoledronic acid after hip fracture. J Bone Miner Res. 2009;24(7):1308–1313. https://doi.org/10.1359/jbmr.090209.; Fu L.J., Tang T.T., Hao Y.Q., Dai K.R. Long-term effects of alendronate on fracture healing and bone remodeling of femoral shaft in ovariectomized rats. Acta Pharmacol Sin. 2013;34(3):387–392. https://doi.org/10.1038/aps.2012.170.; Hauser M., Siegrist M., Keller I., Hofstetter W. Healing of fractures in osteoporotic bones in mice treated with bisphosphonates – A transcriptome analysis. Bone. 2018;112:107–119. https://doi.org/10.1016/j.bone.2018.04.017.; He Y., Bao W., Wu X.D., Huang W., Chen H., Li Z. Effects of systemic or local administration of zoledronate on implant osseointegration: a preclinical meta-analysis. Biomed Res Int. 2019;2019:9541485. https://doi.org/10.1155/2019/9541485.; Gao Y., Liu X., Gu Y., Song D., Ding M., Liao L. et al. The effect of bisphosphonates on fracture healing time and changes in bone mass density: a meta-analysis. Front Endocrinol (Lausanne). 2021;12:688269. https://doi.org/10.3389/fendo.2021.688269.; Reid I.R., Horne A.M., Mihov B., Stewart A., Garratt E., Wong S. et al. Fracture prevention with zoledronate in older women with osteopenia. N Engl J Med. 2018;379(25):2407–2416. https://doi.org/10.1056/NEJMoa1808082.; McClung M., Miller P., Recknor C., Mesenbrink P., Bucci-Rechtweg C., Benhamou C.L. Zoledronic acid for the prevention of bone loss in postmenopausal women with low bone mass: a randomized controlled trial. Obstet Gynecol. 2009;114(5):999–1007. https://doi.org/10.1097/ AOG.0b013e3181bdce0a.; Gennari L., Bilezikian J.P. New and developing pharmacotherapy for osteoporosis in men. Expert Opin Pharmacother. 2018;19(3):253–264. https://doi.org/10.1080/14656566.2018.1428559.; Orwoll E.S., Miller P.D., Adachi J.D., Brown J., Adler R.A., Kendler D. et al. Efficacy and safety of a once-yearly i.v. Infusion of zoledronic acid 5 mg versus a once-weekly 70-mg oral alendronate in the treatment of male osteoporosis: a randomized, multicenter, double-blind, active-controlled study. J Bone Miner Res. 2010;25(10):2239–2250. https://doi.org/10.1002/jbmr.119.; Boonen S., Reginster J.Y., Kaufman J.M., Lippuner K., Zanchetta J., Langdahl B. et al. Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med. 2012;367(18):1714–1723. https://doi.org/10.1056/NEJMoa1204061.; Chiodini I., Merlotti D., Falchetti A., Gennari L. Treatment options for glucocorticoid-induced osteoporosis. Expert Opin Pharmacother. 2020;21(6):721–732. https://doi.org/10.1080/14656566.2020.1721467.; Allen C.S., Yeung J.H., Vandermeer B., Homik J. Bisphosphonates for steroidinduced osteoporosis. Cochrane Database Syst Rev. 2016;10(10):CD001347. https://doi.org/10.1002/14651858.CD001347.pub2.; Reid D.M., Devogelaer J.P., Saag K., Roux C., Lau C.S., Reginster J.Y. et al. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, doubleblind, double-dummy, randomised controlled trial. Lancet. 2009;373(9671):1253–1263. https://doi.org/10.1016/S0140-6736(09)60250-6.; Raterman H.G., Bultink I.E., Lems W.F. Osteoporosis in patients with rheumatoid arthritis: an update in epidemiology, pathogenesis, and fracture prevention. Expert Opin Pharmacother. 2020;21(14):1725–1737. https://doi.org/10.1080/14656566.2020.1787381.; Xie J., Li S., Xiao L., Ouyang G., Zheng L., Gu Y. et al. Zoledronic acid ameliorates the effects of secondary osteoporosis in rheumatoid arthritis patients. J Orthop Surg Res. 2019;14(1):421. https://doi.org/10.1186/s13018-019-1492-3.; Jarrett S.J., Conaghan P.G., Sloan V.S., Papanastasiou P., Ortmann C.E., O’Connor P.J. et al. Preliminary evidence for a structural benefit of the new bisphosphonate zoledronic acid in early rheumatoid arthritis. Arthritis Rheum. 2006;54(5):1410–1414. https://doi.org/10.1002/art.21824.; Adami S., Giannini S., Bianchi G., Sinigaglia L., Di Munno O., Fiore C.E. et al. Vitamin D status and response to treatment in post-menopausal osteoporosis. Osteoporos Int. 2009;20(2):239–244. https://doi.org/10.1007/s00198-008-0650-у.; Родионова С.С., Еловой-Вронский А.А., Бернакевич А.И. Альфакальцидол или холекальциферол в комбинации с ибандроновой кислотой при лечении постменопаузального системного остеопороза. Остеопороз и остеопатии. 2014;(1):21–24. https://doi.org/10.14341/osteo2014121-24. Rodionova S.S., Elovoy-Vronskiy A.A., Bernakevich A.I. Alfacalcidol or cholecalciferol in combination with ibandronic acid in the treatment of postmenopausal systemic osteoporosis. Osteoporosis and Bone Diseases. 