يعرض 1 - 20 نتائج من 53 نتيجة بحث عن '"Rojo 40"', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI; Vol 12 No 24 (2025): Manuscripts accepted postprint (January 2025) ; Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI; Vol. 12 Núm. 24 (2025): Manuscritos aceptados postprint (Enero 2025) ; 2007-6363

    وصف الملف: application/pdf

  2. 2
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المؤلفون: Amaringo Villa, Fredy Alberto

    المصدر: Revista de Investigación Agraria y Ambiental; Vol. 4, Núm. 2 (2013); 27-36 ; 2145-6453 ; 2145-6097

    وصف الملف: application/pdf

    Relation: http://hemeroteca.unad.edu.co/index.php/riaa/article/view/982/963; Aksu, Z. & Isoglu, A. (2006). Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution. Journal of Hazardous Materials. 137 (1): 418–430.; Alemán, A. (2012). Evaluación de la esterificación sobre cascarilla de arroz como estrategia para incrementar la capacidad de remoción del colorante rojo básico 46. Tesis de Maestría en Ciencias Químicas. Medellín: Fa¬cultad de Ciencias-Escuela de Química Medellín Uni¬versidad Nacional de Colombia.; Allende, M., Romero, E. & Reyez, L. (2007). Carac¬terización de compuestos de hierro, como material reactivo para inmovilizar Cr(VI) en suelo contaminado. Memorias en extenso. VI Congreso Internacional y XII nacional de Ciencias Ambientales. 1-6. Chihuahua: Uni¬versidad Autónoma del Estado de México.; Annadurai, G., Juang, R. & Lee, D. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials. 92 (3): 263–274.; Appel, C. Ma, L., Dean, R. & Kennelly, E. (2003). Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma. 113 (1-2): 77– 93.; Ashoka, H. & Inamdar, S. (2010). Adsorption Removal of methyl red from aqueous solutions with treated su-garcane bagasse and activated carbón- a comparative study. Global Journal of Enviromental Research. 4(3): 175-182.; Atun, G., Hisarli, G., Sheldrick, W. & Muhler, M. (2003). Adsorptive removal of methylene blue from colored effluents on fuller’s earth. Journal of Colloid and Interfa¬ce Science. 261 (1): 32–39.; Babic, B., Milonjic, S., Polovina, M. & Kaludierovic, B. (1999). Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon. 37 (3): 477–481.; Banat, I., Nigam, P., Singh, D. & Marchant, R. (1996). Mi¬crobial decolorization of textile-dyecontaining effluents: A review. Bioresource Technology. 58 (3): 217- 227. Bhatnagar, T. & Minocha, A. (2006). Conventional and non-conventional adsorbents for removal of pollutants from water: A review. Indian Journal of Chemical Technology. 13: 203-217.; Cheremisinoff, N. (2003). Environmental Laws and Re¬gulatory Drivers. (Chap. 2) 23-33. Handbook of Solid Waste Management and Waste Minimization Technolo¬gy. Burlington: Elsevier.; Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology. 97 (9): 1061–1085.; El-Fadel, M., Findikakis, A. & Leckie, J. (1997) Environmental Impacts of Solid Waste Landfilling. Journal of Environmental Management. 50 (1): 1–25.; El-Latif, A., Ibrahimz, A. & El-Kady. (2010). Adsorption Equilibrium, kinetics and thermodynamics of methyle-ne blue from aqueous solutions using biopolymer oak sawdust composite. Journal of American Science. 6 (6): 267-283.; Elkady, M., Ibrahim, A. & El-Latif, A. (2011). Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads. Desalina-tion. 278 (1-3): 412–423.; Forgacs, E., Cserháti, T. & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International. 30 (7): 953– 971.; Franks, G. & Meagher, L. (2003). The isoelectric points of sapphire crystals and alpha-alumina powder. Colloids and Surfaces A: Physicochem. Eng. Aspects. 214 (1-3): 99-/110.; Gómez del Río, J., Cicerone, D. & Morando, P. (2001). Aplicación de materiales naturales a purificación de efluentes: columnas de hidroxiapatita y calcita como intercambiadores de metales pesados. 25-32. Misiones: Jornadas SAM - CONAMET – AAS 2001.; Gupta, N., Kushwaha, A. & Chattopadhyaya, M. (2011). Kinetics and thermodynamics of malachite green ad-sorption on banana pseudo-stem fibers. Journal of Chemical and Pharmaceutical Research. 3(1): 284-296.; Hormaza, A., Figueroa, D. & Moreno, A. (2012). Evaluación de la remoción de un colorante azo sobre tuza de maíz mediante diseño estadístico. Revista de la Facul¬tad de Ciencias. 1 (1): 61-71.; Hormaza, A. & Suarez, E. (2009). Estudio del proceso de biosorción de dos colorantes estructuralmente diferentes sobre residuos avícolas. Rev. Soc. Quím. Perú. 75 (3): 329-338.; Martin, M. (2008). Caracterización y aplicación de bio¬masa residual a la eliminación de metales pesados. Tesis Doctoral, Departamento de Ingeniería Química. Granada: Universidad de Granada.; Menéndez, J., Illán –Gómez, C. & Radovic, R. (1995). On the difference between the isoelectric point and the point of zero charge of carbons. Carbon. 33 (11): 1655-1659.; Mohd Salleh, M., Mahmoud, D., Abdul Karim, W. & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desali¬nation, 280 (1-3): 1-13.; Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-Garcia, M. & Moreno-Castilla, C. (2003). Bioadsorption of Pb(II), Cd(II), and Cr(VI) on activated carbon from aqueous solutions. Carbon. 41: 323–330.; Ramakrishna, R. & Viraraghavan, T. (1997). Dye removal using low cost adsorbents. Water Sci. Technol. 36: 189–196; Robinson, T., McMullan, G., Marchant, R. & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology. 77 (3): 247–255.; Sabás, L. & Romero, E. Síntesis y caracterización del Cu3(PO4)2 para eliminar contaminantes del agua. Memorias en Extenso. 7-10. VI Congreso Internacional y XII Nacional de Ciencias Ambientales. Chihuahua: Uni¬versidad Autónoma del Estado de México.; Theivarasu, C., Mylsamy, S. & Sivakumar, N. (2011). Cocoa Shell as Adsorbent for the Removal of Methylene Blue from Aqueous Solution: Kinetic and Equilibrium Study. Universal Journal of Environmental Research and Technology. 1: 70-78.; Vijyakumar, G., Tamilasaran, R. & Dharmendirakumar, M. (2012). Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. Journal of Materials of Enviromental Sciences 3 (1): 157-170.; Uribe, L. & Villa, M. (2010). Colombia (Chapter 10). In: The International Comparative Legal Guide to: Environment Law 2010. A practical croos-border insight into environment law. 76-83, London: Ed. Global Legal Group Ltd.; Wanchanthuek, R. & Thapol, A. (2011). The Kinetic study of methylene blue adsorption over MgO from PVA template preparation. Journal of Enviromental Science and Technology. 4 (5): 552-559.; http://hemeroteca.unad.edu.co/index.php/riaa/article/view/982; https://repository.unad.edu.co/handle/10596/29515

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المصدر: Revista Ingenierías Universidad de Medellín; Vol. 14, núm. 26 (2015) ; 2248-4094 ; 1692-3324

    وصف الملف: p.105-120; Electrónico; application/pdf; text/html

    Relation: http://revistas.udem.edu.co/index.php/ingenierias/article/view/1172; 14; 26; 105; 120; Revista Ingenierías Universidad de Medellín; http://hdl.handle.net/11407/1817; reponame:Repositorio Institucional Universidad de Medellín; repourl:https://repository.udem.edu.co/; instname:Universidad de Medellín