2014;(1):21–24. (In Russ.) https://doi.org/10.14341/osteo2014121-24.; Ozasa R., Saito M., Ishimoto T., Matsugaki A., Matsumoto Y., Nakano T. Combination treatment with ibandronate and eldecalcitol prevents osteoporotic bone loss and deterioration of bone quality characterized by nano-arrangement of the collagen/apatite in an ovariectomized aged rat model. Bone. 2022;157:116309. https://doi.org/10.1016/j.bone.2021.116309.; Khajuria D.K., Razdan R., Mahapatra D.R. Zoledronic acid in combination with alfacalcidol has additive effects on trabecular microarchitecture and mechanical properties in osteopenic ovariectomized rats. J Orthop Sci. 2014;19(4):646–656. https://doi.org/10.1007/s00776-014-0557-8.; Khajuria D.K., Disha C., Razdan R., Mahapatra D.R. Efeito combinado do ácido zoledrônico e do alfacalcidol no tratamento da osteoporose por desuso em ratos. Rev Bras Reumatol. 2015;55(3):240–250. https://doi.org/10.1016/j.rbr.2014.08.007.; Anastasilakis A.D., Papapoulos S.E., Polyzos S.A., Appelman-Dijkstra N.M., Makras P. Zoledronate for the prevention of bone loss in women discontinuing denosumab treatment. A prospective 2-year clinical trial. J Bone Miner Res. 2019;34(12):2220–2228. https://doi.org/10.1002/jbmr.3853.; Grassi G., Chiodini I., Palmieri S., Cairoli E., Arosio M., Eller-Vainicher C. Bisphosphonates after denosumab withdrawal reduce the vertebral fractures incidence. Eur J Endocrinol. 2021;185(3):387–396. https://doi.org/10.1530/EJE-21-0157.; Langdahl B. Treatment of postmenopausal osteoporosis with bone-forming and antiresorptive treatments: combined and sequential approaches. Bone. 2020;139:115516. https://doi.org/10.1016/j.bone.2020.115516.; Cosman F., Eriksen E.F., Recknor C., Miller P.D., Guañabens N., Kasperk C. et al. Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1-34)] in postmenopausal osteoporosis. J Bone Miner Res. 2011;26(3):503–511. https://doi.org/10.1002/jbmr.238.; You R., Liu J., Ke L., Yu G., Zhang Y., Mori T. Cost-Effectiveness of sequential teriparatide/zoledronic acid compared with zoledronic acid monotherapy for postmenopausal osteoporotic women in china. Front Public Health. 2022;10:794861. https://doi.org/10.3389/fpubh.2022.794861.; Yeam C.T., Chia S., Tan H.C.C., Kwan Y.H., Fong W., Seng J.J.B. A systematic review of factors affecting medication adherence among patients with osteoporosis. Osteoporos Int. 2018;29(12):2623–2637. https://doi.org/10.1007/s00198-018-4759-3.; Cooper A., Drake J., Brankin E. Treatment persistence with once-monthly ibandronate and patient support vs. once-weekly alendronate: results from the PERSIST study. Int J Clin Pract. 2006;60(8):896–905. https://doi.org/10.1111/j.1742-1241.2006.01059.x.; Fobelo Lozano M.J., Sánchez-Fidalgo S. Adherence and preference of intravenous zoledronic acid for osteoporosis versus other bisphosphonates. Eur J Hosp Pharm. 2019;26(1):4–9. https://doi.org/10.1136/ejhpharm-2017-001258.; Curtis J.R., Yun H., Matthews R., Saag K.G., Delzell E. Adherence with intravenous zoledronate and intravenous ibandronate in the United States Medicare population. Arthritis Care Res (Hoboken). 2012;64(7):1054–1060. https://doi.org/10.1002/acr.21638.; Grey A., Horne A., Gamble G., Mihov B., Reid I.R., Bolland M. Ten years of very infrequent zoledronate therapy in older women: an open-label extension of a randomized trial. J Clin Endocrinol Metab. 2020;105(4):dgaa062. https://doi.org/10.1210/clinem/dgaa062.; Mori T., Crandall C.J., Fujii T., Ganz D.A. Cost-effectiveness of zoledronic acid compared with sequential denosumab/alendronate for older osteoporotic women in Japan. Arch Osteoporos. 2021;16(1):113. https://doi.org/10.1007/s11657-021-00956-z.; Akehurst R., Brereton N., Ariely R., Lusa T., Groot M., Foss P., Boonen S. The cost effectiveness of zoledronic acid 5 mg for the management of postmenopausal osteoporosis in women with prior fractures: evidence from Finland, Norway and the Netherlands. J Med Econ. 2011;14(1):53–64. https://doi.org/10.3111/13696998.2010.545563.; You R., Zhang Y., Wu D.B., Liu J., Qian X., Luo N., Mori T. Cost-effectiveness of zoledronic acid versus oral alendronate for postmenopausal osteoporotic women in china. Front Pharmacol. 2020;11:456. https://doi.org/10.3389/fphar.2020.00456.; Albert S.G., Reddy S. Clinical evaluation of cost efficacy of drugs for treatment of osteoporosis: a meta-analysis. Endocr Pract. 2017;23(7):841–856. https://doi.org/10.4158/EP161678.RA.; https://www.med-sovet.pro/jour/article/view/7219