  10. 10
    Academic Journal

    المصدر: DYNA; Vol. 82 Núm. 189 (2015); 165-171 ; DYNA; Vol. 82 No. 189 (2015); 165-171 ; 2346-2183 ; 0012-7353

    وصف الملف: application/pdf; text/html

    Relation: https://revistas.unal.edu.co/index.php/dyna/article/view/42954/pdf_116; https://revistas.unal.edu.co/index.php/dyna/article/view/42954/53768; Daifullah, A. and Girgis, B., Impact of surface characteristics of activated carbon on adsorption of BTEX, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214 (1-3), pp. 181-193, 2003. https://doi.org/10.1016/S0927-7757(02)00392-8; Gupta, V.K and Suhas, Application of low-cost adsorbents for dye removal - A review, Journal of Environmental Management, 90 (8), p. 2313-2342, 2009. https://doi.org/10.1016/j.jenvman.2008.11.017; Alemán-Romero, A.L., Evaluación de la esterificación sobre cascarilla de arroz como estrategia para incrementar la capacidad de remoción del colorante rojo básico 46, Medellín, 2012.; Che-Galicia, G., Remoción de un colorante de los efluentes de la industria textil mediante adsorción en una zeolita natural, México D.F., 2011.; McKay, G., Otterburn, M.S. and Sweeney, A.G., The removal of colour from effluent using various adsorbents - III. Silica: Rate process, Water Research, 14 (1), pp. 15-20, 1980. https://doi.org/10.1016/0043-1354(80)90037-8 https://doi.org/10.1016/0043-1354(80)90038-X; Davis, J., American Dyestuff Reporter, 80 (3), 19 P, 1991.; Slokar, Y.M. and Le Marechal, A.M., Methods of decoloration of textile wastewaters, Dyes and pigments, 37 (4), pp. 335-356, 1998. https://doi.org/10.1016/S0143-7208(97)00075-2; Zollinger, H., Color chemistry: Syntheses, properties and applications of organic dyes and pigments, Wiley-VCH, 2003.; Wang, S., Boyjoo, Y., Choueib, A. and Zhu, Z., Removal of dyes from aqueous solution using fly ash and red mud, Water Research, 39, pp. 129-138, 2005. https://doi.org/10.1016/j.watres.2004.09.011; Garg, V., Amita, M., Kumar, R. and Gupta, R., Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: A timber industry waste, Dyes and Pigments, 63, (3), pp. 243-250, 2004. https://doi.org/10.1016/j.dyepig.2004.03.005; Tuesta, E.G., Vivas, M., Sun R. y Gutarra, A., Modificación química de arcillas y su aplicación en la retención de colorantes, Revista de la Sociedad Química del Perú, 71, (1), pp. 26-36, 2005.; Chowdhury, S. and Saha, P., Sea shell powder as a new adsorbent to remove Basic Green 4 (Malachite Green) from aqueous solutions: Equilibrium, kinetic and thermodynamic studies, Chemical Engineering Journal, 164, (1), pp. 168-177, 2010. https://doi.org/10.1016/j.cej.2010.08.050; O'Neill, C., Hawkes, F.R., Hawkes, D.L., Lourenco, N.D., Pinheiro, H.M. and Delée, W., Colour in textile effluents - sources, measurement, discharge consents and simulation: a review, Journal of Chemical Technology and Biotechnology, 74, pp. 1009-1018, 1999. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11 1009::AID-JCTB153 3.0.CO;2-N; Namasivayam, C., Yamuna, R.T. and Arasi, D.J.S.E., Removal of procion orange from wastewater by adsorption on waste red mud, Separation Science and Technology, 37 (10), pp. 2421-2431, 2002. https://doi.org/10.1081/SS-120003521; Waranusantigul, P., Pokethitiyook, P., Kruatrachue, M. and Upatham, E., Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza), Environmental Pollution, 125, pp. 385-392, 2003. https://doi.org/10.1016/S0269-7491(03)00107-6; Eren, E. and Afsin, B., Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated sepiolite surfaces, Dyes and Pigments. 73, pp. 162-167, 2007. https://doi.org/10.1016/j.dyepig.2005.11.004; Doğan, M. and Alkan, M., Adsorption kinetics of methyl violet onto perlite, Chemosphere, 50 (4), pp. 517-528, 2003. https://doi.org/10.1016/S0045-6535(02)00629-X; Nassar, M.M. and El-Geundi, M.S., Comparative cost of colour removal from textile effluents using natural adsorbents, Journal of Chemical Technology and Biotechnology, 50, pp. 257-264, 1991. https://doi.org/10.1002/jctb.280500210; Singh, B.K. and Rawat, N.S., Comparative sorption equilibrium studies of toxic phenols on flyash and impregnated flyash, Journal of Chemical Technology and Biotechnology, 61, pp. 307-317, 1994. https://doi.org/10.1002/jctb.280610109 https://doi.org/10.1002/jctb.280610405; Özacar, M. and Şengil, I., Adsorption of reactive dyes on calcined alunite from aqueous solutions, Journal of Hazardous Materials, 98 (1-3), pp. 211-224, 2003. https://doi.org/10.1016/S0304-3894(02)00358-8; Juang, R., Wu, F. and Tseng, R., The ability of activated clay for the adsorption of dyes from aqueous solutions, Environmental Technology, 18, pp. 525-531, 1997. https://doi.org/10.1080/09593331808616568; Atun, G., Hisarli, G., Sheldrick, W. and Muhler, M., Adsorptive removal of methylene blue from colored effluents on fuller's earth, Journal of Colloid and Interface Science, 261, pp. 32-39, 2003. https://doi.org/10.1016/S0021-9797(03)00059-6; Özcan, A.S., Erdem, B. and Özcan, A., Adsorption of acid blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite, Journal of Colloid and Interface Science, 280, pp. 44-54, 2004. https://doi.org/10.1016/j.jcis.2004.07.035; Eren, E., Investigation of a basic dye removal from aqueous solution onto chemically modified Unye bentonite, Journal of Hazardous Materials, 166, pp. 88-93, 2009. https://doi.org/10.1016/j.jhazmat.2008.11.011; Hisarli, G., The effects of acid and alkali modification on the adsorption performance of fuller's earth for basic dye, Journal of Colloid and Interface Science, 281, pp. 18-26, 2005. https://doi.org/10.1016/j.jcis.2004.08.089; Steudel, A., Batenburg, L., Fischer, H., Weidler, P. and Emmerich, K., Alteration of non-swelling clay minerals and magadiite by acid activation, Applied Clay Science, 44, pp. 95-104, 2009. https://doi.org/10.1016/j.clay.2009.02.001 https://doi.org/10.1016/j.clay.2009.02.002; Yeniyol, M. and Lacin, D., IXth National Clay Symposium, Istanbul, Turkey, September, 1999.; Rowell, D.L., Soil Science: Methods and applications, Harlow, UK: Longman Scientific and Technical, 1994, 350 P.; Tyagi, B., C Chudasama,.D. and Jasra, R.V., Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy, Spectrochimica Acta Part A, 64, pp. 273-278, 2006. https://doi.org/10.1016/j.clay.2009.02.001 https://doi.org/10.1016/j.clay.2009.02.002; McKay, G., Otterburn, M.S. and Aga, J.A., Fuller's earth and fired clay as adsorbent for dyestuffs. Equilibrium and rate studies, Water, Air, and Soil Pollution. 24, pp. 307-322, 1985. https://doi.org/10.1007/BF00161790; Robertson, R., Fuller's Earth: a History of Calcium Montmorillonite, Volturna Press, 421 P., 1986.; Duran-Rincon, M. y Contreras-C, N., Alternativa de tratamiento para tierra Fuller contaminada con aceite dielectrico, Scientia et Technica, 12 (32), pp. 419-424, 2006.; Agudelo, E.A. y Cardona, S., Análisis preliminar del tratamiento fisicoquímico y biológico del aceite dieléctrico presente en tierra Fuller, DYNA, 78 (167), pp. 193-202, 2011.; Agudelo, E.A., Un método de gestión ambiental adecuado para el tratamiento y la disposición final de un residuo peligroso. Caso: Tierra Fuller contaminada con aceite dieléctrico, Medellín, 2010.; Beltran, O., Berrio, L., Agudelo, E. y Cardona, S., Tecnologías de tratamiento para la tierra Fuller contaminada con aceite dieléctrico, Revista EIA, 10 (19), pp. 33-48, 2013.; Hussin, F., Kheireddine-Aroua, M. and Wan Daud, W.M.A., Textural characteristics, surface chemistry and activation of bleaching earth: A review, Chemical Engineering Journal, 170 (1), pp. 90-106, 2011. https://doi.org/10.1016/j.cej.2011.03.065; Amado-Duarte, E.S. y Rueda-Gómez, S.L., Aplicación de arcillas bentoníticas modificadas a la adsorción de iones cobre y zinc disueltos en efluentes cianurados, Bucaramanga, 2007.; Ye, H., Zhu, Q. and Du, D., Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk, Bioresource Technology, 101, p. 5175--5179, 2010. https://doi.org/10.1016/j.biortech.2010.02.027; Menéndez, J., Illán-Gómez, M., León C., and Radovic, L., On the difference between the isoelectric point and the point of zero charge of carbons, Carbon, 33 (11), pp. 1655-1659, 1995. https://doi.org/10.1016/0008-6223(95)96817-R; Schoonheydt, R.A. and Johnston, C.T., Chapter 3 Surface and Interface Chemistry of Clay Minerals, in Developments in Clay Science: Handbook of Clay Science, vol. 1, Elsevier, 2006, pp. 87-113. https://doi.org/10.1016/S1572-4352(05)01003-2; Valenzuela-Díaz, F.R. and De Souza-Santos, P., Studies on the acid activation of Brazilian smectitic clays, Química Nova, 24 (3), pp. 345-353, 2001. https://doi.org/10.1590/S0100-40422001000300011; Madejová, J., Bujdák, J., Janek, M. and Komadel, P., Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54 (10), p. 1397-1406, 1998. https://doi.org/10.1016/S1386-1425(98)00040-7; Ilic, B.R., Mitrovic, A.A. and Milicic, L.R., Thermal treatment of kaolin clay to obtain metakaolin, Hemijska industrija, 64,(4), pp. 351-356, 2010.; Matocha, C., Clay: Charge properties, in Encyclopedia of Soil Science, Taylor & Francis, 2006.; Önal, M. and Sarikaya, Y., Preparation and characterization of acid-activated bentonite powders, Powder Technology, 172, pp. 14-18, 2007. https://doi.org/10.1016/j.powtec.2006.10.034; Bajpai, A. and Vishwakarma, N., Adsorption of polyvinylalcohol onto Fuller's earth surfaces, Colloids and Surfaces A: Physicochem. Eng. Aspects, 220, pp. 117-130, 2003. https://doi.org/10.1016/S0927-7757(03)00073-6; Cardona, S., Reutilización y activación del coque de petróleo para remover metales en agua. Gestión y Ambiente, 9 (1), pp. 89-101, 2006.; https://revistas.unal.edu.co/index.php/dyna/article/view/42954

  11. 11
    Academic Journal
  12. 12
  13. 13

    المصدر: Revista Ingenierías Universidad de Medellín; Vol. 14, núm. 26 (2015)
    Repositorio UDEM
    Universidad de Medellín
    instacron:Universidad de Medellín

    وصف الملف: Electrónico; application/pdf; text/html

  14. 14
  15. 15
  16. 16
    Academic Journal
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal